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Accurately predicting regulatory sequences and enhancers in entire genomes is an important but difficult problem,
especially in large vertebrate genomes. With the advent of ChIP-seq technology, experimental detection of genome-wide
EP300/CREBBP bound regions provides a powerful platform to develop predictive tools for regulatory sequences and to
study their sequence properties. Here, we develop a support vector machine (SVM) framework which can accurately
identify EP300-bound enhancers using only genomic sequence and an unbiased set of general sequence features.
Moreover, we find that the predictive sequence features identified by the SVM classifier reveal biologically relevant
sequence elements enriched in the enhancers, but we also identify other features that are significantly depleted in en-
hancers. The predictive sequence features are evolutionarily conserved and spatially clustered, providing further support
of their functional significance. Although our SVM is trained on experimental data, we also predict novel enhancers and
show that these putative enhancers are significantly enriched in both ChIP-seq signal and DNase I hypersensitivity signal in
the mouse brain and are located near relevant genes. Finally, we present results of comparisons between other EP300/
CREBBP data sets using our SVM and uncover sequence elements enriched and/or depleted in the different classes of
enhancers. Many of these sequence features play a role in specifying tissue-specific or developmental-stage-specific en-
hancer activity, but our results indicate that some features operate in a general or tissue-independent manner. In addition
to providing a high confidence list of enhancer targets for subsequent experimental investigation, these results contribute
to our understanding of the general sequence structure of vertebrate enhancers.

[Supplemental material is available for this article.]

Enhancers are gene regulatory sequences that can control tran-

scriptional activities at a distance, independent of their position

and orientation with respect to affected genes (Banerji 1981).

Enhancer activity is modulated by interactions between sequence

specific DNA binding proteins and sequence elements in the

enhancer. Since individual transcription factor binding sites

(TFBSs) can be relatively short and degenerate, TFBSs tend to be

clustered to achieve precise temporal and developmental speci-

ficity (Kadonaga 2004). Factors bound to these sequences often

interact with common coactivators, which, in turn, recruit the

basal transcription machinery (Blackwood and Kadonaga 1998;

Carter et al. 2002).

Identifying the sequence elements and the combinatorial

rules that determine enhancer function is necessary to fully un-

derstand how enhancers direct the spatial and temporal regulation

of gene expression. Experimentally identified enhancers with sim-

ilar functions can be a good starting point for in-depth study of the

underlying rules encoded in the regulatory DNA sequence. How-

ever, the systematic functional identification of such enhancers has

been limited due to the fact that they are often distant from the

genes they regulate, requiring the interrogation of large amounts of

potential regulatory sequence. Most investigations make use of two

complementary approaches to detect putative regulatory regions:

comparative genomics, which identifies enhancers by their sequence

conservation across related species; and functional genomics, which

identifies enhancers by the common binding of transcriptionally

associated factors or marks (for review, see Noonan and McCallion

2010).

Comparative genomics is based on the generally accepted

hypothesis that functionally important regulatory sequences are

under purifying selection. As a result, conserved noncoding se-

quences (CNSs) are natural candidates for putative enhancers. Early

studies used CNSs to detect putative enhancers and test their ac-

tivity in zebrafish or mouse reporter assays (Woolfe et al. 2004;

Pennacchio et al. 2006; Visel et al. 2008). Although these conser-

vation-based approaches achieve some success, limitations also

exist. The function and spatio-temporal specificity of CNSs can-

not be determined by conservation alone and, therefore, requires

additional experimentation. More importantly, several studies

have shown that noncoding sequences that apparently lack con-

servation (as assessed by sequence alignment) may still contain

functional regulatory elements (Fisher et al. 2006; ENCODE Project

Consortium 2007; McGaughey et al. 2008).

Functional genomics is an experimentally driven approach

that utilizes recently developed techniques of microarray hybrid-

ization or massively parallel sequencing in combination with chro-

matin immunoprecipitation (ChIP) on specific transcription factors

( Johnson et al. 2007; Robertson et al. 2007), chromatin signatures

(Heintzman et al. 2007, 2009), or coactivators (Visel et al. 2009; Kim

et al. 2010). Specifically, some chromatin signatures or coactivator as-

sociation (such as monomethylation of lysine 4 of histone H3, acet-

ylation of lysine 27 of histone H3, and binding by coactivators EP300/

CREBBP) are predictive markers of enhancer activity (Heintzman

et al. 2007, 2009). The transcriptional coactivators EP300 (also

known as P300) and CREBBP (also known as CBP) have proven to
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be useful for enhancer identification because of their general roles as

cofactors in mammalian transcription. Through highly conserved

protein-protein interactions, EP300/CREBBP are hypothesized to

operate as coactivators in at least three ways: as a direct bridge be-

tween sequence-specific transcription factors (TFs) and RNA Poly-

merase II, as an indirect bridge between sequence specific TFs and

other coactivators which recruit RNA Pol II, or by modifying chro-

matin structure via intrinsic acetyl-transferase activity (Chan and La

Thangue 2001). Several studies have reported genome-wide map-

ping of EP300/CREBBP-bound enhancers in different contexts, for

example, tissue-specific activity in dissected mouse tissue (Visel et al.

2009) and environment-dependent activity in neurons (Kim et al.

2010). Visel et al. validated that 90% of the EP300 enhancers tested

recapitulated the expected spatial and temporal activity in vivo in

a transgenic mouse enhancer assay. Functionally identified EP300-

bound regions thus provide a robust starting point for further in-

vestigation of enhancers and their sequence properties.

In principle, a complete understanding of enhancer mecha-

nism would include a description of specific internal sequence

features and how they contribute to enhancer function. Previous

studies that have attempted to predict enhancers from sequence

have typically used sequence conservation, colocalization of pre-

viously characterized TFBSs [from databases such as TRANSFAC

(Matys et al. 2003) or JASPAR (Bryne et al. 2008)], or a combination

of the two. Many of these existing approaches were assessed by Su

et al. (2010), who found that some were successful in identifying

enhancers in Drosophila but that few generalized to mammalian

systems. The most successful method in mammalian enhancer

prediction used a combination of conservation and low-order

Markov models of sequence features (Elnitski et al. 2003; King

et al. 2005). In more recent work, Leung and Eisen (2009) used

word frequency profile similarity between pairs of sequences to

detect novel enhancers, but training on small numbers of enhancers

can be susceptible to noise. Another notable recent computational

approach uses combinations of known TFBSs and de novo position

weight matrices (PWMs) to detect enhancers (Narlikar et al. 2010).

In this paper, we present a discriminative computational

framework to detect enhancers from DNA sequence alone that

does not rely on conservation or known TF binding specificities.

We use a support vector machine (SVM) to differentiate enhancers

from nonfunctional regions, using DNA sequence elements as

features. SVMs (Boser et al. 1992; Vapnik 1995) have been success-

fully applied in many biological contexts (for review, see Schölkopf

et al. 2004; Ben-Hur et al. 2008): cancer tissue classification

(Furey et al. 2000); protein domain classification (Karchin et al. 2002;

Leslie et al. 2002, 2004); splice site prediction (Rätsch et al. 2005;

Sonnenburg et al. 2007); and nucleosome positioning (Peckham

et al. 2007). In our case, because of the potentially diverse mecha-

nisms which direct EP300 and CREBBP binding, we use a complete

set of DNA sequence features to capture combinations of binding

sites active in different tissues and times of development. To study

these distinct modes of regulation, we investigate EP300/CREBBP

binding in mouse embryos (Visel et al. 2009), activated cultured

neurons (Kim et al. 2010), and embryonic stem (ES) cells (Chen et al.

2008). Our analysis will initially focus on Visel’s data set, where

several thousands of EP300-bound DNA elements were collected by

ChIP-seq in dissected mouse embryo forebrain, midbrain, and limb.

We evaluate our method by predicting enhancers vs. random

sequence and between EP300/CREBBP ChIP-seq data sets. These

comparisons reveal a diversity of predictive sequence features,

both within and across data sets. Supplemental Table S1 provides

an outline of the analyses performed in this paper.

We show that sequence features in the experimentally iden-

tified enhancer set are sufficient to accurately discriminate en-

hancers from random genomic regions. We also show that the

most predictive sequence elements are related to biologically rel-

evant transcription factor binding sites. Notably, our method also

finds that some sequence elements are significantly absent in the

enhancers (those with large negative SVM weights). For example,

we find that binding sites for the zinc finger E-box binding ho-

meobox (ZEB) transcription factor family is depleted in the fore-

brain enhancers, consistent with its biological role as a transcrip-

tional repressor (Vandewalle et al. 2008). In addition, we provide

evidence that enriched sequence elements are positionally con-

strained within the enhancers and that they are more evolution-

arily conserved than less predictive elements in the enhancers,

reflecting the combinatorial structure of tissue-specific enhancers.

We further apply our SVM method to predict putative en-

hancers in both the mouse genome and the human genome from

DNA sequence alone. Many of these novel enhancers overlap with

regions enriched in EP300 ChIP-seq reads, exhibit greatly increased

hypersensitivity to DNase I in the mouse brain, and are proximal to

biologically relevant genes. All of these assessments exclude the

original EP300 training set enhancers from the analysis. The suc-

cessful identification of tissue-specific DNase I hypersensitive sites

provides powerful independent evidence for the validity of our

approach.

Results

Enhancers can be accurately predicted from DNA sequence

Our primary concern in this paper is to identify which sequence

features are specific to enhancers and to investigate the degree to

which we can identify functional enhancer regions in a mamma-

lian genome using only DNA sequence features in these regions.

We initially focus on recent genome-wide experiments that iden-

tified EP300 binding sites by ChIP-seq (Visel et al. 2009) in three

different tissues (forebrain, midbrain, and limb) at embryonic day

11.5 in mice. Cross-linking in dissected tissue at a particular time

point during development can identify tissue-specific enhancers,

even when the developmental regulators that mediate EP300

binding are unknown. While EP300 ChIP may not detect all the

enhancers active under these conditions, we initially analyze this

data set to identify sequence features responsible for EP300 bind-

ing in these tissues.

To model DNA sequence features, we use a support vector

machine framework. In brief, an SVM finds a decision boundary

that maximally distinguishes two sets of data, here a positive (en-

hancer) and negative (random genomic) sequence set. The basic

approach is outlined in Figure 1A, and full details can be found in

Methods. Weights, wi, determine the contribution of each feature to

this boundary. Once the set of sequence features, xi, is specified, the

weights are optimized to maximize the separation between the two

classes. We use as sequence features the full set of k-mers of varying

length (3–10 bp). While other authors have successfully used data-

bases of experimentally characterized TFBSs as sequence features

(Gotea et al. 2010), because the binding specificity of many tran-

scription factors (TFs) has yet to be determined, we prefer k-mers

(oligomers of length k) because they are an unbiased, general, and

complete set of sequence features. An advantage of this framework is

that the SVM can be subsequently used to scan the genome for

novel enhancers not in the original training set. The results of

scanning a well-studied region near Dlx1/2 is shown in Figure 1B
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and detects novel and experimentally confirmed enhancers, as

discussed in detail below.

To evaluate classification performance, we use a fivefold cross

validation method. Initially, the data set to be classified is ran-

domly partitioned into five subsets. One subset is then reserved as

a test data set, and the SVM weights are trained on sequences in the

remaining four subsets. The SVM is then used to predict the re-

served test data set to assess its accuracy. This process is repeated

five times so that every sequence element is classified in one test

set. Because there is a trade-off between specificity (the accuracy of

positively classified enhancers) and sensitivity (the fraction of pos-

itive enhancers detected), we measure the quality of the classifier by

calculating the area under the ROC curve (auROC), as shown for

several cases in Figure 2. We ultimately average the five test set

auROCs to give a summary statistic of the SVM performance; these

five test sets generate the error bars in Figure 2.

To test sensitivity to various assumptions in our SVM con-

struction, we repeated these cross-validation experiments on each

tissue-specific enhancer set using SVM classifiers with different

types of kernels: spectrum kernels (Leslie et al. 2002), mismatch

spectrum kernels (Leslie et al. 2004), and Gaussian kernels. The

Gaussian kernel and spectrum kernel vary the functional form by

which features contribute to the overall decision boundary, while

the mismatch spectrum kernel retains the linear contribution of

the features but uses a different set of features by allowing a certain

number of base pair mismatches to a given k-mer (see Methods). In

addition, we tested a commonly used alternative approach, the Na-

ive Bayes classifier, which learns the parameters for each feature in-

dependently (the SVM learns parameters for all features at the same

time). Despite this assumption of independence, the Naive Bayes

classifier has performed very well on a broad range of machine

learning applications.

Our main result, perhaps surprising, is that many SVMs can

successfully distinguish enhancers from random genomic sequences

with auROC > 0.9, regardless of: the types of kernels, the types of

tissues, or the length of the k-mers (Fig. 2; Supplemental Fig. S1A). In

general, larger k-mers achieved superior performance (Supplemental

Fig. S1A), but predictive power begins to decrease when k is greater

than six because of overfitting (the feature vector becomes sparse).

On the other hand, Naive Bayes classifiers are significantly less ac-

curate in discriminating enhancers from random genomic sequences

(auROC < 0.79), indicating that the assumption of conditional in-

dependence between k-mers in the Naive Bayes model impairs its

performance. Figure 2A–C shows summaries of comparison between

ROC curves of SVM (solid) and Naive Bayes (dotted). Because of its

robust performance (auROC = 0.94) and ease of interpretation, we

adopt the 6-mer spectrum kernel as our standard model for the re-

mainder of the paper.

Besides distinguishing individual enhancer sets from random

genomic sequences, we next tested whether our SVM method could

also distinguish between enhancers in different tissues (forebrain,

midbrain, limb). Since some enhancers are active in two or more

tissues, these overlapping regions were removed from both sets

before analysis. With the full set of 6-mers, forebrain and midbrain

Figure 1. Overview of our methodology. (A) k-mer frequencies are calculated for each of the EP300-bound and negative genomic training sequences.
These feature vectors (x1,. . .,xn) are used to find SVM weights, w, which most accurately separate the positive (enhancer) and negative (genomic)
training sets. (B) These weights are used to predict genome-wide enhancers (light green), based on their SVM score. (Brown) positive, (blue) negative. A
well-studied region around Dlx1 and Dlx2 is shown here, both known to be expressed in the forebrain. While the predicted enhancers often overlap the
training EP300 set (blue), novel enhancers are also predicted and often identify previously experimentally verified enhancers (red) absent from the
EP300 training set. The predicted enhancers also preferentially occur in conserved nonexonic regions (dark green) and regions enriched in EP300 signal
(dark blue).

Enhancer prediction from DNA sequence
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enhancers can be discriminated from limb enhancers with a reason-

able auROC of ;0.84–0.86. However, the SVM failed to successfully

discriminate forebrain and midbrain enhancers (Fig. 2D). This in-

dicates that the compositions of TFBSs enriched in forebrain and

midbrain enhancers may be similar to each other but are sufficiently

different from those in limb-specific enhancers to permit classifica-

tion. Significant overlap between the forebrain and midbrain en-

hancer sets in the original data set supports this interpretation (48.7%

of midbrain enhancers are also in the forebrain set).

When comparing against random genomic sequence, we have

the freedom to choose the size of the negative sequence set. The ge-

nomic ratio of enhancers to nonenhancer sequence is very large (we

estimate that enhancers comprise 1%–2% of the genome in a given

cell-type), and ideally we would compare alternative prediction

methods using a very large negative set. However, some of the

computational methods we compared could not handle such large

amounts of sequence due to memory constraints. To compare be-

tween data sets, we used the same ratio between positives and

negatives. To test the scaling with negative set size, we used three

negative sets (roughly balanced, 13, 503 larger, and 1003 larger

than the positive enhancer set). Although auROC is a standard

metric, when the positive and negative sets are unbalanced, the

precision-recall (P-R) curve is a more reliable measure of perfor-

mance than the ROC curve. Precision is the ratio of true positives

to predicted positives, and recall is identical to the true positive

rate in the ROC curve. The P-R curves can be quantified by the area

under the precision-recall curve (auPRC), or average precision. For

the classification of EP300 forebrain (fb), limb (lb), and midbrain

(mb) enhancers from genomic sequence, auROC is unaffected by

the size of the negative set (Fig. 2E), but auPRC drops (Fig. 2F) as n

becomes large and the high-scoring tail of the negative sequences

becomes competitive with the true positive sequences. However,

the trends of auROC and auPRC are usually consistent. Comparison

of auROC and auPRC for the negative set size scaling for all positive

data sets is shown in Supplemental Figure S3.

Most predictive sequence elements are known transcription
factor binding sites

We next investigated which subsets of sequence features allowed

the SVM to successfully discriminate enhancers from random se-

quence. The SVM discriminant function is defined as the sum of

weighted frequencies of k-mers in the case of the k-spectrum

kernel, and the classification is determined by the sign of the dis-

criminant function (see Methods). Therefore, k-mers with large

positive and negative SVM weights indicate predictive sequence

features: k-mers with large positive weights are sequence features

specific to enhancer sequences, and k-mers with large negative

weights are sequences that are present in random genomic se-

quence but depleted in enhancers. We conducted the SVM clas-

Figure 2. Classification results on each tissue-specific enhancer set. (A) Classification of forebrain enhancers vs. random genomic sequences. (B)
Classification of midbrain enhancers vs. random genomic sequences. (C ) Classification of limb enhancers vs. random genomic sequences. Each graph in A,
B, and C compares an SVM trained on the full set of 6-mers (solid), the top 100 selected 6-mers (dashed), and an alternative Naive Bayes classifier (dotted).
Each curve is an average of five cross-fold validations on a reserved test set; error bars denote one standard deviation over the five cross-fold validation sets.
Numbers in parentheses indicate the area under each ROC curve (auROC) for overall comparison. Both the full SVM and SVM with selected features
perform very well and significantly better than Naive Bayes. Individually, each tissue-specific set can be accurately discriminated from nonenhancer
genomic sequences. (D) Classification of specific tissues vs. other tissues. Forebrain (fb) and midbrain (mb) can be accurately discriminated from limb (lb)
but not from each other (fb vs. mb), indicating common or overlapping modes of regulation. (E ) Classification ROC curves for forebrain enhancers vs.
random genomic sequences for larger negative set sizes. (F ) Precision-recall curves for forebrain enhancers vs. random sequences corresponding to the
ROC curves and negative sets in E; numbers in parentheses are auPRC. (G) Classification of EP300 forebrain enhancers, neuronal stimulus-dependent
enhancers (CREBBP neuron), and mouse embryonic stem cell enhancers (EP300 ES) vs. random genomic sequence. Although the embryonic stem cell
data set is somewhat less accurately classified, our SVMs successfully discriminate EP300 or CREBBP bound regions from random sequences. (H ) Clas-
sification of EP300 fb, CREBBP neuron, and EP300 ES data sets vs. each other is also robust.
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sification again, using only the subset of k-mers with largest

positive and negative SVM weights (Supplemental Fig. S1). The

SVM using fifty 6-mers with the largest positive weights and another

fifty 6-mers with the largest negative weights achieves auROC of

0.90 for the forebrain enhancer data set. This demonstrates that the

largest weight k-mers predict enhancers with similar accuracy, al-

though the auROC does decrease somewhat compared to the result

with all k-mers (Fig. 2A–C). Interestingly, the most frequently ob-

served k-mers do not always have the largest SVM weights or vice

versa. We find only a weak correlation between SVM weights and

k-mer frequencies (Supplemental Fig. S4). The most predictive single

k-mer (auROC = 0.65) is AGCTGC, which is present in 60% of the

true positive forebrain enhancers, but it is also present in 34% of the

negative genomic regions. By combining many k-mers, the full SVM

and the SVM with the 100 top k-mers achieve greater accuracy than

single k-mers. The SVM’s outperformance of the Naive Bayes clas-

sifier, which assumes feature independence, indicates that these

features contribute cooperatively.

Significantly, many of the most predictive k-mers, (those with

the largest positive weights) are recognizable as binding sites for

TFs known to be involved in embryonic nervous system de-

velopment. We systematically scored each of the predictive k-mers

with PWMs for known motifs available in public databases [ JASPAR

(Bryne et al. 2008), TRANSFAC (Matys et al. 2003), and UniPROBE

(Newburger and Bulyk 2009)] using the TOMTOM package (Gupta

et al. 2007). Because the databases contain many PWMs from

families of TFs with similar specificity, many PWMs often score

highly for a given k-mer, so we report for each k-mer the family of

matched TFs with q-value < 0.1 (Storey and Tibshirani 2003), and

list representative high scoring TFs within that family. This mapped

known TFBS to 85% of the most predictive k-mers, while only 24%

of all k-mers match a known TFBS (Binomial test P-value = 1.5 3

10�8). Table 1A shows the fifteen 6-mers with

the largest positive SVM weights. The full lists

of SVM weights used in our analysis are pro-

vided in the Supplemental Material. The ele-

ments that positively contribute to EP300

binding include many k-mers with TAAT or

ATTA cores, which are bound by the homeo-

domain family (Berger et al. 2008). Several

homeodomain protein genes have restricted

expression in the embryonic mouse forebrain

and are required for proper forebrain de-

velopment, such as Otx and Dlx (Bulfone

et al. 1993; Matsuo et al. 1995; Zerucha et al.

2000). Other predictive factors include the

members of the basic helix-loop-helix (bHLH)

family, which bind variations of E-box ele-

ments (CANNTG). Some bHLH factors are

known to be crucial regulators of neural and

cortical development (Lee 1997; Bertrand

et al. 2002; Ross et al. 2003) and are also

known to interact with the coactivator EP300/

CREBBP (Chan and La Thangue 2001).

One of the distinguishing features of

our approach is its ability to detect binding

sites that are significantly absent or depleted

in EP300 enhancers. The presence of k-mers

with large negative weights in a sequence

significantly decreases the likelihood that that

sequence will be classified as an enhancer.

Biologically, the presence of these binding

sites would interfere with the operation of the enhancer in

a specific tissue. We consistently observe that ZEB1-related k-mers

have the largest negative weights in forebrain enhancers (Table

1B). For example, the ZEB1 binding k-mer CAGGTA is present in

29% of the negative sequences but only 18% of the forebrain

enhancer sequences. Also known as AREB6, ZEB1 (zinc finger E-

box binding homeobox 1) is a member of the ZEB family of

transcription factors, which play crucial roles in epithelial-mes-

enchymal transitions (EMT) in development and in tumor me-

tastasis by repressing transcription of several epithelial genes in-

cluding E-cadherin (Vandewalle et al. 2008). Although ZEB family

members can work as both activators and repressors, their de-

pletion in EP300-bound regions implies that ZEB1 binding can

disrupt EP300 activation.

Although some negative weight k-mers are predictive (e.g.,

ZEB1), on average the positive weights in Table 1A are more pre-

dictive than the negative weights (Table 1B) for all data sets. The

absolute values of most negative weight k-mers are significantly

less than those of the positive weight k-mers, as shown in Figure 3

(discussed below), where each k-mer weight is plotted along the

vertical axis. The asymmetry in SVM weights indicates that the

predictive features are primarily identifying k-mers that are enriched

in the enhancers rather than k-mers that are enriched in random

genomic sequence (or equivalently, depleted in enhancers).

Predictive sequence elements are evolutionarily conserved
and positionally constrained within enhancers

In their previous analysis, Visel et al. showed that most EP300-bound

regions are enriched in evolutionarily constrained noncoding regions

(Visel et al. 2009). However, not all sequences in the EP300-bound

regions (average length 750–800 bp) are conserved; rather, several

Table 1. Predictive 6-mers of EP300 forebrain

(A) Fifteen 6-mers with the largest positive SVM weights

6-mers
Reverse

complement
SVM

weight
Database

family match
Top matched transcription

factors (q-val < 0.1)

AATGAG CTCATT 3.94 Homeodomain POU6F1
AATTAG CTAATT 3.85 Homeodomain VSX2, PRRX2, EVX2, PDX1, GBX2
AGCTGC GCAGCT 3.65 HLH NHLH1, HEN1, ASCL2, REPIN1, TCF3
CAATTA TAATTG 3.62 Homeodomain BARHL2, PRRX2, NKX2-5,

NKX6-1, BARHL1
CAGCTG CAGCTG 3.32 HLH NHLH1, HEN1, REPIN1, ASCL2,

MYOD1, TCF3
ACAAAG CTTTGT 3.29 SOX SOX4, SOX11, SOX10, HNF4A
TAATTA TAATTA 3.24 Homeodomain OTP, PROP1, HOXA, ALX1, LHX3
CAGATG CATCTG 3.15 HLH ZFP238, TAL1:TCF3, TAL1:TCF4, TCF3
TAATGA TCATTA 3.03 Homeodomain POU6F1, POU4F3, LHX3,

HOXC9, NKX6-3
AATTAA TTAATT 2.94 Homeodomain LHX3, OTP, PRRX2, PROP1, LHX5
ATTAGC GCTAAT 2.90 Homeodomain VSX2, POU3F2, EVX2, PITX3, LHX8
GGCAAC GTTGCC 2.86 — —
ACAATG CATTGT 2.63 SOX SOX17, SOX9, SOX5, SOX10, SOX30
CATTCA TGAATG 2.45 SOX HBP1
AATTAC GTAATT 2.18 Homeodomain PRRX2, HOXA6, HOXA1, HOXC8, DLX1

(B) Five 6-mers with the largest negative SVM weights

AGGTAG CTACCT �1.79 – –
AAGTCA TGACTT �1.89 – –
AGGTGA TCACCT �1.97 Zinc-finger ZEB1
ACCTGG CCAGGT �2.03 Zinc-finger ZEB1, TCF3
CAGGTA TACCTG �2.06 Zinc-finger ZEB1
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more localized peaks of conservation (10–100 bp) within the

EP300-bound regions are observed in most cases. These peaks of

localized conservation probably identify the smaller functional

regions within a more extended enhancer. We hypothesized that if

the predictive k-mers reflect actual TFBSs, they would tend to be

preferentially located within these evolutionarily conserved lo-

calized regions. To test this systematically, we measured the degree

to which individual k-mers were present in conserved regions by

averaging the phastCons conservation score (Siepel et al. 2005)

over each instance of the k-mer (see Methods), and examined its

correlation with SVM weight. Figure 3 shows that k-mers with large

positive SVM weights are significantly more conserved than aver-

age. All but one (CCCCTC) of the 6-mers with large positive SVM

weights (three or more standard deviations above the mean) have

large conservation scores (at least one and a half standard deviation

above the mean conservation score). While the most predictive

k-mers are significantly more conserved, moderate correlation

between the phastCons conservation scores and the SVM weights

for all k-mers is also observed (Pearson correlation coefficient =

0.35). This evidence supports the idea that the predictive sequence

features are more evolutionarily conserved than the less predictive

regions within the enhancers.

Since conservation is found in narrow peaks within the en-

hancers, it follows that there might be additional positional con-

straints between the predictive elements. Mechanistically, these

constraints are most likely indicative of a cooperative mechanism,

either involving TF-TF interactions or spatially constrained activity

of individual factors. Spatial constraints between TFBSs have been

observed frequently in yeast (Beer and Tavazoie 2004). In Figure 4,

we compare the distribution of minimum

pairwise distances between the ten most

predictive sequence elements in the fore-

brain enhancers (6-mers with the largest

positive weights) to their distribution in

the null sequences. The forebrain pairwise

distance distribution is shifted to lower

distances (they are closer to each other)

compared to null sequences. To measure

the statistical significance of this differ-

ence, we calculated the pairwise distance

distribution for these 6-mers in 100 dif-

ferent negative sets. The standard de-

viations of these 100 negative sets are

shown as dashed lines in Figure 4, and the

forebrain distribution often deviates from

the null distribution by several standard

deviations, especially for small spacing.

We can also measure the difference be-

tween the forebrain and null pairwise

distance distributions by the two-sample

Kolmogorov-Smirnov test, (P-value < 2.2 3

10�16), which further demonstrates the

significant clustering of predictive se-

quence elements. More interestingly, if

we concentrate on the small spacing end

of this distribution (inset in Fig. 4), we ob-

serve periodic enrichments with charac-

teristic spacing of 10–11 bp. The highest

peak is around 11 bp, almost two times

higher than the null distribution. These

positional correlations suggest coopera-

tive binding interactions in phase with

the 10.5 bp DNA helix periodicity, consistent with previous ob-

servations (Erives and Levine 2004; Hallikas et al. 2006), and local

physical interactions between the factors that bind these DNA

sequence elements.

Genome-wide SVM predictions identify novel enhancers

To predict additional functional regions that were not determined

to be EP300-bound from the ChIP-seq data, we scanned the entire

genome systematically with our SVM. We segmented the mouse

genome sequence into 1-kb regions with 0.5k-bp overlap, resulting

in about 5.2 million overlapping sequence regions. To compare

with the 2453 forebrain region ‘‘EP300 training set’’, we followed

Visel and removed centromeric regions, telomeric regions, and

regions containing at least 70% repeats, (however, this filter had

minimal impact on our predictions). We then scored all these 1-kb

regions using the SVM with the k = 6 spectrum kernel for forebrain

enhancers. An example of the continuous SVM score along the

Dlx1/2 locus is shown in Figure 1B (‘‘Raw SVM Score’’). Dlx1 and 2

are expressed in the mouse forebrain (Bulfone et al. 1993; Ghanem

et al. 2003; Wigle and Eisenstat 2008). Besides the sole EP300

training set element in this region (URE2) (labeled ‘‘EP300 ChiPseq’’

in Fig. 1B), two other enhancers within this locus have been ex-

perimentally validated (‘‘Known Enhancers’’) (labeled i12a and

i12b) (Ghanem et al. 2003). These enhancers (i12a and i12b) were

detected by our SVM but were not in the EP300 training set because

their raw sequence read density was not above the stringent

threshold used in Visel et al. (2009). Comparing the ‘‘Raw EP300

ChIPseq’’ track to our ‘‘Raw SVM score’’ in Figure 1B shows striking

Figure 3. Predictive SVM sequence features are more conserved. Scatter plot between SVM weights
and conservation scores (phastCons scores) for 6-mers in forebrain enhancers. Two well-known
TFBS, TAAT cores (red rectangles), and E-box elements (blue triangles) are highlighted. Three
standard deviations above the mean (corresponding to P-value of ;0.001) is denoted for each axis
independently. The sequence of all 6-mers beyond three standard deviations above the mean is
displayed.
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correlation: Most of our predicted high scoring SVM regions have

raw EP300 ChIP-seq signal significantly above background but did

not have sufficient read density to be included in the EP300 training

set. To support this anecdotal evidence, we evaluated the genome-

wide correlation between our SVM predicted regions and EP300 read

density. In Supplemental Figure S5, we plot the EP300 ChIP-seq read

density as a function of distance from the center of each of the top

1% SVM scoring regions. We find significant enrichment of EP300

ChIP-seq signal around the SVM predicted regions, indicating that

many of these predicted loci are, indeed, bound to some extent by

EP300 but fall somewhat below the read threshold used to de-

termine the EP300 training set. Supplemental Figure S6 shows the

correlation between SVM score and EP300 reads in all genomic 1-kb

regions, showing again that there is a significant population of high

scoring SVM regions enriched in EP300 signal but not in the EP300

training set.

To define a high confidence set of enhancer predictions, we

chose an appropriate cutoff for the SVM score using more realistic

large negative training set sizes (503 and 1003 negative sequences),

covering ;6%–12% of the nonrepetitive genome. We can estimate

our false discovery rate (the expected fraction of predicted positives

which are false positives, FP/(FP+TP), from the P-R curves in Figure

2F. The precision is weakly dependent on negative set size when n is

large, due to the fact that the positive and negative histograms of

SVM scores have a similar shape for larger negative set sizes, as shown

in Supplemental Figure S7. To trade off precision and recall, we

choose a cutoff that corresponds to 50% recall, which at 13 is an

SVM score of 1.0. For the large negative sets, precision is ;50% when

recall is 50%, and we therefore estimate our false discovery rate to be

;50%. In other words, at this cutoff (SVM > 1.0) on the training set,

we capture 50% of the EP300 training set regions and an equal

number of negative regions.

In what follows we will be comparing the properties of our

SVM predicted enhancer regions (SVM > 1.0), the EP300 training

set regions, and nonenhancer genomic

regions (SVM < 1.0). These three sets are

all distinct, i.e., each genomic 1-kb region

can only belong in one class. Any 1-kb

region which overlaps a training set re-

gion by as little as 1 bp is excluded from

the SVM sets and included in the EP300

training set. We will show that the EP300

training set and SVM predicted regions

have similar properties, much different

than the nonenhancer regions.

At an SVM score threshold of 1.0, we

predict 33,232 1-kb regions in the ge-

nome (outside of the EP300 training set),

or 26,920 enhancers after merging over-

lapping regions, and we expect about

13,460 of these to be true enhancers. This

threshold appears to be a good tradeoff

between detecting many biologically sig-

nificant enhancers with an acceptable false

discovery rate. The full lists of SVM scores

for these regions are included as Supple-

mentary Material. We also established the

robustness of these top SVM scoring re-

gions by training separate SVMs with in-

dependent random null sequence sets

as the negative class. There is extensive

overlap between the top scoring regions

using these different SVMs (Supplemental Table S2), and the cor-

relation of individual SVM scores between two different SVMs is

high (Pearson correlation coefficient = 91.5%), as shown in Sup-

plemental Figure S8. That the SVM classifier identifies many more

sequence regions than the EP300 training set may be due to several

factors: (1) As discussed above, these predicted regions may be false

positive enhancers; (2) they may be true positive enhancers that

were undetected in the ChIP experiments because of an overly

stringent cutoff for defining the EP300 training set; (3) they may be

true positive enhancers that are not EP300-bound in this tissue at

the developmental stage of the experiment but may be EP300-

bound in other tissues or times; or (4) they may be true positive

enhancers that operate independently of EP300 but share some

similar sequence features. All but the first possibility are potentially

biologically interesting.

To assess the validity of these genome-wide predictions with

independent experimentation, we quantified the DNase I hyper-

sensitivity of the high scoring forebrain SVM regions with exper-

iments in embryonic mouse whole brain provided by the mouse

ENCODE project (data available from http://genome.ucsc.edu/

ENCODE/; J. Stamatoyannopoulos, in prep), using methods de-

scribed in John et al. (2011). DNase I hypersensitivity measure-

ments detect open or accessible chromatin, including promoters

and enhancers, independent of EP300 binding. Although these

DNase I experiments are not strictly specific to forebrain and were

3 d later in development, enrichment in brain hypersensitivity

strongly corroborates our predictions as tissue-specific enhancers.

In Figure 5, we split the predicted 1-kb regions from the EP300 fb

trained SVM into four classes (SVM < 0.5, red; 0.5 < SVM < 1.0, gray;

1.0 < SVM < 1.5, cyan; and SVM > 1.5, blue) and one EP300 training

set class (EP300-bound regions, green). We plot the distributions of

average intensity of DNase I hypersensitivity of the different SVM

scoring classes in Figure 5A, which shows a dramatic increase in

DNase I signal in E14.5 brain only for high scoring SVM regions.

Figure 4. Predictive SVM sequence features are spatially clustered. Distributions of minimum pairwise
distances between the most predictive sequence features in forebrain enhancers vs. random genomic
sequences. Ten 6-mers with the largest positive SVM weights (Table 1) are used. To measure the sig-
nificance of these differences, we generated 100 distinct full negative genomic sequence sets (using our
null model; see Methods). Each negative set has the same length, repeat fraction, and number of sequences
as the EP300 forebrain enhancer training set. The predictive elements are significantly clustered in the
forebrain enhancers compared to the random genomic sequences (the red distribution is significantly
shifted toward smaller minimum distance). At higher resolution (inset), distinct peaks around 11 bp, 22 bp,
etc., are observed, suggesting positioning in phase with the periodicity of the DNA helix. P-values are
indicated: (*) <0.01, (**) <0.001, (***) <0.0001.
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There is no enrichment of DNase I signal for the same regions in

other tissues; for example adult kidney is shown in Figure 5B as

a negative control. Because the DNase I hypersensitive regions

include promoters and other open regions, the converse is not

true, i.e., while almost all high-scoring SVM

regions have a high DNase I signal, not all

high-signal DNase I regions have a high

SVM score (data not shown). With this un-

derstanding, we can evaluate the precision

and specificity with which our SVM detects

DNase I sensitive enhancers. Because the

SVM score and DNase I signals are continu-

ous, we consider DNase I signal > 10 to be

positive (open chromatin), and DNase I < 2

to be negative (not open) for purposes of

quantification, consistent with the distribu-

tions in Figure 5A,B. Then, regions with

DNase I > 10 and SVM > 1.0 are true

positive predictions, and DNase I < 2 and

SVM > 1.0 regions are false positive pre-

dictions. Table 2 shows the number of

1-kb genomic regions in each class. The

precision is TP/(TP+FP), or the accuracy of

the predicted positives. The sensitivity is

1�FPR (false positive rate), or the fraction

of negatives that we predict to be positive.

As shown in Table 2, SVM > 1.0 pre-

dictions have a 56.3% precision, and more

stringent SVM > 1.5 predictions have a

74.5% precision. These results are consis-

tent with our above estimate that 50% of

our novel predictions are true enhancers

functioning in mouse brain.

To further support the biological sig-

nificance of these novel SVM-predicted

enhancers, we examined their proximity

to forebrain-expressed genes. Microarray

experiments (Visel et al. 2009) identified

885 (495) genes overexpressed (underex-

pressed) in the forebrain at E11.5. We ex-

amined the intergenic distance between

the EP300 training set regions and the

transcription start site (TSS) of the nearest

overexpressed genes. We also found the

distance between our SVM-predicted

enhancer regions and the overexpressed

genes. All regions overlapping a training

set region were omitted from the set of

predictions. As shown in Figure 6, both

the EP300 training set and our predicted

enhancer regions are significantly en-

riched near (within 10 kb of ) the TSS of

a forebrain overexpressed gene. Notably,

the SVM predicted regions with the more

stringent SVM cutoff score (SVM > 2.0) are

even more enriched within 10 kb of the

overexpressed genes than the EP300

training set, further evidence that the

SVM is capturing functional regions with

spatial and temporal specificity. In com-

parison, randomly chosen genomic re-

gions show no such enrichment. While

the EP300 training set is not enriched near forebrain underex-

pressed genes, our SVM predicted regions are significantly

enriched within 10 kb of forebrain underexpressed genes (Fig. 6).

What is a potential role of these predicted regions near under-

Figure 5. SVM-predicted regions are hypersensitive to DNase I in the relevant context. To indepen-
dently confirm our predictions with DNase I measurements in the embryonic mouse brain, we plot the
distributions of the average intensity of DNase I hypersensitivity of different forebrain SVM scoring
regions. (A) DNase I hypersensitivity measured in E14.5 wholebrain. (B) DNase I hypersensitivity measured
in an adult 8-wk kidney, as a negative control. We observe significant enrichments only in high-scoring
SVM-predicted regions in the brain.

Table 2. Precision and sensitivity of detecting DNase I hypersensitive enhancers

True
positives

False
positives

Precision
TP/(TP+FP)

Sensitivity
1–FP/NDNase I > 10 DNase I < 2

Predicted
positives

SVM > 1.5 3892 1330 74.5% 0.9996
SVM > 1.0 11,081 8612 56.3% 0.997

Predicted
negatives

SVM < 1.0 98,590 3,086,512 3.5%

P = 109,671 N = 3,095,124

Lee et al.

2174 Genome Research
www.genome.org



expressed genes? Because the EP300 bound regions are not en-

riched near the underexpressed genes, it is unlikely that EP300 is

acting as a transcriptional repressor here. It seems more likely that

the SVM is predicting enhancers that are bound by EP300 in other

tissues or at other times in development. These enhancers could

activate the neighboring genes relative to their expression level at

E11.5 in the forebrain, which would appear indistinguishable from

forebrain repression. This hypothesis is supported by the fact that

several of the underexpressed genes with nearby SVM-predicted

enhancers play roles in nervous system development, including

many Hox genes known to function in A-P axis patterning.

SVM also predicts human enhancers

We next assessed the ability of our SVM to predict human en-

hancers. We found human orthologous regions (hg18) of the mouse

EP300 training set with the liftOver utility from the UCSC genome

browser (Karolchik et al. 2008). With 70% or greater identity, 2205

of the 2453 forebrain enhancers were successfully mapped onto the

human genome. We discarded 13 mapped sequences longer than

3 kb. We then trained SVMs to discriminate this positive human

training set from an equal number of human random sequences

generated by our null model and achieved reasonably high auROC =

0.87 (Supplemental Fig. S9). We also tested more stringent orthol-

ogy cutoffs (requiring 90% and 95% identity instead of 70%) and

found that the overall performance was very similar (Supplemental

Fig. S9). Thus, an SVM trained on human sequence homologous to

the mouse EP300 training set sequences is able to predict test set

enhancers with only slightly reduced accuracy relative to mouse.

In addition, we predicted human enhancer regions with a

SVM trained on the mouse data set, which does not require se-

quence alignment to identify ortholo-

gous regions. This approach might be

valuable in situations where it is difficult

or impossible to obtain similar data sets

in each species. It also provides further

information about the conservation of

predictive k-mers between the two spe-

cies. We first compared these two raw

SVM scores (one trained on the human

homologous set, the other on the mouse

data set) on the human genome around

Otx2, observing very similar SVM score

patterns. Moreover, an experimentally ver-

ified enhancer (Kurokawa et al. 2004) is

captured by both SVMs (Supplemental

Fig. S10). We then systematically ana-

lyzed the entire genome to assess how

many top SVM-scoring regions overlap

each other (Supplemental Table S3). Al-

though the overlaps are not as signifi-

cant as scores using only different nega-

tive sets (Supplemental Table S2), a large

fraction of top SVM-scoring regions are

still shared between the two SVMs, so to

a large degree, an SVM trained on mouse

can be used to successfully predict hu-

man enhancers. This result is in general

agreement with in vivo experimental re-

sults (Wilson et al. 2008) where human

DNA transplanted into mice was shown to

bind mouse TFs (HNF1A, HNF4A, HNF6)

in a pattern virtually indistinguishable from their binding patterns

in human, indicating that variations in genomic TF binding be-

tween human and mouse are due to local DNA sequence differences,

not due to evolutionary divergence of individual TF binding speci-

ficities between the two species.

Comparison between different EP300/CREBBP ChIP-seq data
sets reveals sequence elements important for pluripotency

The success of our SVMs in predicting EP300 binding in mouse

embryonic brain and limb motivated a comparison with other

EP300/CREBBP ChIP-seq data sets. We first looked at the overlap

between Visel’s in vivo data set (EP300 forebrain, midbrain, and

limb) and two other data sets: CREBBP-bound regions in activated

cultured mouse cortical neurons (Kim et al. 2010), and EP300-

bound regions in cultured mouse embryonic stem cells (Chen et al.

2008). We will refer to these as ‘‘CREBBP neuron’’ and ‘‘EP300 ES’’

in the following discussion. We were interested in these data sets

because they share similar ChIP-seq methodology, because it

would help us address the overlap between activation mediated by

the close homologs EP300 and CREBBP, and to address differences

in EP300 binding in different tissues and cell populations. CREBBP

neuron enhancers only overlap significantly with EP300 forebrain

enhancers (not midbrain or limb) (Supplemental Table S4A).

EP300 ES enhancers do not significantly overlap with any other set

(fb, mb, lb, or CREBBP neuron) (Supplemental Table S4B). This in-

dicates that EP300-mediated embryonic neuronal development is

linked to CREBBP-mediated neural activity dependent transcription

via extensively shared common regulatory regions. We indeed ob-

serve that several predictive k-mers with large positive weights, such

as homeodomain binding sites (TAAT core) and bHLH domain

Figure 6. SVM-predicted enhancers are preferentially located near transcript start sites (TSSs) of
forebrain-expressed genes. Here we plot the distribution of the distance between the EP300 and SVM-
predicted regions and the nearest forebrain-expressed gene [as assessed by the microarray experiments
of Visel et al. (2009)]. Any region which overlapped a training set region was excluded from the analysis.
Both the EP300 (red) and SVM-predicted regions are preferentially located within 10 kb of the TSS
of a forebrain-overexpressed gene (above the axis). This is true whether we use a cut-off of SVM > 1.5
(green) or a more restrictive SVM > 2.0 (blue) to define the enhancer set. As a null set, we compare
to the average of 100 randomized genomic positions, with a 95% confidence interval shown (gray).
Interestingly, when we calculate the same distributions for the distance between a EP300 or SVM-
predicted region and the nearest forebrain-underexpressed gene (below the axis), only the SVM-
predicted regions show significant clustering toward the TSS, relative to the randomized control.
Although the EP300 data preferentially identifies activating enhancers in the forebrain, the SVM may
be detecting common sequence features shared in enhancers, which are repressive in the forebrain
but are activating in other contexts.
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binding sites (E-box, CANNTG), are shared between the two data

sets (Table 1A; Supplemental Table S5A), which further indicates

common modes of regulation.

Figure 2G shows ROC curves discriminating CREBBP neu-

rons (auROC = 0.93) and EP300 ES (auROC = 0.77) from random

genomic sequences. The lower EP300 ES auROC is partly due to

the relatively smaller number of regions bound in the EP300 ES

positive set. Also, the EP300 ES data set contains a larger fraction

of repeat sequences, indicating that this data set may be less

specific for functional EP300 binding. Nonetheless, SVMs still

can extract informative k-mers from this data set and can largely

discriminate the EP300 ES set from random genomic sequences.

Alternatively, instead of comparing to random genomic se-

quence, we can also successfully classify these sets (EP300

forebrain, CREBBP neuron, EP300 ES) against each other, as shown

in Figure 2H. It is interesting to note that EP300 forebrain can be

discriminated from CREBBP neuron with high auROC, even

though they share many regions and have some common pre-

dictive k-mers (homeodomain, SOX, bHLH) when classified

against random sequence (Table 1A; Supplemental Table S5A).

However, when classified against each other, we observe that the

predictive k-mers specific for EP300 forebrain remain homeo-

domain, SOX, and bHLH, but the k-mers predictive for CREBBP

neurons become nuclear factor I (NFI), activator protein 1 (AP1), and

cyclic AMP-responsive element-binding protein (CREB) binding

sites (Supplemental Table S7). Therefore, homeodomain, SOX, and

bHLH binding sites may play more prominent roles in neural

developmental processes than in neural activity dependent

transcription.

We also assessed the biological significance of the predictive

k-mers in these new data sets. We find that most of the predictive

k-mers can be related to known TFBSs (Supplemental Tables S5, S6),

and that many of the identified TFBSs are involved in signaling

pathways known to function in the relevant experimental con-

ditions. For the CREBBP neuron data set, AP1 related 6-mers, GACTCA

and TGACTC, the first and third largest weights respectively

(Supplemental Table S5A), are the target of heterodimers of the

regulators Fos and Jun, which play critical roles in neural activity-

dependent transcription regulation (Flavell and Greenberg 2008).

CREB, which directly interacts with CREBBP, is also essential for

the activation of several genes in response to neural stimulation,

and its binding site is ranked fourth in Supplemental Table S5A

(Flavell and Greenberg 2008; Kim et al. 2010). Kim et al. noted

that two other transcription factors, neuronal PAS domain-

containing protein 4 (NPAS4) and serum response factor (SRF)

as well as CREB, strongly colocalize with CREBBP binding

regions. NPAS4 contains a bHLH domain, and its canonical bind-

ing sites, E-box elements, are ranked at second and sixth in Sup-

plemental Table S5A. The SRF binding site is also known as a CArG

box, whose consensus sequence is CCWTATAWGG (Bryne et al.

2008). A specific k-mer instance of the CArG box is ATATGG,

ranked at 17th with w = 3.00, just below the top fifteen in Sup-

plemental Table S5A. Therefore, all well-characterized TFBSs

known to play a role in neuronal activation are successfully

captured by our SVM. Interestingly, we discovered that two ad-

ditional transcription factor families also score highly in the

CREBBP neuron data set: homeodomain and NFI. These families

have been discussed little in this context, although it is known

that both NFI and homeodomain transcription factors are key

regulators of central nervous system development (Wilson and

Koopman 2002; Mason et al. 2008). We found only one relevant

example of neural activity-dependent expression of a homeo-

box protein, LMX1B (Demarque and Spitzer 2010). There may

be still unknown mechanisms involving NFI and homeodomain

proteins in the context of neural activity-dependent transcriptional

regulation, but broadly speaking, our results indicate significant

pleiotropy between neuronal developmental pathways and neural

activity- dependent signaling pathways.

Comparison of the EP300 ES data to CREBBP neuron and

EP300 forebrain can address which binding sites and factors are

responsible for maintaining a differentiated or pluripotent state.

For the EP300 ES data set, our method identifies factors known to

be crucial for maintaining ES identity: We find high scoring

binding sites for NANOG-POU5F1(also known as OCT4)-SOX2

SOX-family factors (Supplemental Table S6A), essentially the

same binding sites found in previous studies (Pavesi et al. 2001;

Chen et al. 2008). We have used a uniform approach to map k-mers

to TFBS in the databases, but there is substantial overlap in many TF

specificities, and some reported matrices may score higher than

the biologically relevant database entry. For instance, in Sup-

plemental Table S6A, the high-scoring matrices (SOX17, POU2F1,

and POU3F3) appear on the list instead of the relevant SOX2,

POU5F1, and NANOG, which have nearly identical binding sites.

SOX2, POU5F1, and NANOG bind a combination of the SOX2

(CATTGT) and POU5F1 (ATGCAAAT) consensus sites (Chen

et al. 2008), and the 6-mer subsequences within the combined

binding site (CATTGTYATGCAAAT) have high SVM weights. Sup-

plemental Figure S11 shows how large weight k-mers tile across

this extended known binding site. In addition, we also find positive

weight binding sites for ESRRB and STAT3, which are known to be

frequently located nearby the NANOG-POU5F1-SOX2 clusters

assessed by ChIP-seq analysis (Chen et al. 2008). More in-

terestingly, we find that many of the positive weight EP300 ES

k-mers (ESRRB, RORA1/2, PPARG) are among the largest negative

weights in CREBBP neuron (Supplemental Table S6B), indicating

that binding sites for factors responsible for maintaining pluri-

potency are significantly absent from neuronal enhancers (CREBBP

neuron), as would be expected given the developmental maturity

of neurons.

SVM can predict other ChIP-seq data sets

Until this point we have applied our SVM method to classify and

detect EP300/CREBBP-bound enhancers, but this approach is

equally applicable to any data set which may be framed as a se-

quence classification: e.g., ChIP-seq, ChIP-chip, or DNase I hy-

persensitivity data sets. In these situations, the SVM can be used to

identify primary binding sites in regions identified by transcrip-

tion factor ChIP experiments and may also identify binding sites

for secondary factors colocalized with the ChIPed TF or binding

sites significantly depleted in the functionally occupied regions.

We note that popular de novo motif-finding methods such as

AlignACE (Hughes et al. 2000) or MEME (Bailey and Elkan 1994)

have limited success when applied to data sets of this size. When

run on the forebrain enhancer data set, AlignACE (when it con-

verged) failed to report any meaningful motifs. While Chen et al.

(2008) did successfully identify SOX2, POU5F1 (OCT4), and NANOG

binding sites in the EP300 ES data with Weeder (Pavesi et al. 2001),

the EP300 ES data set was the smallest and least diverse of the data sets

we analyzed.

To directly assess the ability of our SVM to predict binding of

individual transcription factors, we analyzed ChIP-seq results on

the TF ZNF263. We chose ZNF263, a 9-finger C2H2 zinc finger

which is predicted to have a binding site of ;24 bp, to assess how
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well k-mers can represent extended degenerate binding sites. We

used ChIP-seq data on ZNF263 in a K562b cell line (Frietze et al.

2010) which identified 1418 strongly bound regions. Predicting

against a 503 random negative set yielded auROC = 0.938 and

auPRC = 0.51 (Supplemental Fig. S12B,D). Many of the largest

weight k-mers are subsequences within the large PWM found by

de novo motif-finding tools applied to this data set (Frietze et al.

2010), and the SVM is combining k-mers which tile across the

binding site to achieve high predictive accuracy. The k-mer

GAGCAC also received a large weight. This indicates that our ap-

proach should have significant predictive value for a wide range of

binding data.

Comparison to alternative approaches

As an alternative to k-mers, we also tried using known PWMs as

features in an SVM. We used 811 PWMs from existing databases of

known TF specificities [ JASPAR (Bryne et al. 2008), TRANSFAC

(Matys et al. 2003), and UniPROBE (Newburger and Bulyk 2009)].

When using these features, we used the highest PWM scores in

each sequence for each matrix as the feature vector. This 811-PWM

SVM was able to achieve auROC = 0.87 for forebrain enhancers

(compared to auROC = 0.93 for k-mers), somewhat less predictive

than our k-mer approach (Supplemental Fig. S12A), against a 503

random negative set. However, this translates into a significantly

lower auPRC = 0.22 (compared to auPRC = 0.43 for k-mers) (Sup-

plemental Fig. S12B). The optimal combined weighting of the

known PWMs and 6-mers features (2080 + 811 total features) gives

marginal improvement (auROC = 0.93 and auPRC = 0.49) over

6-mers alone. We also applied the 811-PWM SVM to the ZNF263

data set, which achieved auROC = 0.83 (compared to auROC = 0.94

for k-mers), reflecting the fact that accurate PWMs for ZNF263 were

absent from the databases (Supplemental Fig. S12B,D). Again this

seemingly small change in auROC corresponds to a large drop in

auPRC = 0.14, compared to auPRC = 0.51 for k-mers. This dem-

onstrates that using sequence features from an unbiased and

complete set can be more valuable than using an incomplete set of

more accurate features (PWMs). Using the set of known TF PWMs

is less predictive than our k-mer SVM, but a more complete set of

PWMs might perform better. Combining the predictive k-mers

into a more general PWM via a method similar to positional

oligomer importance matrices (POIMs) (Sonnenburg et al. 2008)

might allow clearer identification of informative sequence fea-

tures from within the k-mer SVM but would not affect predictive

performance.

We also compare our approach to alternative kernel methods.

We applied the weighted degree kernel with shifts (WDS) (Rätsch

et al. 2005) to the CREBBP neuron data set (as WDS requires input

sequences of equal length) and found auROC = 0.83, compared to

auROC = 0.93 for our k-mer SVM. A notable SVM based approach

which incorporates positional information between general k-mer

features (KIRMES) has been recently described (Schultheiss et al.

2009; Schultheiss 2010). We applied this package to the forebrain

EP300 data set and found auROC = 0.90. In the current imple-

mentation of KIRMES, k-mers are selected by their relative fre-

quency in the positive set, and it is likely that further optimization

would make this approach comparable to our k-mer SVM result.

Additionally, the periodic spatial distribution in Figure 4 suggests

that a model based on difference in angle (similar to Hallikas et al.

2006) would be more appropriate than the Gaussian spatial de-

pendence used in KIRMES. Another approach to predict promoters

(Megraw et al. 2009) used PWMs and l1-logistic regression. We

found little difference between logistic regression and SVM: Using

our k-mer feature vectors in l1-logistic regression yielded auROC =

0.92 on the EP300 forebrain data set, using publicly available

software (Koh et al. 2007).

Discussion
In this study, we have shown that a support vector machine can

accurately predict regulatory sequences without any prior knowl-

edge about transcription factor binding sites, using only general

genomic sequence information. While the ROC and P-R curves

demonstrate that the SVM is able to identify enhancers based on

their sequence features, the biological relevance of the predicted

enhancers is further supported by the following: (1) Most of the

predictive sequence features identified by our methods are binding

sites of previously characterized TFBSs known to play a role in the

relevant context; (2) the enriched predictive sequence features are

much more evolutionarily conserved within the enhancers than

the less predictive sequence features, which suggests that the pre-

dictive features are under selection and comprise the functional

subset of the larger enhancer regions; (3) these sequence features

are significantly more spatially clustered in the enhancers than

would be expected by chance, also a well-known characteristic of

functional binding sites; (4) genomic regions with high forebrain

SVM scores are strongly enriched in DNase I hypersensitivity sig-

nals in mouse brain but not in other tissues; (5) the predicted en-

hancers frequently overlap with regions of enhanced ChIP-seq

signals but are somewhat below the signal cutoff necessary to be

included in the original EP300 training set; and (6) these novel

predicted enhancers are preferentially positioned near biologically

relevant genes, and many have been experimentally verified in

other studies, which further supports their biological relevance

and functional roles.

When scanning the whole genome to predict putative en-

hancers, we predict that 50% of our 26,920 nonoverlapping en-

hancers with forebrain SVM scores above 1.0 are true positives. This

is a conservative estimate of our ability to detect novel enhancers,

since, when scanning the genome, we have scored 1-kb arbitrarily

delimited chunks of sequence; more accurate predictions might be

possible by varying the endpoints of the predicted regions. Never-

theless, this genome-wide scan discovers thousands of novel pre-

dicted enhancers that were not in the original experimental training

set. We have shown that we can predict human enhancers based on

these mouse enhancer experiments by measuring the overlap be-

tween human enhancers predicted by an SVM trained on the mouse

sequence and comparing these predictions to an SVM trained on

human sequence orthologous to the mouse enhancer sequences.

Finally, by comparing between other EP300/CREBBP ChIP-seq

data sets, we find sequence features that are able to differentiate

between enhancers that operate in different tissues or at different

developmental stages. Some of these sequence features are

enriched in enhancers in one specific tissue or state, but other

predictive elements are notably depleted in some classes of

enhancers.

It is perhaps surprising that such a simple description of se-

quence features (k-mer frequencies) is able to classify enhancers

and ChIP-seq data so well. The SVM is apparently combining k-mer

features in a sufficiently flexible way to reflect combinations of

binding sites and/or sequence signals which modulate chromatin

accessibility. Developing an optimal sequence feature vector re-

mains an area for future work; however, our results showing that

the SVM is more accurate than Naive Bayes suggests that successful

Enhancer prediction from DNA sequence
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prediction requires the ability to combine features without evalu-

ating them independently.

Several features of our results suggest ways that our method

could be improved to make more accurate predictions. It is likely

that incorporating positional constraints between the features

would improve the accuracy of the predictions, consistent with our

observation of nonrandom spatial distributions between predictive

features in the SVM. Kernel approaches have been developed which

incorporate positional information, but most have been developed

in the context of positional constraints relative to a single preferred

genomic location or anchor point. In application to other

problems, positional information relative to a transcription start

site (Sonnenburg et al. 2006b), to a splice site (Rätsch et al. 2005;

Sonnenburg et al. 2007), or to a translational start site (Meinicke

et al. 2004) has been implemented in SVM contexts. Positional

preference relative to a mean anchor point has been incorporated in

a de novo motif discovery method developed by Keilwagen et al.

(2011). However, the aforementioned methods are not strictly ap-

propriate to the biological problem of enhancer detection, because

enhancers have no such preferred fixed location, and the relevant

positional constraints are between sequence features within the en-

hancer. Many approaches have modeled clusters of known binding

sites (for review, see Su et al. 2010) but have limited application to

mammalian enhancer prediction.

Although we have provided evidence that our SVM-predicted

regions are likely functional, to what degree are we predicting these

enhancers accurately based on sequence features which are tissue-

specific? Alternatively, we could be detecting sequence features

which are general to larger classes of enhancers. These common

features could allow access, could stabilize, or could be recog-

nized by generic components of the enhanceosome (Thanos and

Maniatis 1995; Maniatis et al. 1998), whose activity could be mod-

ulated by tissue-specific factors, much as Pol II operates generally.

Ultimately this should be determined by individual experiments,

but we here address this problem computationally by investigat-

ing overlaps between forebrain- and limb-specific predicted re-

gions, which we then compare with the overlaps between EP300-

enriched regions in forebrain and limb. For this comparison, we

independently determined EP300-enriched regions from the raw

data set using the same threshold criteria as the previous study

(Visel et al. 2009) except that we have used fixed-length 1-kb re-

gions, rather than the ChIP-seq-determined peak regions. With

a 1% false discovery rate (FDR), we obtained 3390 EP300-enriched

regions of forebrain and 2607 regions of limb. Visel’s EP300-bound

regions are highly tissue-specific; there are only 243 regions (7%–

9%) shared by the two sets. For the SVM predictions, a significantly

larger fraction of forebrain predicted regions (6104 out of 39,714,

15%) are found in 34% of the limb predicted regions (18,027). This

suggests that our SVMs learn features that are generally enriched in

enhancers, in addition to tissue-specific sequence features. As a

result, two SVMs trained on entirely different data sets can predict

common regions that have general enhancer function. More-

over, the 6104 regions predicted by both limb and forebrain SVMs

overlap with small EP300 peaks that are somewhat below the

conservative threshold (FDR < 0.01); almost 50% have peak in at

least one tissue. This observation further supports our hypothesis

that SVM-predicted regions are likely to be functional. A further

complication is that individual tissues consist of heterogeneous

populations of cell types, and enhancers predicted in distinct tis-

sues may only be active in subsets of cell types. A detailed analysis

of which sequence features impart tissue specificity and which are

general is suggested as a focus for future investigations.

Methods

Data sets
As positive data sets, we initially used the genome-wide in vivo
EP300 binding sites identified by ChIP-seq (Visel et al. 2009),
composed of three different sets of tissue-specific enhancers
(forebrain, midbrain, and limb) of embryonic day 11.5 mouse
embryos. There were 2453, 561, and 2105 sites reported, re-
spectively, and we directly use the entire sequences without
modification. We also analyzed two other data sets (Chen et al.
2008; Kim et al. 2010). Chen et al. reported 524 EP300 binding
sites in mouse embryonic stem cells, and Kim et al. reported
;12,000 neural activity-dependent CREBBP binding sites in
stimulated cultured mouse cortical neurons. Since both CREBBP
data sets report only peaks of the ChIP-seq signals, we extended
100 bp (Fig. 2G) or 400 bp (Fig. 2H) in both directions from these
peaks to obtain sequences for further analysis.

We generated negative sequence sets to match the distribu-
tion of sequence length and repeat element fraction of the corre-
sponding positive sets (Supplemental Fig. S2). Repeat fractions
were calculated using the repeat masked sequence data from the
UCSC genome browser (Karolchik et al. 2008). We selected random
genomic sequences from the mouse genome according to the
following rejection sampling algorithm:

1. Sample a length l from the enhancer length distribution.
2. Sample a sequence of the length l, randomly from the genome.
3. Let x be the repeat fraction of the sampled sequence. Sample

Y;Bernoulli(ap(x)/q(x)), where p(x) is the probability that x occurs
in the enhancers, q(x) is the probability that x occurs in the
genomic sequence, a is the constant so that the maximum of
p(x)/q(x) equals 1.

4. Accept the sequence if Y = 1; reject otherwise.
5. Repeat 1–4 until the desired number of sequences are sampled.

All positive and negative sequence data sets used for our analysis
are available at http://www.beerlab.org/p300enhancer. We used
the following negative set sizes—EP300 fb: n = 4000, 2453 (13),
122,650 (503), 245,300 (1003); EP300 mb: n = 4000, 561 (13),
28,050 (503), 56,100 (1003); EP300 lb: n = 4000, 2105 (13),
105,250 (503), 210,500 (1003); EP300 fb human: n = 2192 (13);
EP300 ES: n = 524 (13), 5240 (103), 26,200 (503), 52,400 (1003);
CREBBP neuron: n = 11,847 (13), 592,350 (503), 1,184,700
(1003); ZNF263: n = 1418 (13), 70,900 (503), 141,800 (1003).

Support vector machine

An SVM (Boser et al. 1992; Vapnik 1995) finds a decision boundary
that separates the positive and negative training data. This de-
cision boundary is a hyperplane which maximizes the margin
between the two sets in the feature vector space. We have N la-
beled vectors ðxi; yiÞ, i = 1; � � � ;N, where xi 2 Rn and yi 2 f+1;�1g
is the class label. For the linear case, the decision boundary is
found by minimizing wk k2 such that yiðxi �w + bÞ $ 1; i = 1; � � � ;N.
In practice, the optimal solution is found by maximizing the dual

form: +N
i=1ai �1

2 +N
i=1+

N
j=1yiaiyjajðxi � xjÞ over ai with the constraints,

ai $ 0, and +N
i=1aiyi = 0 ( Joachims 1999; Sonnenburg et al. 2006a).

The SVM weight vector w can be constructed from the ai, using
w = +N

i=1yiaixi. The SVM discriminant function, or ‘‘SVM
score,’’ f SVMðxÞ= w � x + b = +N

i=1yiaiðxi � xÞ + b, represents the
distance of any vector x from the decision boundary, and deter-
mines the predicted label of the vector x.

The inner product ðxi � xjÞ is a measure of the similarity of any
two data points i and j in the feature space. The generality of the
SVM arises from the fact that this term may be replaced by a more
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general measure of similarity, a kernel function Kðxi;xjÞ. Different
kernels refer to different methods of measuring similarity. A very
simple and general measure of sequence similarity is the k-spec-
trum kernel (Leslie et al. 2002), which describes the similarity of
k-mer frequencies of two sequences. We have found that this
kernel produces our best results, is easy to interpret, and can
easily represent a combination of TF binding sites. To implement
the k-spectrum kernel, we generate a k-mer count vector for the
full set of distinct k-mers for each sequence. Then we normalize
the count vector so that kxk = 1 to reduce the effect of the var-
iable length of different enhancers. We loosely refer to this
normed vector as the ‘‘k-mer frequency vector.’’ The kernel
function is then just the inner product between two normalized
frequency vectors. To reflect the fact that TFs bind double
stranded DNA, the spectrum kernel function is slightly modi-
fied to account for both orientations. Instead of counting only
an exact k-mer, its reverse complement is also counted, and
then redundant k-mers are removed. For example, only one of
AATGCT and AGCATT appears on the list of distinct k-mers. For
6-mers, there are 2080 distinct features after removing reverse
complements; for 7-mers, there are 8192. This modification was
applied to all kernel functions. The only difference between the
k-spectrum kernel and the (k,m)-mismatch kernel is that the
mismatch kernel allows m mismatches when counting k-mers
(Leslie et al. 2004), reflecting the fact that some TFs bind de-
generate sites. The Gaussian kernel uses the same feature vectors
as the k-spectrum kernel but uses a nonlinear similarity measure
via the kernel function Kðxi;xjÞ = expð� xi � xj

�
�

�
�

2
=2s2Þ. Our

implementation utilizes the Shogun machine learning toolbox
(Sonnenburg et al. 2006a) and SVM light (Joachims 1999). The full
lists of SVM weights are provided in the Supplemental Material, and
python scripts are available from our website http://www.beerlab.
org/p300enhancer.
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