
Resource

Assemblathon 1: A competitive assessment of de novo
short read assembly methods
Dent Earl,1,2 Keith Bradnam,3 John St. John,1,2 Aaron Darling,3 Dawei Lin,3,4

Joseph Fass,3,4 Hung On Ken Yu,3 Vince Buffalo,3,4 Daniel R. Zerbino,2 Mark Diekhans,1,2

Ngan Nguyen,1,2 Pramila Nuwantha Ariyaratne,5 Wing-Kin Sung,5,6 Zemin Ning,7

Matthias Haimel,8 Jared T. Simpson,7 Nuno A. Fonseca,9 _Inancx Birol,10

T. Roderick Docking,10 Isaac Y. Ho,11 Daniel S. Rokhsar,11,12 Rayan Chikhi,13,14

Dominique Lavenier,13,14,15 Guillaume Chapuis,13,14 Delphine Naquin,14,15

Nicolas Maillet,14,15 Michael C. Schatz,16 David R. Kelley,17 Adam M. Phillippy,17,18

Sergey Koren,17,18 Shiaw-Pyng Yang,19 Wei Wu,19 Wen-Chi Chou,20 Anuj Srivastava,20

Timothy I. Shaw,20 J. Graham Ruby,21,23 Peter Skewes-Cox,21,22,23 Miguel Betegon,21,23

Michelle T. Dimon,21,23 Victor Solovyev,24 Igor Seledtsov,25 Petr Kosarev,25

Denis Vorobyev,25 Ricardo Ramirez-Gonzalez,26 Richard Leggett,27 Dan MacLean,27

Fangfang Xia,28 Ruibang Luo,29 Zhenyu Li,29 Yinlong Xie,29 Binghang Liu,29

Sante Gnerre,30 Iain MacCallum,30 Dariusz Przybylski,30 Filipe J. Ribeiro,30 Shuangye Yin,30

Ted Sharpe,30 Giles Hall,30 Paul J. Kersey,8 Richard Durbin,7 Shaun D. Jackman,10

Jarrod A. Chapman,11 Xiaoqiu Huang,31 Joseph L. DeRisi,21,23 Mario Caccamo,26

Yingrui Li,29 David B. Jaffe,30 Richard E. Green,2 David Haussler,1,2,23

Ian Korf,3,32 and Benedict Paten1,2,33

1–32[Author affiliations appear at the end of the paper.]

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the
high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to
comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies.
In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated
diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of
coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is
possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the
assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the
correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available
from http://www.assemblathon.org/.

[Supplemental material is available for this article.]

Sequence assembly is the problem of merging and ordering shorter

fragments, termed ‘‘reads,’’ sampled from a set of larger sequences

in order to reconstruct the larger sequences. The output of an assem-

bly is typically a set of ‘‘contigs,’’ which are contiguous sequence

fragments, ordered and oriented into ‘‘scaffold’’ sequences, with gaps

between contigs within scaffolds representing regions of uncertainty.

There are numerous subclasses of assembly problems that can

be distinguished by, among other things, the nature of (1) the

reads, (2) the types of sequences being assembled, and (3) the

availability of homologous (related) and previously assembled se-

quences, such as a reference genome or the genome of a closely

related species (Pop and Salzberg 2008; Chaisson et al. 2009;

Trapnell and Salzberg 2009). In this work we focus on the evalua-

tion of methods for de novo genome assembly using low-cost

‘‘short read’’ technology, where the reads are comparatively short

in length but large in number, the sequences being assembled

represent a novel diploid genome and the nearest homologous

genome to that being assembled is significantly diverged.

33Corresponding author.
E-mail benedict@soe.ucsc.edu.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.126599.111.
Freely available online through the Genome Research Open Access option.

2224 Genome Research
www.genome.org

21:2224–2241 � 2011 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/11; www.genome.org

In bioinformatics, the reads used in an assembly are derived

from an underlying sequencing technology. For a recent review of

sequencing technologies, see Metzker (2010). For the assembly

problem there are a number of key considerations, notably (1) the

length of the reads, (2) the error characteristics of the reads, (3)

whether and how the reads are ‘‘paired,’’ i.e., where reads are

produced in pairs separated by an approximately fixed length

spacer sequence, and finally (4) the number of reads produced for

a given cost.

Sanger sequencing (Sanger et al. 1977) produces relatively

long reads, typically between 300 and 1000 bp in length, with

a low error rate, but which are comparatively expensive to produce.

After relying primarily on Sanger sequencing for decades, the field

of sequencing has recently witnessed a diversification of compet-

ing technologies (Margulies et al. 2005; Bentley 2006; Pourmand

et al. 2006; Pandey et al. 2008; Eid et al. 2009) and a rapid rate of

overall change. One direction of this development has been

a move toward shorter reads, often #150 bp, but at a much lower

cost for a given volume of reads (Bentley 2006; Pourmand et al.

2006; Pandey et al. 2008).

As the field of sequencing has changed so has the field of

sequence assembly; for a recent review, see Miller et al. (2010). In

brief, using Sanger sequencing, contigs were initially built using

overlap or string graphs (Myers 2005) (or data structures closely

related to them) in tools such as phrap (http://www.phrap.org/),

GigAssembler (Kent and Haussler 2000), Celera (Myers et al. 2000;

Venter et al. 2001), ARACHNE (Batzoglou et al. 2002), and Phusion

(Mullikin and Ning 2003), which were used for numerous high-

quality assemblies such as human (Lander et al. 2001) and mouse

(Waterston et al. 2002). However, these programs were not gen-

erally efficient enough to handle the volume of sequences pro-

duced by the next-generation of sequencing technologies, spur-

ring the development of a new generation of assembly software.

While some maintained the overlap graph approach, e.g.,

Edena (Hernandez et al. 2008) and Newbler (http://www.my454.

com/), others used word look-up tables to greedily extend reads,

e.g., SSAKE (Warren et al. 2007), SHARCGS (Dohm et al. 2007),

VCAKE (Jeck et al. 2007), and OligoZip (http://linux1.softber-

ry.com/berry.phtml?topic=OligoZip). These word look-up tables

were then extended into de Bruijn graphs to allow for global

analyses (Pevzner et al. 2001), e.g., Euler (Chaisson and Pevzner

2008), AllPaths (Butler et al. 2008), and Velvet (Zerbino and

Birney 2008). As projects grew in scale, further engineering was

required to fit large whole-genome data sets into memory (ABySS)

(Simpson et al. 2009), Chapman et al. (2011) (SOAPdenovo) (Li et al.

2010a), Cortex (in prep.). Now, as improvements in sequencer

technology are extending the length of ‘‘short reads,’’ the overlap

graph approach is being revisited, albeit with optimized pro-

gramming techniques, e.g., SGA (Simpson and Durbin 2010), as are

greedy contig extension algorithms, e.g., PRICE (http://derisilab.

ucsf.edu/software/price/index.html), Monument (http://www.irisa.

fr/symbiose/people/rchikhi/monument.html).

In general, most sequence assembly programs are multistage

pipelines, dealing with correcting measurement errors within the

reads, constructing contigs, resolving repeats (i.e., disambiguating

false-positive alignments between reads), and scaffolding contigs

in separate phases. Since a number of solutions are available for

each task, several projects have been initiated to explore the pa-

rameter space of the assembly problem, in particular in the context

of short read sequencing (Phillippy et al. 2008; Alkan et al. 2011;

Hubisz et al. 2011; Lin et al. 2011; Narzisi and Mishra 2011; Zhang

et al. 2011). In this work we are concerned with evaluating as-

sembly programs as a whole, with the aim of comprehensively

evaluating different aspects of assemblies.

It is generally the case that the right answer to an assem-

bly problem is unknown. Understandably therefore, a common

method for assessing assembly quality has been the calculation of

length summary statistics on the produced scaffold and contig

sequences. Such metrics include various weighted median statis-

tics, such as the N50 defined below, as well as the total sequence

lengths and total numbers of sequences produced (Lindblad-Toh

et al. 2005; Ming et al. 2008; Church et al. 2009; Liu et al. 2009; Li

et al. 2010a; Colbourne et al. 2011; Locke et al. 2011).

Other methods have been proposed for evaluating the in-

ternal consistency of an assembly; for example, by analyzing the

consistency of paired reads, as in the clone-middle plot (Huson

et al. 2001), by looking for variations in the depths of read coverage

supporting a constructed assembly (Phillippy et al. 2008), and

looking at haplotype inconsistency (Lindblad-Toh et al. 2005).

To assess accuracy, assemblies may be compared with finished

sequences derived from independent sequencing experiments or

to sequences held out of the assembly process. For the dog genome,

nine bacterial artificial chromosomes (BACs) were sequenced to

finishing standards and held out of the assembly (Lindblad-Toh

et al. 2005), for the panda genome, which was primarily an Illu-

mina assembly, extra Sanger sequencing of BACs was performed (Li

et al. 2010a). Additionally, if genetic mapping data is available,

such information can also be used to assess scaffold quality (e.g.,

Church et al. 2009), which used a combination of linkage, radia-

tion hybrid, and optical maps. Church et al. (2009) also demon-

strate that transcriptome (the set of RNA molecules for a given cell

type) information, if available, can also be used to assess the va-

lidity of a genomic assembly by checking the extent to which the

assembly recapitulates the transcriptome.

When a reference genome or sequence is available, a com-

parison between the assembly and reference can be performed.

This has previously been accomplished by studies using several

different genome alignment methods, including BLAST (e.g.,

Zhang et al. 2011), LASTZ (e.g., Hubisz et al. 2011), and Exonerate

(Hernandez et al. 2008; Zerbino and Birney 2008). Given such an

alignment, most simply, the proportion of a reference’s coverage

can be reported (Li et al. 2010b; Zhang et al. 2011). Notably, Gnerre

et al. (2011) compared novel short-read assemblies with the hu-

man and mouse reference genomes and performed a comprehen-

sive set of analyses that encompassed coverage, contig accuracy,

and the long-range contiguity of scaffolds. Related to the work

described here, Butler et al. (2008) described a graph-based pattern

analysis using an assembly to reference alignment.

Comparison can also be made to a well-sequenced, related

species. This can be done using the complete genomic sequence of

an outgroup; for example, Meader et al. (2010) presented an as-

sessment method based on patterns of insertions and deletions

(indels) in closely related interspecies genome alignments. Alter-

natively, specific genomic features can be studied; for example,

Parra et al. (2009) examined the fraction of ‘‘core genes,’’ those

present in all genomes, which could be identified in draft genome

assemblies.

Simulation has been a mainstay of genome assembly evalu-

ation since assembly methodology was first developed and with

few exceptions (e.g., MacCallum et al. 2009; Gnerre et al. 2011) is

de rigueur when introducing new de novo assembly software (e.g.,

(Myers et al. 2000; Lander et al. 2001; Venter et al. 2001; Batzoglou

et al. 2002; Dohm et al. 2007; Jeck et al. 2007; Warren et al. 2007;

Butler et al. 2008; Chaisson and Pevzner 2008; Zerbino and Birney

Genome Research 2225
www.genome.org

Assemblathon 1

2008, etc.). In this work we have also chosen to use simulations,

utilizing the new Evolver genome evolution simulation tool

(http://www.drive5.com/evolver/) to produce a simulated diploid

genome with parameters that approximate that of a vertebrate

genome, though at ;1/10th of the scale.

From this novel genome we simulate reads, modeling an

Illumina sequencing run, using a newly developed read simulator.

Assembly teams were asked to assemble this novel genome blind,

and we present an analysis of the resulting assemblies. By using

simulation, we know a priori the haplotype relationships; by

a process of multiple sequence alignment (MSA) we assess the re-

lationships between the assemblies and the original haplotypes of

our simulation. This novel process allows us evaluate haplotype-

specific contributions to the assemblies. Additionally, as a positive

control for our results, we assess the generated assemblies using

more traditional BLAST (Hubisz et al. 2011; Zhang et al. 2011)

methods, and support our assessments by making all of the code

and data from our assessments public and freely available (http://

compbio.soe.ucsc.edu/assemblathon1/, http://www.assemblathon.

org/).

Results
We start by giving an overview of the Assemblathon 1 data set and

its generation. We then describe the assemblies before giving the

results of different evaluations.

Genome simulation

Rather than use an existing reference genome for assessment, we

opted to simulate a novel genome. We did this primarily for three

reasons. First, it gave us a genome that had no reasonable ho-

mology with anything other than out-group genomes that we

generated and provided to assemblers. This allowed for a fair, blind

test in which none of the assembly contributors had access to the

underlying genomes during the competition. Second, we were able

to precisely tailor the proportions of the simulated genome to

those desired for this experimental analysis, i.e., to limit the size of

the genome to less than that of a full mammalian genome, and

thus allow the maximum number of participants, while still

maintaining a size that posed a reasonable challenge. Third, we

could simulate a diploid genome; we know of no existing diploid

data set (simulated or real) in which the contributions of the two

haplotypes are precisely and fully known. This allowed us to assess

a heretofore-unexplored dimension of assembly assessment.

To simulate the genome we used the Evolver suite of genome

evolution tools. Evolver simulates the forward evolution of multi-

chromosome haploid genomes and includes models for evolu-

tionary constraint, protein codons, genes, and mobile elements.

The input genome for the simulation, termed the root genome,

was constructed by downloading the DNA sequence and annota-

tions (see Methods) for human chromosome 13 (hg18/NCBI36,

95.6 non-N megabases [Mb]) from the UCSC Table Browser (Fujita

et al. 2011) and dividing it into four chromosomes of approxi-

mately equal length. Figure 1 shows the phylogeny used to gen-

erate the simulated genomes, with branch lengths to scale. We first

evolved the root genome for ;200 million years (my) to generate

the most recent common ancestor (MRCA) of the final leaf ge-

nomes. We performed this long burn-in on the genome in order to

reshuffle the sequence and annotations present, thereby prevent-

ing simple discovery of the source of the root genome. The simu-

lation then proceeded along two independent lineages, generating

both a and b, each ;50 my diverged from the MRCA. Finally, in

both lineages we split the evolved genome into two sublineages,

termed haplotypes, and evolved these sublineages for a further ;1

my, to produce a pair of diploid genomes, a1,2 and b1,2, each with

a degree of polymorphism. The a1,2 genome’s haplotypes, a1 and a2,

each had three chromosomes, and both haplotypes were 112.5 Mb

in total length with chromosome lengths of 76.3, 18.5, and 17.7 Mb.

The diploid a1,2 genome was used as the target genome for the

assembly. The b1,2 genome’s haplotypes, their common ancestor,

b, and their annotations, were provided to the assemblers as an

out-group. Relatively few assemblers (see Table 1) reported using

these sequences to assist in the assembly process.

Table 2A provides a count of some of the events that took

place along particular branches in the phylogenetic tree during the

course of the simulation. Table 2B provides a summary of the pair-

wise differences between the a1 and a2 haplotypes and Supple-

mental Figure 1 shows a dot-plot of their alignment. Supplemental

Figures 2 and 3 show the length distribution of annotations for the

root, MRCA, internal node, and leaf genomes, demonstrating that

these annotations remained approximately static over the course of

the simulation. We examined repeat content of the simulated ge-

nomes (see legend to Table 2) and found a comparable portion of

annotated repeats to that in the original human chromosome 13, but

a reduction of slightly more than half in the proportion of repetitive

100-mers (Supplemental Fig. 4). The simple substitution model used

by Evolver, which fails to capture some of the higher order de-

pendencies in substitution patterns that made the original human

DNA sequence more repetitive, likely explains this latter observation.

Read simulation

As mentioned, there are many competing technologies now avail-

able for sequencing, giving us many possible options in designing

the data sets for the first Assemblathon. However, we opted to

simulate just one combined short read data set, with multiple read

libraries, for the Illumina Hi-seq platform (http://www.illumina.

com/systems/hiseq_2000.ilmn), which is the current market

leader for low-cost de novo sequencing on this scale. The advan-

tage of this was chiefly (1) the avoidance of fragmentation in the

entries to the Assemblathon, thereby preventing categories with

few or just one entry, and (2) the ability to assess all of the sub-

mitted assemblies with common sets of evaluations.

We needed a program that would generate short reads and

model sources of error that the Illumina protocols introduce. As we

knew of no existing software that was capable of this (see Methods

for a discussion of existing read simulators), we wrote our own

short read simulator, called SimSeq (https://github.com/jstjohn/

SimSeq).

Abstractly, reads were sampled from the genome using one of

two types of Illumina-paired read strategy, so called ‘‘paired-end’’

Figure 1. The phylogeny of the simulated haploid genomes. The root
genome derives from human chromosome 13. The a1 and a2 haplotypes
form the diploid genome from which we generated reads. The b1 and b2

haplotypes form a diploid out-group genome that was made available to
the assemblers.

Earl et al.

2226 Genome Research
www.genome.org

and ‘‘mate-pair’’ strategies, after which an error profile was applied

to each read in its proper orientation. In addition to generating

reads from the target a1,2 genome, three copies of an Escherichia coli

sequence (gi 312944605) were added to the two haplotype se-

quences to yield a ;5% bacterial contamination rate. Bacterial

sequence was included as an attempt to model the sort of con-

tamination occasionally present in data from sequencing centers,

though the specific choice of E. coli and the 5% level were arbitrary.

Participants in the contest were notified that some bacterial con-

tamination was present in the data, though they were not told

about its precise nature nor explicitly told to remove it.

Multiple libraries were generated for both the paired-end and

mate-pair strategies. Paired-end libraries with 200- and 300-bp

inserts contributed 803, mate-pair libraries with separations of 3

Table 1. Groups that submitted assemblies

ID Affiliations Entries Software Used b

ASTR Agency for Science, Technology, and Research, Singapore 1 PE-Assembler No
WTSI-P Wellcome Trust Sanger Institute, UK 2 Phusion2, phrap No
EBI European Bioinformatics Institute, UK 2 SGA, BWA, Curtain, Velvet No
WTSI-S Wellcome Trust Sanger Institute, UK 4 SGA No
CRACS Center for Research in Advanced Computing Systems, Portugal 3 ABySS Yes
BCCGSC BC Cancer Genome Sciences Center, Canada 5 ABySS, Anchor No
DOEJGI DOE Joint Genome Insititute, USA 1 Meraculous No
IRISA L’IRISA (Institut de recherche en informatique et systèmes

aléatoires), France
5 Monument No

CSHL CSHL (Cold Spring Harbor Laboratory), USA 2 Quake, Celera, Bambus2 Noa

DCISU Department of Computer Science, Iowa State University 1 PCAP No
IoBUGA Computational Systems Biology Laboratory, University

of Georgia, USA
3 Seqclean, SOAPdenovo No

UCSF UC San Francicso, USA 1 PRICE Yes
RHUL Royal Holloway, University of London, UK 5 OligoZip No
GACWT The Genome Analysis Center, Sainsbury Laboratory,

and Wellcome Trust Center for Human Genetics, UK
3 Cortex_con_rp No

CIUoC Department of Computer Science, University of Chicago, USA 1 Kiki No
BGI BGI, Shenzhen China 1 SOAPdenovo No
Broad Broad Institute 1 ALLPATHS-LG No
nVelv — 6 Velvet No
nCLC — 9 CLC No
nABySS — 6 ABySS No

The first 17 rows in the table correspond to entries submitted by participants in the competition. Assemblies with IDs beginning with ‘‘n,’’ (for naive),
were generated by organizers of the competition to demonstrate the performance of popular programs run with variations on their default parameters.
aCSHL.1 used the b genome though that team’s top assembly, CSHL.2, which is referred to in the main paper as CSHL, did not.

Table 2. Genome simulation statistics

(A)

Genome Mb GC (%) Reps (%)
Reps

100mer (%) Chr Subs Dels Inv Moves Copy Tandem Chr split Chr fuse

Input 95.6 38.8 7.1 / 42.3a 0.8 4 – – – – – – –
MRCA 109.4 39.9 6.9 0.3 2 35.9 3 106 2.47 3 106 11,701 4714 14,644 1.16 3 106 2 4
a 112.4 40.0 7.5 0.3 3 9.70 3 106 6.72 3 105 3325 1369 4151 3.13 3 105 1 0
a1 112.5 40.0 7.5 0.3 3 1.97 3 105 13,528 54 34 83 6436 0 0
a2 112.5 40.0 7.5 0.3 3 1.97 3 105 13,834 61 31 80 6494 0 0
b 112.3 40.0 6.8 0.3 2 9.71 3 106 6.74 3 105 3313 1325 4043 3.14 3 105 0 0
b1 112.4 40.0 6.8 0.3 2 1.97 3 105 13,632 64 26 82 6354 0 0
b2 112.4 40.0 6.8 0.3 2 1.97 3 105 13,621 71 35 79 6445 0 0

(B)

Comparison SNPs Subs + Subs Indels + Indels Inv

a1a2 439,385 441,796 444,247 29,972 521,142 115

(A) Event numbers are between the previous branch point and the named node. (Mb) Size of the genome in megabases; (GC) percentage GC content;
(Reps) percent of the genome masked by the union of tandem repeats finder and RepeatMasker; (Reps 100-mer) percent repetiteveness of the sequence
and its reverse complement for 100-mers calculated with the tallymer tool (Kurtz et al. 2008); (Chr) number of chromosomes; (Subs) number of sub-
stitution events; (Dels) number of deletion events; (Inv) number of inversion events; (Moves) number of translocations; (Copy) number of DNA segmental
duplications; (Tandem) number of tandem repeat insertions; (Chr split) number of chromosome fission events; (Chr fuse) number of chromosome fusion
events.
aThe published value for chromosome 13 (Dunham et al. 2004).
(B) Differences between haplotypes a1 and a2 as determined by inspection of the Evolver pairwise alignment. (SNPs) Count of single nucleotide poly-
morphisms; (Subs) count of substitutions, including SNPs; (S Subs) sum of the lengths of all substitutions; (Indels) count of insertion deletion events; (S
Indels) sum of the lengths of all insertion deletion events; (Inv) the sum of number of inversions invoked in each of the a1 and a2 Evolver steps.

Assemblathon 1

Genome Research 2227
www.genome.org

and 10 kb contributed a further 403, giving a total coverage of

1203 for the sample. Removing contamination reads gave an

overall coverage of ;553 per haplotype.

A detailed description of the simulation method, the types of

errors simulated, and the simulator’s limitations are given in the

Methods section. Importantly, due to human error, the error model

was mistakenly reversed along the reads. This resulted in bases

with a slightly higher error rate tending to appear toward the be-

ginning of the reads rather than toward the end of reads (see

Supplemental Fig. 5). This issue only manifests itself if the reads are

treated asymmetrically; we surveyed participants on this matter

and only one group, L’IRISA, indicated that their methodology was

possibly harmed more than other methods due to the mistake.

Assemblies

The competition started in January 2011 and teams were given just

over 1 mo to submit their assemblies. Teams were allowed to sub-

mit up to five separate assemblies for consideration. Additionally,

assemblies were created by the organizers with popular assembly

programs, using default parameters, as a way of comparing naively

generated assemblies with those that were contributed by inde-

pendent groups. Table 1 lists the evaluated assemblies, the main

program used to generate them, and the groups that contributed

them (see Supplemental section 8.2 for detailed information on

submissions). In total there were 59 assemblies, with 41 inde-

pendently contributed by 17 different groups using 15 different

assembly programs and 18 generated by the organizers using three

popular programs.

Evaluations

We assessed all of the contributed assemblies, full results for which

can be found in the Supplemental material. However, to make the

presentation succinct we choose to present only the ‘‘top’’ as-

sembly from each group in the following evaluations. To enable

this we created a ranking of the assemblies (see Table 3; Supple-

mental Table 1), using the evaluations described below, and se-

lected the assembly from each group with the top overall ranking

for inclusion. Full results for each evaluation on every assembly in

the main text can be found in the Supplemental material.

N50 and NG50

A commonly used metric to assess assemblies is the N50 statistic.

The N50 of an assembly is a weighted median of the lengths of the

sequences it contains, equal to the length of the longest sequence

s, such that the sum of the lengths of sequences greater than or

equal in length to s is greater than or equal to half the length of the

genome being assembled. As the length of the genome being as-

sembled is generally unknown, the normal approximation is to use

the total length of all of the sequences in an assembly as a proxy for

the denominator. We follow this convention for calculating N50,

but additionally we define the NG50 (G for genome). The NG50 is

identical to N50, except that we estimate the length of the genome

being assembled as being equal to the average of the length of the

two haplotypes, a1 and a2. Contig N50s and NG50s, where the

sequences are the set of assembly contigs, and scaffold N50s and

NG50s, where the sequences are the set of assembly scaffolds, are

shown in Figure 2, Supplemental Figure 6, and Supplemental Table 2.

The total span of most of the submitted assemblies was

slightly larger than the haploid genome size, primarily because of

the degree of polymorphism of the two haplotypes. Thus, the as-

sembly-specific N50s are in general smaller than the NG50s, with

the median absolute difference between contig NG50 and contig

N50 being 599 bp (7.7%), and the median absolute difference be-

tween scaffold NG50 and scaffold N50 being 1942 bp (3.6%).

These differences are quite small, though not negligible in every

case; for example, the CSHL assembly has a scaffold NG50 ;800 kb

(31.6%) longer than scaffold N50.

Table 3. Rankings of the top assembly from each team in eight categories

ID Overall CPNG50 SPNG50 Struct CC50 Subs Copy num Cov tot Cov genic

Broad 31 2 (7.25 3 104) 3 (2.11 3 105) 3 (1244) 1 (2.66 3 106) 4 (2.92 3 10�6) 11 (6.71 3 10�2) 6 (98.3) 1 (93.8)
BGI 37 1 (8.23 3 104) 6 (1.17 3 105) 6 (1878) 7 (5.66 3 105) 11 (1.20 3 10�5) 2 (6.75 3 10�3) 1 (98.8) 3 (92.7)
WTSI-S 38 9 (2.48 3 104) 1 (4.95 3 105) 2 (475) 3 (1.14 3 106) 1 (1.30 3 10�7) 9 (5.74 3 10�2) 8 (97.8) 5 (91.8)
DOEJGI 44 14 (1.15 3 104) 2 (4.86 3 105) 1 (456) 2 (1.89 3 106) 3 (4.43 3 10�7) 7 (5.42 3 10�2) 11 (97.3) 4 (92.3)
CSHL 57 3 (4.23 3 104) 8 (7.17 3 104) 14 (5146) 6 (6.11 3 105) 9 (1.02 3 10�5) 6 (4.95 3 10�2) 4 (98.5) 7 (89.1)
CRACS 58 11 (1.55 3 104) 5 (1.44 3 105) 4 (1666) 4 (8.61 3 105) 2 (3.81 3 10�7) 12 (6.82 3 10�2) 14 (96.3) 6 (90.2)
BCCGSC 60 5 (3.63 3 104) 4 (1.46 3 105) 10 (2867) 8 (3.22 3 105) 8 (7.00 3 10�6) 15 (1.17 3 10�1) 2 (98.7) 8 (88.9)
EBI 64 16 (9.39 3 103) 7 (1.13 3 105) 7 (2055) 9 (3.04 3 105) 6 (5.17 3 10�6) 1 (3.56 3 10�3) 9 (97.7) 9 (88.5)
IoBUGA 65 7 (3.06 3 104) 12 (3.54 3 104) 15 (6310) 5 (6.47 3 105) 15 (3.80 3 10�5) 3 (8.38 3 10�3) 6 (98.3) 2 (92.8)
RHUL 71 6 (3.20 3 104) 13 (3.31 3 104) 8 (2551) 15 (1.59 3 104) 5 (3.52 3 10�6) 5 (4.77 3 10�2) 4 (98.5) 15 (67.4)
WTSI-P 74 4 (3.80 3 104) 11 (4.21 3 104) 13 (4895) 13 (3.41 3 104) 14 (1.48 3 10�5) 4 (4.38 3 10�2) 2 (98.7) 13 (75.0)
DCSISU 99 12 (1.35 3 104) 10 (5.61 3 104) 12 (4319) 12 (9.75 3 104) 13 (1.37 3 10�5) 13 (6.91 3 10�2) 15 (94.3) 12 (79.0)
nABySS 100 10 (1.99 3 104) 16 (2.00 3 104) 5 (1731) 16 (6.97 3 103) 7 (5.96 3 10�6) 19 (3.17 3 10�1) 10 (97.5) 17 (57.2)
IRISA 103 17 (8.20 3 103) 9 (5.82 3 104) 11 (3725) 9 (3.04 3 105) 17 (3.99 3 10�5) 14 (7.61 3 10�2) 16 (93.7) 10 (88.1)
ASTR 106 8 (2.52 3 104) 14 (3.13 3 104) 9 (2818) 14 (1.81 3 104) 12 (1.28 3 10�5) 18 (2.88 3 10�1) 17 (90.9) 14 (68.5)
nVelv 114 18 (5.65 3 103) 15 (2.75 3 104) 18 (8626) 11 (1.27 3 105) 18 (6.21 3 10�5) 10 (6.22 3 10�2) 13 (96.5) 11 (84.8)
nCLC 115 15 (9.47 3 103) 18 (9.54 3 103) 16 (7283) 18 (4.36 3 103) 10 (1.11 3 10�5) 8 (5.61 3 10�2) 12 (97.2) 18 (55.4)
UCSF 138 12 (1.35 3 104) 17 (1.35 3 104) 20 (24,987) 17 (6.84 3 103) 20 (1.21 3 10�4) 17 (2.30 3 10�1) 19 (83.7) 16 (59.6)
GACWT 149 20 (2.53 3 103) 19 (7.82 3 103) 17 (8622) 19 (2.60 3 103) 16 (3.86 3 10�5) 20 (3.46 3 10�1) 18 (86.4) 20 (48.0)
CIUoC 152 19 (5.60 3 103) 20 (5.60 3 103) 19 (11,282) 20 (1.27 3 103) 19 (1.11 3 10�4) 16 (1.98 3 10�1) 20 (78.5) 19 (48.9)

For each category (listed below), all of the received assemblies were ranked. The sum of the rankings from each category was then used to create an
overall rank for the assemblies, the top-ranked (lowest number) assembly from each group was then selected for inclusion in this manuscript. Numbers
are ranks, with values shown in parentheses. (Overall) Sum of all rankings (possible range 8–160); (CPNG50) contig path NG50; (SPNG50) scaffold path
NG50; (Struct) sum of structural errors; (CC50) length for which half of any two valid columns in the assembly are correct in order and orientation; (Subs)
total substitution errors per correct bit; (Copy num) proportion of columns with a copy number error; (Cov tot) overall coverage; (Cov genic) coverage
within coding sequences.

Earl et al.

2228 Genome Research
www.genome.org

Multiple sequence alignment

While N50 statistics give a sense of the scale and potential conti-

guity of an assembly, they say nothing necessarily about the un-

derlying coverage or accuracy of an assembly. To compare each

assembly with the simulated genome and bacterial contamination

we constructed a multiple sequence alignment (MSA). The se-

quence inputs to the MSA were the two

haplotypes, the bacterial contamination,

and the scaffolds of the assembly. To

generate the MSA we used an adapted

version (see Methods) of the newly de-

veloped Cactus alignment program (Paten

et al. 2011b), a new MSA program able

to handle rearrangements, copy-number

changes (duplications), and missing data.

The result of this alignment process was,

for each assembly, a high-specificity

map of the alignment of the assembly

to the two haplotypes and the bacterial

contamination.

As we aligned both the bacterial

contamination and the two haplotypes

together, we used the hypothetical exis-

tence of any alignments between the

haplotypes and the bacterial contamina-

tion as a negative control for nonspe-

cific alignment. We did not observe

any such alignments. As an additional

control we replicated a similar, confir-

matory analysis using a simple BLAST

(Altschul et al. 1990) strategy, details of

which can be found in Supplemental

section 7.1, and references to which are

made below.

Coverage

An MSA can be divided up into columns,

each of which represents a set of in-

dividual base-pair positions in the input

sequences that are considered homolo-

gous. We call columns that contain posi-

tions within the haplotypes haplotype

columns. We define the overall coverage of

an MSA as the proportion of haplotype

columns that contain positions from the

assembly. Similarly, we can define the

coverage of X, where X is a specific hap-

lotype or the bacterial contamination, as

the proportion of columns containing

positions in X that also contain positions

from the assembly.

Table 4 shows the overall, haplo-

type-specific, and bacterial contamina-

tion-specific coverage. There is very little

difference between the specific haplo-

type’s coverage and the overall coverage

and, indeed, little difference between

many of the assemblies. The highest

overall coverage was the BGI assembly

with 98.8%, but nearly all assemblies

performed well in this metric with even

the assembly with 14th highest coverage, the CRACS assembly,

providing 96.3% coverage. However, there were huge differences

in the coverage of the bacterial contamination (Supplemental

Figs. 7, 8), with many groups opting successfully to completely

filter it out. For example, the BGI assembly had no coverage of the

bacterial sequence, while the ASTR assembly had 100.0% cover-

age of the bacterial sequence.

Figure 2. N50 statistics. Assemblies are sorted left to right in descending order by scaffold path NG50.
Data points for each assembly are slightly offset along the x-axis in order to show overlaps.

Table 4. Coverage statistics for the top assembly from each team

ID Hap total (%) Hap a1 (%) Hap a2 (%) Bac (%) Genic (%) Unmapped

BGI 98.8 98.9 98.8 0.0 92.7 2.637 3 105

BCCGSC 98.7 98.7 98.7 99.9 88.9 6.546 3 106

WTSI-P 98.7 98.7 98.7 99.8 75.0 5.369 3 106

RHUL 98.5 98.5 98.5 100.0 67.4 4.961 3 106

CSHL 98.5 98.6 98.5 99.9 89.1 7.815 3 106

Broad 98.3 98.4 98.3 68.9 93.8 3.538 3 106

IoBUGA 98.3 98.3 98.3 4.8 92.8 7.822 3 105

WTSI-S 97.8 97.8 97.8 99.1 91.8 4.948 3 106

EBI 97.7 97.7 97.7 0.9 88.5 4.553 3 105

nABySS 97.5 97.5 97.5 99.8 57.2 1.111 3 107

DOEJGI 97.3 97.4 97.3 99.5 92.3 5.304 3 106

nCLC 97.2 97.2 97.2 99.8 55.4 5.673 3 106

nVelv 96.5 96.6 96.5 99.8 84.8 8.028 3 106

CRACS 96.3 96.3 96.3 99.8 90.2 5.265 3 106

DCSISU 94.3 94.3 94.2 99.5 79.0 6.259 3 106

IRISA 93.7 93.7 93.7 99.7 88.1 5.426 3 106

ASTR 90.9 90.9 90.9 100.0 68.5 5.175 3 106

GACWT 86.4 86.4 86.4 0.0 48.0 2.053 3 106

UCSF 83.7 83.7 83.7 0.0 59.6 1.822 3 106

CIUoC 78.5 79.0 78.1 0.6 48.9 3.638 3 105

(Hap total) Overall coverage; (Hap a1) percent coverage for Haplotype a1; (Hap a2) percent coverage
for Haplotype a2; (Bac) percent coverage of the bacterial contamination; (Genic) percent coverage of
the coding sequences; (Unmapped) number of unmapped bases, many corresponding to short
contigs.

Assemblathon 1

Genome Research 2229
www.genome.org

Blocks and contig paths

Within an MSA a block is a maximal gapless alignment of a set of

sequences and is therefore composed of a series of contiguous

columns. The length of a block is equal to the number of columns

that it contains. We can use the block structure to define the block

NG50, which is exactly like the NG50, except that we use the

distribution of block lengths rather than sequence lengths. Sup-

plemental Figures 9 and 10 show block coverage across the hap-

lotypes. Alignment of sequences that are very closely related are

likely to contain fewer blocks with a greater base-pair length than

sequences that are significantly diverged from one another. Un-

fortunately, the two simulated haplotypes are sufficiently poly-

morphic with respect to one another, which the block NG50 of an

alignment of just the two haplotypes is ;4 kb. As this length is

much less than the length of many sequences in the assemblies,

assessing an assembly requires methods that do not penalize the

reconstruction of haplotype-specific polymorphisms. This is evi-

dent by looking at Figure 2, which shows that block NG50 is poorly

discriminative. See Supplemental section 7.1.1 and Supplemental

Figure 11 for supporting BLAST based analysis.

To extend our analysis we use a graph theoretic model of the

alignments, which we now describe in overview. An MSA can be

described as a graph, and we call the simplest such graph an ad-

jacency graph. A formal description of the adjacency graph used

here can be found in Paten et al. (2011a), it is closely related to the

similarly named graph introduced in Bergeron et al. (2006a), but

also to a directed bigraph representation of a de Bruijn graph used

in assembly (Medvedev and Brudno 2009) and the multiple

breakpoint graph used in the study of genome rearrangements

(Alekseyev and Pevzner 2009).

An adjacency graph G contains two kinds of edges, block edges,

which represent the gapless blocks of the alignment, and adjacency

edges, which represent collections of connections between the

ends of segments of DNA. The nodes in the graph represent the

ends of blocks of aligned sequences. Figure 3 illustrates an example.

Each edge in G is labeled with the subsequences it represents,

called segments; thus, it is possible to discern whether the edge

represents segments in the haplotypes, the assembly, the bacterial

contamination or some combination. As previously stated, no

edges are contained in G that represent segments in both the

haplotypes and the bacterial contamination.

Within G, a sequence is represented as a path of alternating

adjacency and block edges, termed a thread. We can assess the ac-

curacy of assembly sequences by analyzing their thread represen-

tation in the adjacency graph. Let P be the thread representing an

assembled sequence in G. Any edge e in P is consistent if that edge is

also labeled with segments from either or both of the haplotypes.

For any P, a contig path is a maximal subpath of P in which all the

edges are consistent. Thus, P can be divided up into a series of

contig paths, possibly interspersed with edges in P that are not

contained in a contig path, see Figure 3 for an example. The base-

pair length of a contig path is equal to the sum of the base-pair

lengths of the block edges it contains. Contig paths represent

maximal portions of the assembled sequence that are consistent

with one or both of the haplotypes and contain no assembly

gaps, they can be thought of as portions of an assemblies’ contigs

that perfectly follow a path through the graph of haplotype

polymorphism.

Figure 2 shows contig path NG50s, defined analogously to

block NG50; Supplemental Figures 12 and 13 show contig path

coverage across the haplotypes, while Supplemental Figures 14 and

15 show, in contrast, the same plots, but instead use raw contig

lengths. The contig path NG50s are substantially larger than block

NG50s; for example, the BGI assembly has a contig path NG50 1.5

orders of magnitude bigger than its block NG50. The difference

between the largest and smallest block NG50 is 2556 bp (GACWT

1351 bp to BGI 3907 bp); the difference between the largest and

smallest contig path NG50 is 79,731 bp (GACWT 2533 bp to BGI

82,264 bp). Thus, the contig path NG50 results demonstrate that

assemblies are able to reconstruct substantial regions perfectly,

and contig path NG50 appears to be a more discriminative statis-

tic than block NG50, as it indicates large differences between the

assemblies.

Scaffold paths

To account for gaps within scaffolds, which we henceforth call

scaffold breaks, we define scaffold paths. Scaffold paths can be

thought of as portions of the assemblies’ scaffolds that perfectly

follow a path through the graph of haplotype polymorphism, but

which are allowed to jump unassembled sequences at scaffold gaps.

Scaffold gaps are scaffold breaks (denoted as contiguous runs of

wild-card characters in an assembly) whose surrounding contig

ends are bridged by a path of haplotypes representing edges within

the adjacency graph; see Figure 3 for an

example and the Methods section for

a formal definition.

Notably, our definition of a scaffold

gap within the graph is permissive in that

it allows (1) any sequence of Ns to define

a scaffold break, and (2) the sequence of

Ns that define the scaffold break to be

aligned within the ends of the block that

sandwich the gap in the assembly. This

definition was sought because there is

currently a wide variation in the syntax

used to define such gaps within different

assemblers, and to be tolerant of align-

ment errors caused by the phenomena of

edge wander (Holmes and Durbin 1998)

caused when the alignment of positions

around a gap has more than one equally

probable scenario. As a scaffold path is

a concatenation of contig paths, its base-

Figure 3. An adjacency graph example demonstrating threads, contig paths, and scaffold paths.
Each stack of boxes represents a block edge. The nodes of the graph are represented by the left and right
ends of the stacked boxes. The adjacency edges are groups of lines that connect the ends of the stacked
boxes. Threads are represented (inset) within the graph as alternating connected boxes and colored
lines. There are three threads shown: (top to bottom) black, gray, and light gray. The black and gray
threads represent two haplotypes; there are many alternative haplotype threads that result from
a mixture of these haplotype segments, which are equally plausible given no additional information to
deconvolve them. The light-gray thread represents an assembly sequence. For the assembly thread,
consistent adjacencies are shown in solid light gray. The dashed light gray line between the right end of
block g and the left end of block i represents a structural error (deletion). The dashed light-gray line
between the right end of block k and the left end of block m represents a scaffold gap, because the
segment of the assembly in block n contains wild-card characters. The example, therefore, contains
three contig paths: (from left to right) blocks a. . .g ACTGAAATCGGGACCCC; blocks i, j, k GGAAC; and
block m CC. However, the example contains only two scaffold paths because the latter two contig paths
are concatenated to form one scaffold path.

Earl et al.

2230 Genome Research
www.genome.org

pair length is just the sum of the base-pair lengths of the contig

paths that it contains.

Figure 2 shows the scaffold path NG50, defined analogously

to the block and contig path NG50s, sorted with respect the scaf-

fold NG50. In many cases the scaffold path NG50 is substantially

larger than the contig path NG50. Figure 4 shows a stack fill plot of

the coverage of scaffold paths along the three chromosomes of

haplotype a1 (see also Supplemental Figs. 16–19). It demonstrates

the substantial differences between the assemblies and shows that

large, megabase regions of the haplotype can be reconstructed with

assembly gaps, but without apparent error.

Structural errors

Despite the long lengths of many scaffold paths, for most assem-

blies the scaffold NG50 is substantially larger than the scaffold

path NG50, indicating that there were apparent errors that broke

scaffolds into smaller sets of scaffold paths. To analyze these errors

we continued our graph analysis, defining a number of subgraph

types to represent them, which we formally define in the Methods

section. These subgraph definitions include erroneous intra- and

interchromosomal joins, insertions, deletions, simultaneous in-

sertion and deletions, and insertions at the ends of assembled se-

quences. Table 5 (and Supplemental Table 3) shows the numbers of

structural errors for each assembly; Supplemental Figures 20 and

21 show structural errors across the haplotypes. Many assemblies

do not have categories of error to which they are particularly

prone, but a few do. In these cases there may be a systematic bias in

the operation of the programs that generated them or in the way

that we interpreted them.

Insertion and deletion (indel) structural errors involve, re-

spectively, the addition and removal of a contiguous run of bases.

In Supplemental Figures 22 and 23 we investigate the size distri-

bution of such errors, using both the described MSA and sup-

porting alignments from the progressiveMauve program (Darling

et al. 2010). We find that in almost all cases, the size distribution of

the segments of inserted and deleted bases follows an approxi-

mately geometrically decreasing distribution.

We also searched for subgraphs in which the assembly created

a haplotype to contamination chimera, but did not find any such

subgraphs. To investigate this surprising result we searched for

such chimeras using BLAST with relaxed parameters (Supplemen-

tal section 7.1.3; Supplemental Fig. 24). Using this approach we

found 56 assemblies with no such chimeras, seven assemblies with

1 chimera, one assembly with two chimeras, and one outlier as-

sembly with 26 chimeras. In each case we verified that these chi-

Figure 4. Assembly coverage along haplotype a1 stratified by scaffold path length weighted overall coverage. The top six rows show density plots of
annotations. (CDS) Coding sequence; (UTR) untranslated region; (NXE) nonexonic conserved regions within genes; (NGE) nongenic conserved regions;
(island) CpG islands; (repeats) repetitive elements. The remaining rows show the top-ranked assembly from each group, sorted by scaffold path length
weighted overall coverage. Each such row is a density plot of the coverage, with colored stack fills used to show the length of scaffold paths mapped to
a given location in the haplotype. For example, the left-most light-orange block of the WTSI-S assembly row represents a region of haplotype a1 that is
almost completely covered by a scaffold path from the WTSI-S assembly greater than one megabase in length.

Assemblathon 1

Genome Research 2231
www.genome.org

meras were missed in the graph approach due to the stringent MSA

parameters.

Long-range contiguity

The MSA graph theoretic analysis we have described is local in

nature and quite strict, in that it has no notion of large-scale

contiguity and refuses to stitch together

paths that would be joined, but for a

small error. We thus sought a method to

analyze the larger scale contiguity be-

tween pairs of separated points in the

genome. Formally, for two positions xi

and xj in a haplotype chromosome x,

such that i < j, if there exists two positions

yk, yl in an assembly scaffold y such that

(1) yk is in the same column as xi, (2) yl is

in the same column as xj, and (3) k < l, we

say yk and yl are correctly contiguous. Pairs

may be correctly contiguous but not

necessarily covered by the same contig

path or scaffold path, and indeed there

may be arbitrary numbers of assembly

errors between two correctly contiguous

positions.

Figure 5 shows the proportion of

correctly contiguous pairs as a function of

the pairs’ separation distance for each

assembly. Taken at a high level, in all of

the assemblies the proportion of correctly

linked pairs monotonically decreases with

separation distance. Therefore, we take

the separation distance at the 50th per-

centile, termed the correct contiguity 50

(CC50) as an essentially sufficient statis-

tic. See Supplemental section 7.1.2 and

Supplemental Figures 25 and 26 for sup-

porting BLAST-based analysis.

Annotation analysis

Evolver maintains annotations for a number of classes of simulated

sequence, including genes, which Evolver models as having exons,

introns, and untranslated regions (UTRs), and conserved noncoding

elements. Additionally, while Evolver does not track the history of

individual repeat elements following their insertion, it maintains

Table 5. Structural error statistics for the top assembly from each team

ID
Intrachromosomal

joins
Interchromosomal

joins Insertions Deletions
Insertion and

deletion
Insertion at

ends + errors

DOEJGI 21 160 55 108 40 72 456
WTSI-S 6 191 56 76 19 127 475
Broad 75 161 524 379 9 96 1244
CRACS 687 303 198 121 51 306 1666
nABySS 17 48 208 188 63 1207 1731
BGI 368 288 355 639 98 130 1878
EBI 458 563 127 547 53 307 2055
RHUL 691 349 172 264 26 1049 2551
ASTR 2065 200 109 227 73 144 2818
BCCGSC 351 285 255 233 102 1641 2867
IRISA 147 203 925 1593 116 741 3725
DCSISU 1410 956 330 954 109 560 4319
WTSI-P 1940 449 1851 289 87 279 4895
CSHL 396 337 417 3287 223 486 5146
IoBUGA 919 330 1663 2933 356 109 6310
nCLC 23 64 2359 2237 68 2532 7283
GACWT 757 730 905 1292 216 4722 8622
nVelv 2885 455 1473 2838 306 669 8626
CIUoC 1205 684 1,189 2026 65 6113 11,282
UCSF 2731 2396 5908 6223 1018 6711 24,987

Columns are defined in the main text.

Figure 5. The proportion of correctly contiguous pairs as a function of their separation distance. Each
line represents the top assembly from each team. Correctly contiguous 50 (CC50) values are the lowest
point of each line. The legend is ordered top to bottom in descending order of CC50. Proportions were
calculated by taking 100,000,000 random samples and binning them into 2000 bins, equally spaced
along a log10 scale, so that an approximately equal number of samples fell in each bin.

Earl et al.

2232 Genome Research
www.genome.org

a library of mobile elements, and thus, using RepeatMasker (v1.25

http://www.repeatmasker.org) and tandem repeats finder (v4.0,

http://tandem.bu.edu/trf/trf.html) with this library, we identified

a subset of repetitive sequence within the haplotypes.

Continuing the previous MSA analysis, we define a perfect

path as a maximal subpath of a haplotype thread that is isomorphic

to a subpath of an assembly thread. For a given assembly, the

corresponding set of perfect paths reflects the regions of the hap-

lotypes that are perfectly reconstructed. Unlike contig and scaffold

paths, perfect paths are intolerant of haplotype polymorphism,

but give a well-defined set of intervals within a1,2 for comparison

with a set of annotations. Table 6 shows for each assembly the

proportion of each annotation type contained within perfect

paths.

Both haplotypes of the a1,2 genome contain 176 protein-

coding genes, Supplemental Figure 27 show the distribution of

their lengths; we find that only a small proportion (max 11% of

base pairs, min 2% of base pairs) of these full-length transcripts are

perfectly reconstructed by the assemblies. Conversely, we find that

in the best assemblies almost all exons and a high proportion of

UTRs are perfectly reconstructed, for example, 99% of base pairs in

exons and 84% of base pairs in UTRs of the BGI assembly. We also

find that most perfectly reconstructed genes are intronless (data

not shown); the assemblies therefore fail mostly to reconstruct

introns perfectly. To further characterize this failure we used

tBLASTN (Altschul et al. 1990; see Supplemental section 7.1.4) to

align the spliced transcripts of a1 (without introns and UTRs) to the

scaffolds of the assemblies, counting a match if it included 95% of

the given transcript; see last column of Table 4, labeled genic cor-

rectness, and Supplemental Table 1. This more tolerant analysis

reveals that in the best assemblies the majority of exon chains are

reconstructed contiguously (in the correct order and orientation)

within single scaffolds, e.g., the Broad assembly has 107 spliced

transcripts (93.8% of base pairs) reconstructed by this metric.

As expected, repeats were the least well-reconstructed anno-

tation types, with the best assembly, BGI, reconstructing only 64%

of repeats perfectly (see last column of Table 6). As these regions are

naturally difficult to align correctly within an MSA, we also per-

formed BLAST-based fragment analysis, see Supplemental section

7.1.5, with similar results.

Finally, we also looked at conserved noncoding regulatory

elements, which Evolver both models and tracks. As these ele-

ments are short and relatively nonrepetitive, the majority (88%–

99% of base pairs) were perfectly reconstructed by the assemblies.

Substitution errors

We have so far described assessments of structural correctness and

contiguity, both overall and for functional genic elements. We now

turn to the assessment of somewhat orthogonal issues, first by

looking at base calling and then finally by analyzing copy number

errors.

Although we do not allow structural rearrangements within

MSA blocks, blocks are tolerant of substitutions. Let a (haplotype)

column of aligned bases within a block that (1) contains a single

position from both haplotypes, and (2) a single position from an

assembly sequence, be called valid. We use these criteria because

such columns unambiguously map a single assembled sequence to

a single position in the alignment of both haplotypes while

avoiding the issues of paralogous alignment and multiple count-

ing. We distinguish two types of valid columns: (1) homozygous

columns: those containing the same base pair from both haplo-

types, and (2) heterozygous columns: those containing distinct base

pairs from each haplotype. We also initially considered columns

that contain one but not both haplotypes, but found that the

numbers of such columns that we could consider reliably aligned

was not sufficient for us to confidently compute statistics.

Assemblers are free to use IUPAC ambiguity characters to call

bases. To allow for this we use a bit-score to score correct but am-

biguous matches within valid columns

(see Methods). We say there has been

a substitution error if the position in the

assembly sequence has an IUPAC char-

acter that does not represent either of the

haplotypes’ base pair(s).

Some of the substitution errors that

we observe are likely due to misalign-

ments. These can occur due to edge

wander (Holmes and Durbin 1998) or the

larger scale misalignment of an assem-

bled sequence to a paralog of its true

ortholog. The sum of substitution errors

over all valid columns is therefore an

upper bound on the substitution errors

within valid columns. To obtain a higher

confidence set of substitution errors we

select a subset of valid columns that meet

the following requirements: (1) are part of

blocks of at least 1 kb in length, avoiding

errors within short indels, (2) are not

within five positions of the start and

end of the block, avoiding edge wander,

and (3) are within blocks with 98% or

higher sequence identity, ensuring that

the alignments are unlikely to be paralo-

gous. The sum of substitution errors

within these high-confidence valid col-

Table 6. Inclusion of annotated features within perfect paths

ID
COG-xcript
(996,462)

CO-cds
(562,627)

CO-utr
(433,835)

CO-nxe+nge
(21,292,660)

CO-repeat
(14,475,489)

ASTR 0.11 0.92 0.82 0.92 0.56
WTSI-P 0.09 0.96 0.82 0.99 0.59
EBI 0.08 0.97 0.76 0.99 0.55
WTSI-S 0.07 0.89 0.75 0.99 0.56
CRACS 0.07 0.92 0.72 0.97 0.53
BCCGSC 0.08 0.94 0.79 0.99 0.59
DOEJGI 0.05 0.88 0.65 0.99 0.45
IRISA 0.06 0.89 0.66 0.97 0.37
CSHL 0.08 0.94 0.80 0.99 0.57
DCSISU 0.06 0.83 0.66 0.97 0.42
IoBUGA 0.08 0.97 0.81 0.99 0.58
UCSF 0.06 0.84 0.62 0.86 0.37
RHUL 0.09 0.96 0.81 0.99 0.59
GACWT 0.02 0.72 0.37 0.88 0.38
CIUoC 0.02 0.74 0.49 0.80 0.39
BGI 0.11 0.99 0.84 0.99 0.64
Broad 0.10 0.97 0.83 0.99 0.64
nVelv 0.04 0.88 0.69 0.99 0.34
nCLC 0.05 0.92 0.70 0.99 0.41
nABySS 0.06 0.91 0.73 0.99 0.46

Each annotation is represented as a set of maximal nonoverlapping intervals upon the haplotypes
ofa1,2. Each column represents an annotation type, giving the number of base pairs contained within
intervals of the type that are fully contained within perfect paths, as a proportion of all base pairs in
intervals of the type. Annotations from left to right: Full-length gene transcripts, exons, untranslated
regions (UTRs), noncoding conserved elements, and repeats.

Assemblathon 1

Genome Research 2233
www.genome.org

umns represents a reasonable lower bound of the number of

substitution errors within valid columns.

Figure 6 (also Supplemental Fig. 29; Supplemental Tables 4, 5)

show, as might be expected, that there are, in general, propor-

tionally more errors made in heterozygous columns than homo-

zygous columns, though there are naturally much fewer overall

heterozygous positions; for example, the WTSI-S and CRACS as-

semblies made no heterozygous errors. We find a strong correlation

between error rates in heterozygous and homozygous columns,

with the exceptions of the Broad and BCCGSC assemblies, which

have proportionally higher rates of heterozygous errors. The Broad

result is explained by the large number of N ambiguity characters

called at heterozygous sites, which makes the number of errors per

bit correspondingly higher, while the BCCGSC result was due to

a programmatic error in the assembler’s pipeline that has since

been identified and resolved as a result of this analysis. Inter-

estingly, we find considerable variation between the programs

in overall error rates. The strongest assembly, WTSI-S, makes one

error for every 15.3 3 106–2.94 3 106 correct bits, or approximately

one every 7.7 3 106–1.49 3 106 bases, while the weakest assembly,

UCSF, makes an error for every 6.7 3 103–1.81 3 104 correct bits, or

approximately one in every 3.3 3 103–9.0 3 103 bases.

Copy-number errors

Within any haplotype column of the MSA, the copy number of the

simulated diploid genome can be described by an interval (min,

max), where min is the minimum number of bases either of the

two haplotypes contributes and max is the maximum number of

bases either of the two haplotype contributes. To establish whether

assemblies were producing too many or too few copies of the ho-

mologous positions within the two haplotypes, we looked for

haplotype columns where the copy number of the assembly lay

outside of this copy-number interval. There are two possibilities,

either the number of copies in the assembly is less than min, in

which case there is a deficiency in the copy number, or the number

of copies in the assembly is greater than max, in which case there is

an excess in the copy number.

Figure 7 (also Supplemental Fig. 30)

shows the proportions of haplotype col-

umns with copy-number excesses and

deficiencies. Again, to address contribu-

tions made by alignment errors we

choose to produce an upper and lower

bound on these proportions. The lower

bound is taken over all haplotype col-

umns in the alignments, while the upper

bound is computed over only haplotype

columns that are part of blocks of at least

1 kb in length.

The deficiencies are dominated by

cases in which the assembly is not pres-

ent; therefore, copy-number deficiency

is closely correlated with coverage. Un-

fortunately, there are not a sufficient

number of cases where the assembly is

present but the copy number is deficient

so that we may make reliable inferences

about this interesting category. This ap-

pears to be a consequence of the genome

simulation lacking sufficient numbers of

recent duplications, and may be an in-

dication that the genome simulation is

somewhat unrealistic, as other investi-

gators (Worley and Gibbs 2010; Alkan

et al. 2011) have discussed that recent

segmental duplications cause substantial

problems for assemblies generated with

short reads.

We find that there are substantial

numbers of copy-number excesses, such

that generally the number of excesses was

larger than the number of deficiencies.

We find that excesses do not correlate

particularly well with deficiencies, par-

ticularly for programs with extremes of

deficiency or excess. We do find, how-

ever, that excesses correlate well with in-

put assembly size (data not shown). The

best assembly, EBI, has excesses between

0.0521% and 0.752% of haplotype col-

Figure 6. Substitution (base) errors for the top assembly from each team. (Top) Substitution errors per
correct bit within all valid columns; (middle) substitution errors per correct bit within homozygous
columns only; (bottom) substitution errors per correct bit within heterozygous columns only. Assemblies
are sorted from left to right in ascending order by the sum of substitutions per correct bit. In each faceted
plot, each assembly is shown as an interval, giving the upper and lower bounds on the numbers of
substitution errors (see main text).

Earl et al.

2234 Genome Research
www.genome.org

umns, while the least assembly, nABySS, has excesses between

30.8% and 33.5% of haplotype columns.

Discussion
We have used simulation to create a novel benchmark data set for

de novo assembly. We have evaluated a previously unprecedented

41 different assemblies from 17 different groups, making it the

largest short read de novo assembly evaluation to date. In sum-

mary, we have assessed coverage, the lengths of consistent contig

and scaffold paths, structural errors, long-range contiguity, the

assembly of specific annotated regions, including genes and re-

peats, base calling errors, and copy number errors; Table 7 conve-

niently summarizes these evaluation metrics. This benchmark data

set is freely available online at http://www.assemblathon.org/ and

is supplemented by a code that can take new assemblies and

amalgamate the new result into the analysis we present here. It is

our hope that this standard will assist the assembly community

when introducing new methods by providing a large set of metrics

and methods with which to compare.

Given the degree of polymorphism within the a1,2 genome,

the haplotype aware evaluations proved critical to the assessment.

For example, the haplotype aware path analysis demonstrates that

methods are able to reconstruct multiple megabases, with scaffold

breaks, essentially perfectly. We chose to treat switches between

the haplotypes of a1,2 permissively, because the assemblers were

not asked to reconstruct the two haplotypes, but rather to produce

a consensus reference of the two. It is an open question whether,

with this data set or one like it, an assembly could produce phased

variants of each scaffold. In section 7.3 of the Supplemental ma-

terial we tested whether there was any evidence of teams phasing

single nucleotide polymorphisms (SNPs) or structural variants by

preferentially choosing one haplotype, but we did not find con-

vincing evidence for either, apart from that inadvertently caused

by a bias in the simulated reads (see Methods: problems with the

error model used in Assemblathon 1).

Table 3 shows the rankings of each of the featured assemblies

for each of the described assessments; additionally, in Supple-

mental Figures 31 and 32 we assess correlations between the logs of

different metrics. Intuitively, one might expect the path analysis

metrics and the contiguity assessments to be correlated to one

another and inversely correlated with structural errors. Indeed, this

intuition proves partially correct. Contiguity (CC50) and scaffold

path NG50 are strongly correlated (R2 = 0.77, P < 0.001), while

structural errors are inversely correlated with scaffold path NG50s,

with one explaining about half the variance of the other (R2 = 0.48,

P < 0.001). However, contig path NG50 is only weakly correlated

with scaffold path NG50 (CPNG50–SPNG50 R2 = 0.38, P < 0.001)

and contiguity (CPNG50–CC50 R2 = 0.31, P < 0.01), suggesting

that the scaffolding process is more important in producing ac-

curate long scaffolds than the prior contigging process.

Given the popularity and simplicity of N50 statistics, it is

perhaps reassuring how well these metrics correlate with the path

and contiguity metrics (SN50–CC50 R2 = 0.98, P < 0.001; SN50–

SPNG50 R2 = 0.74, P < 0.001; CN50–CPNG50 R2 = 0.64, P < 0.001),

suggesting that one may usefully compare N50 measurements

between assemblies, and not just between assemblies by the same

program. Interestingly, the genic correctness measure also corre-

lates with all of the N50 measures, and most strongly with the

correct contiguity 50 (R2 = 0.98, P < 0.001) and scaffold N50

measures (R2 = 0.98, P < 0.001).

We do not find that substitution errors and copy-number er-

rors correlate substantially with anything else, except for a corre-

lation between substitution errors and structural errors (R2 = 0.45,

P < 0.001). This is perhaps unsurprising, given the orthogonal basis

of these metrics to each other and the other evaluations. Perhaps,

surprisingly, coverage does not correlate strongly with other mea-

sures, and in particular, not with contig or scaffold N50 statistics,

suggesting such naive measures are not good proxies for coverage.

Table 3 highlights that while the best assemblies are stronger

in most categories than the weakest assemblies, all of the assem-

blies have areas in which they can improve relative to their peers, if

at a trade-off cost in other categories. For example, the BGI as-

sembly, while having the largest contig path NG50, has only the

sixth largest scaffold path NG50, which is more than four times

smaller than the strongest method in this category (WTSI-S), sug-

gesting that its scaffolding could be improved. Conversely, the

WTSI-S and DOEJGI assemblies had large contiguity (CC50) and

scaffold path (SPNG50) measures and low numbers of structural

errors, but relatively short contig paths (CPNG50), suggesting that

their contigging could be made more aggressive, though possibly

with a corresponding increase in structural errors.

We have demonstrated in simulation that the best current

sequence assemblers can reconstruct at high coverage and with

good accuracy large sequences of a substantial de novo genome.

Figure 7. Copy-number errors for the top assembly from each team.
(Top) Proportion of haplotype containing columns with a copy-number
error; (middle) proportion of haplotype containing columns with an excess
copy-number error; (bottom) proportion of haplotype containing columns
with an excess copy-number error. Assemblies are sorted from left to right
in ascending order according to the proportion of haplotype containing
columns with a copy-number error. In each faceted plot, each assembly is
shown as an interval, giving the upper and lower bounds on the numbers
of copy-number errors (see main text).

Assemblathon 1

Genome Research 2235
www.genome.org

This is concordant with other recent work that suggests that short

read sequencing is becoming competitive with capillary sequenc-

ing (MacCallum et al. 2009; Gnerre et al. 2011). MacCallum et al.

(2009) looked at five microbial genomes with sizes ranging from

2.8 Mb (Staphylococcus aureus) to 39.2 Mb (Neurospora crassa) and

determined that with data from two paired libraries, the ALLPATHS

2 program was able to produce assemblies with qualities that

exceeded draft assemblies using Sanger methods. Gnerre et al.

(2011) sequenced two genomes: a human cell line (GM12878) and

a mouse strain (C57BL/6J female) and assembled them using the

ALLPATHS-LG program. The investigators found that with Illu-

mina reads of 1003 coverage in four library types their assemblies

neared capillary sequencing quality in completeness, long-range

connectivity, contiguity, and accuracy.

There are a number of important limitations with the current

work. First, the use of simulation makes it hard to know how ap-

plicable these results are to any other data set; though this is ar-

guably true of any data set, the simulation’s limitations, in par-

ticular the noted issues with the read simulation and with the low

repeat content of the genome likely influence the results. Second,

the limited size of the simulated genome means that some of the

strategies used here may not work as effectively, or at all, on larger

vertebrate scale genome data sets. Finally, as our results derive from

a single data set in which no attempt was made to measure the

variance of our various metrics, it is questionable how reliable our

measurements are. To address these issues, a second competitive

evaluation, Assemblathon 2, is now underway.

Given the scale of challenges in making assessments and to

avoid fragmentation, we suggest that Assemblathon 2 continue to

focus on the assessment of complete pipelines, rather than

attempting to assess individual pipeline components. We also

suggest that it continue to rely on the individual assembly teams to

compute their own assemblies, despite this making it difficult to

compare the computational requirements of the pipelines, given

the self-reported nature of such data and the heterogeneous

equipment upon which the assemblies are computed.

However, we conclude by making three distinguishing sug-

gestions for Assemblathon 2 that would sufficiently expand its

scope from this initial competition. First, it should feature at least

one mammalian genome scale data set to test the scaling of the

assembly pipelines. Second, it should feature real data to compare

with the simulation results presented in this competition; this may

necessitate the use of a different set of evaluation metrics, where

the ‘‘correct’’ answer is unknown. Third, it should be expanded to

include other sequencing technologies so that a better compara-

tive, unbiased understanding of available sequencing technologies

can be made.

Methods

Genome simulation
The Evolver simulation was managed by a set of scripts (https://
github.com/dentearl/evolverSimControl/), which control the ex-
ecution of Evolver and allow a general phylogeny to be simulated.

As well as a starting sequence, Evolver also requires a set of
annotations that are used to assign sequences to element types that
undergo differential evolution simulation. The following annota-
tions were used: UCSC Genes, UCSC Old Genes, CpG Islands,
Ensembl Genes, and MGC Genes from the UCSC table browser
(Fujita et al. 2011). The root genome was then coupled with pa-
rameters and a mobile element library (A Sidwo, pers. comm.) to
form the Evolver in-file set for the simulation.

Evolver proceeds iteratively by a series of discrete steps. We
used an Evolver step length of 0.01 substitutions per site, meaning

Table 7. Summary of metrics used in the analysis

Metric name Units Description

N50 — A weighted median of the lengths of items, equal to the length of the longest item
i such that the sum of the lengths of items greater than or equal in length to i is greater
than or equal to half the length of all of the items. With regard to assemblies the items
are typically contigs or scaffolds.

NG50 — Whereas N50 sets the median in relation to the total length of all items in the set, we define
NG50 to be normalized by the average length of the a1 and a2 haplotypes instead of the
total length of all sequences as in N50; it is thus more reliable than N50 for comparison
between assemblies.

CPNG50 bp Contig path NG50. The weighted median of the lengths of contig paths. Contig paths
represent maximal subsequences of contigs that are entirely consistent with a1,2.

SPNG50 bp Scaffold path NG50. The weighted median of the lengths of scaffold paths. Scaffold paths
represent maximal concatenations of contig paths and scaffold breaks that maintain
correct order and orientation.

Structural errors Counts An error within a contig or scaffold. Errors include intra- and interchromosomal joins,
insertions, deletions, simultaneous insertion, and deletions and insertions at the ends of
assembled sequences.

CC50 bp Correct contiguity 50. The empirically sampled distance between two points in an assembly,
where the two points are as likely to be correctly aligned as not.

Substitution errors Counts per
correct bits

Number of substitution errors per correct bit. Substitution errors are columns in the alignment
where the a1 and a2 haplotypes contain either the same base (homozygous) or different
bases (heterozygous) and the alignment contains a base (or IUPAC symbol) different from
either a1 or a2. The metric uses a bit score to allow for IUPAC symbols.

Copy number errors Proportions For a given haplotype column in the MSA, the copy number of the simulated genome can be
described as an interval (min, max). Assemblies with a copy number outside of this interval
are classified either as an excess, for being above the interval, or a deficiency, for being
below the interval.

Coverage Percent The coverage is the percent of columns in the MSA of the target (the whole genome, regions
of a specific annotation type, etc.) that contain positions of the assembly.

Genic correctness Percent The genic correctness is the percentage of base pairs in spliced transcripts from the haplotype
sequences that align to the assembly with 95% coverage using WU-BLAST.

Earl et al.

2236 Genome Research
www.genome.org

the initial branch length of 0.4 substitutions per site (;200 my)
(Hedges et al. 2006; Fujita et al. 2011) from the root node to the
most recent common ancestor (MRCA) of the final leaf genomes
node consisted of 40 separate Evolver cycles. The lineages leading
from the MRCA to a and b descend for a distance of 0.1 (;50 my)
substitutions per site in 10 Evolver cycles. The final splits into the
lineages leading to the leaf genomes were each performed in one
Evolver cycle of 0.002 substitutions per site (;1 my), with pa-
rameters scaled appropriately. An alignment between the a1 and a2

haplotypes is available on the project website (http://compbio.
soe.ucsc.edu/assemblathon1/).

Read simulation

Prior to writing our own read simulator we considered several pre-
existing tools. We first considered wgsim (Li et al. 2009). Un-
fortunately, this program does not model mate-pair llumina reads,
and it models error rates uniformly across the sequence. We
note that this error rate limitation is removed in dwgsim (http://
sourceforge.net/apps/mediawiki/dnaa/). However, dwgsim does
not model chimeric mate-pair reads or paired-end contamination,
which we wished to model. We contacted Illumina and requested
their in-house programs for simulating reads. The Illumina soft-
ware package was capable of modeling chimeric mate-pair reads,
and it modeled error rates by copying quality strings from a user
supplied file of Illumina reads. Unfortunately, this method did not
allow us to model different error rates conditioned on different
underlying bases, which we felt was important. We also considered
several other software packages for modeling Illumina style reads,
including metasim (Richter et al. 2008), PEMer (Korbel et al. 2009),
ReSeqSim (Du et al. 2009), SimNext (http://evolution.sysu.edu.cn/
english/software/simnext.htm), Flux Simulator (http://flux.sammeth.
net/index.html), and Mason (part of the SeqAn package) (Döring et al.
2008), all of which lack one or more of the criteria we desired.

Given these findings, we wrote our own simulator, which
combined the capabilities of the Illumina supplied software to
model chimeric mate-pair reads, as well as standard paired-end
reads, with our own position and reference-base-specific empirical
error model trained on Illumina data.

Read sampling strategy

For read sampling we used two separate methods, one for mate-pair
libraries and the other for paired-end libraries. Reads were first
sampled uniformly across each sequence. Coverage depth was kept
approximately uniform by weighting the number of reads sampled
from each sequence by its length. Read fragments were sampled
from either strand with equal probability. Duplicates were pro-
duced with some probability before the error was applied to the
reads. See Supplemental Figure 33 for a density map of read depth
across the haplotypes.

Paired-end sampling

Illumina paired-end sampling was the most straightforward strat-
egy to simulate. It involved randomly selecting fragments in the
150–500-bp range uniformly across the genome until the desired
coverage was met (specific sizes below). Fragment size was sampled
from a normal distribution with a specified mean and variance.
The reads were oriented facing each other and were sampled from
either strand with equal probability. The following paired-end li-
braries were generated:

• 200 bp insert 620 SD

23 100 bp
22,499,731 read pairs (;403 coverage of the diploid sequence)
0.01 probability of being a duplicate

• 300 bp insert 630 SD

23 100 bp
22,499,731 read pairs (;403 coverage)
0.01 probability of being a duplicate

Mate-pair sampling

Illumina mate-pair library construction differs from paired-end
library construction in that it introduces several unique types of
error into the reads. In reality, these libraries are constructed by
attaching a chemical tag onto the ends of a long sequence frag-
ment, typically in the range of from 2 to 10 kb, after which the
fragment is circularized. The circularized product is then further
fragmented into sizes typically within the 200–500-bp range,
which is the upper limit on fragment lengths for Illumina se-
quencing. Finally, the resulting mixture is purified for fragments
that contain the chemical tag, so that DNA from near the ends of
the original 2–10-kb loop are what ideally get sequenced.

There are three common types of error introduced in the
mate-pair library preparation process, and we modeled two of
them. First, when the fragments are circularized, there is a chance
that a loop will be formed between two nonrelated long fragments,
resulting in chimeric reads between two unrelated parts of the
genome. We did not model this type of error. Assuming that the
fragment is properly circularized, the second type of error is pro-
duced when a fragment that does not contain the chemical tag is
mistakenly sampled. When this happens, the loop join is not
part of the fragment, and a paired-end style read with a short in-
sert is mixed in with the rest of the library. We did model this type
of error, and varied the probability of its occurrence with each
mate-pair library. The final major source of error is created during
the random fragmentation process and results in the loop join
position occurring in the middle of a read rather than between
the two reads. We modeled this by assuming a uniform distribu-
tion of loop join sites across a sampled loop fragment, which
resulted in chimeric reads as a function of the size of the frag-
mented loop piece, and the length of the reads. For example,
shorter reads and longer loop fragmentation pieces were less likely
to result in a chimeric read. The following mate-pair libraries were
generated:

• 3 kb loop length 6300 SD

23 100 bp
500 bp loop fragmentation size 650 bp
0.2 probability of sampling a PE fragment rather than an MP

fragment
11,249,866 read pairs (;203 coverage)
0.05 probability of being a duplicate

• 10 kb loop length 61 kb SD

2 3 100 bp
500 bp loop fragmentation size 650 bp
0.3 probability of sampling a PE fragment rather than an MP

fragment
11,249,866 read pairs (;203 coverage)
0.08 probability of being a duplicate

Base-level error model

We utilized an error model that is dependent on the position
within the read and the underlying reference base. To generate this
model we assembled a human mitochondrial genome using reads
from an Illumina HiSeq run (http://www.illumina.com/systems/
hiseq_2000.ilmn) with the reference-guided assembler MIA (Green
et al. 2010). We then took that assembly and mapped all reads back

Assemblathon 1

Genome Research 2237
www.genome.org

to it using BWA with default settings to do a paired-end mapping to
the sequence. We kept all alignments with a mapq quality score
over 10. We then iterated through the alignment and built an
empirical distribution of phred (Ewing et al. 1998) scores and the
probabilities of observing one of A, C, G, T, or N given the reference
base, the position in the read, and the reported phred quality score.
The error model was therefore conditioned on the phred score,
position, and reference base, and did not assume that the phred
scores were an accurate representation of the underlying error
rates.

Problems with the error model used in Assemblathon 1

The error model used was appealingly simple but has limitations
that should be understood. First, in generating the error model we
omitted many reads that had an error rate that was too high to
confidently map to the assembled mitochondria. In the future this
could partially be overcome by using the PhiX control lane (http://
www.illumina.com/products/multiplexing_sequencing_primers_
and_phix_control_kit.ilmn), where one can confidently force the
vast majority of the reads to map back to the PhiX 174 genome
(NCBI accession no. NC_001422.1) and do not have to be as sen-
sitive to false-positive alignments.

Second, since we used a flat naive prior on the distribution of
phred scores; when training our empirical model there was, due to
noise, a mixture of good and poor quality bases at the ends of the
reads. Since each position was treated independently, the distri-
bution of phred scores was therefore likely not typical, resulting in
the likely relative failure of assembler heuristics used to trim strings
of bad phred scores at the ends of reads.

Third, since we wrote the simulator following the general al-
gorithmic flow of the wgsim read simulator (Li et al. 2009), reads
were randomized within haplotype chromosomes, but not be-
tween haplotype chromosomes, resulting in reads from each
haplotype and chromosome being clustered together separately in
the data. Thankfully, an investigation of phasing bias in Supple-
mentary section 7.3 shows that only a few assemblies showed ev-
idence of any bias that could likely be attributable to this.

Cactus alignment assessment

Alignment generation

The Cactus program starts by using the Lastz pairwise alignment
program (http://www.bx.psu.edu/;rsharris/lastz/) to generate
a set of pairwise alignments between all of the input sequences,
including intrasequence alignments that arise from recent dupli-
cations. In the adapted version of Cactus used for the Assemblathon,
which we henceforth call Cactus-A, we used the following pa-
rameters to Lastz, after discussion with the program’s author:–
step=10–seed=match12–notransition–mismatch=2,100–match=1,5–
ambiguous=iupac–nogapped–identity=98. This ensured that the
resulting pairwise alignments were ungapped (without indels), of
minimum length of 100 bp, and with an identity (sequence simi-
larity) of 98% or greater, in concordance with the evolutionary
distance between the haplotypes. Cactus-A uses these alignments
to build a ‘‘sparse map’’’ of the homologies between a set of input
sequences. Once this sparse map is constructed, in the form of
a Cactus graph (Paten et al. 2011a), a novel algorithm is used to
align together sequences that were initially unaligned in the sparse
map. To prevent sequences that are not homologous from being
aligned in this process we set the alignment rejection parameter,
called g, to 0.2, to filter positions from being aligned that are not
likely to have very recently been diverged. The results of Cactus-A
are stored as MAF files (Blanchette et al. 2004), one for each as-
sembly; these are available in the Supplemental material.

Scaffold gaps, error subgraphs, and scaffold paths

Let P be a sequence of block edges [(x1, x2), (x3, x4) . . . (xn-1, xn)]
in a thread [thus ignoring the alternating adjacency edges (x2,
x3), (x4, x5), etc.] representing an assembled sequence in the
adjacency graph. The ambiguity of a sequence is equal to the
number of wild-card characters that it contains (denoted as
Ns). Similarly, the ambiguity of a subsequence of P is equal to
the ambiguity of the subsequence of the assembly sequence
it represents. The prefix ambiguity of (xi, xj) is equal to the
number of wild-card characters in the first five bases of the as-
sembly sequence that (xi, xj) represents, orienting the sequence
from xi to xj. The approximate ambiguity of a subsequence Q =

[(xi, xi+1), (xi+2, xi+3) . . . (xi+j-1, xi+j)] is equal to the ambiguity of
Q plus the prefix ambiguity of (xi-1, xi-2) and (xi+j+1, xi+j+2), if
these edges exist. By using approximate ambiguity rather than
just ambiguity we allow for wobble in the alignment caused by
edge wander (Holmes and Durbin 1998) when denoting a scaffold
gap.

We say a thread is empty if it represents a sequence of zero
length, or else we say it is nonempty.

Let a maximal thread of inconsistent adjacency edges and
block edges that do not contain haplotypes or bacterial contami-
nation segments be called a joining thread. A joining thread repre-
sents an unaligned portion of an assembly sequence. A scaffold gap
or error subgraph is defined by a joining thread incident at one or
both ends with blocks that contain haplotype segments. We clas-
sify such joining threads as follows:

(A) If the joining thread is not attached to anything at one end (i.e.,
it terminates) (Fig. 8A):

• If it has approximate ambiguity, then we classify it as a
scaffold gap.

• Else we classify it as a hanging insert error.

(B) If the joining thread is attached at each ends to blocks, a and b,
containing haplotype segments:

• If a and b are connected by a thread containing haplotype
segments (Fig. 8B):

i. If the joining thread has approximate ambiguity, then it
is a scaffold gap.

ii. Else it is an indel (insertion/deletion) error:

1. If the joining thread is empty, then it is a deletion
error; by definition all haplotype paths between a and
b must be nonempty.

2. Else if all haplotype threads are empty then it is an
insertion error; by definition the assembly thread
must be nonempty.

Figure 8. Scaffold gap and error subgraphs. Diagrams follow the for-
mat of Figure 3. The rounded boxes represent extensions to the sur-
rounding threads. Line ends not incident with the edge of boxes represent
the continuation of a thread unseen. In each diagram the right end of
block a and the left end of block b (if present) represent the ends of contig
paths, and the enclosed gray thread represents the joining thread. The
black thread represents a haplotype thread. The gray thread represents
either a haplotype or bacterial contamination thread. (A) (Hanging)
scaffold gaps and hanging insert errors. (B) Scaffold gaps and indel errors.
(C) Intra- and interchromosomal joining errors and haplotype to con-
tamination joining errors.

Earl et al.

2238 Genome Research
www.genome.org

3. Else, all the haplotype threads and the assembly
thread are nonempty, and it is an insertion and
deletion error.

• Else a and b are not attached by a thread of haplotype
containing edges:

i. If a and b both contain positions from one or more com-
mon haplotype sequences, then it is an intrahaplotype
joining error (Fig. 8C).

ii. Else it is an interhaplotype joining error (Fig. 8C).

(C) Else, the joining thread is attached at one end to a bacterial
contamination containing block (Fig. 8B), and we classify it as
a haplotype to contamination joining error (Fig. 8C).

For any thread P representing an assembly sequence, a scaf-
fold path is a maximal subpath of P, in which all of the edges are
consistent and/or part of a scaffold gap subgraph.

Substitution errors

We use a bit-score to score correct, but ambiguous matches
within valid columns. We assign to each valid column the bit
score –m*log2(n/4), where n is the number of different bases the
IUPAC character in the assembly represents and m is the number
of distinct base pairs in the two haplotypes that matches or is
represented (amongst others) by the assembly IUPAC character.
Thus, in homozygous columns the score is at most 2, in het-
erozygous columns the score is 2, if, and only if, the assembly
correctly predicts one of the two base pairs, or if it predicts an
ambiguity character that represents both and only those two
base pairs.

List of affiliations
1Center for Biomolecular Science and Engineering, University of
California, Santa Cruz, California 95064, USA; 2Biomolecular
Engineering Department, University of California, Santa Cruz,
California 95064, USA; 3Genome Center, University of Cal-
ifornia, Davis, California 95616, USA; 4Bioinformatics Core,
Genome Center, University of California, Davis, California
95616, USA; 5Computational & Mathematical Biology Group,
Genome Institute of Singapore, Singapore 119077; 6School
of Computing, National University of Singapore, Singapore
119077; 7Wellcome Trust Sanger Institute, Wellcome Trust Ge-
nome Campus, Hinxton, Cambridge CB10 1SA, United King-
dom; 8EMBL-EBI, Wellcome Trust Genome Campus, Hinxton,
Cambridge CB10 1SA, United Kingdom; 9CRACS-INESC Porto
LA, Universidade do Porto, 4169-007 Porto, Portugal; 10Genome
Sciences Centre, British Columbia Cancer Agency, Vancouver,
British Columbia, Canada V5Z 4E6; 11DOE Joint Genome In-
stitute, Walnut Creek, California 94598, USA; 12Department of
Molecular and Cell Biology, University of California, Berkeley,
California 94720, USA; 13Computer Science Department, ENS
Cachan/IRISA, 35042 Rennes Cedex, France; 14CNRS/Symbiose,
IRISA, 35042 Rennes Cedex, France; 15INRIA, Rennes Bretagne
Atlantique, 35042 Rennes Cedex, France; 16Simons Center for
Quantitative Biology, Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, USA; 17Center for Bioinfor-
matics and Computational Biology, University of Maryland,
College Park, Maryland 20742, USA; 18National Biodefense
Analysis and Countermeasures Center, Frederick, Maryland
20702, USA; 19Monsanto Company, Chesterfield, Missouri 63017,
USA; 20Institute of Bioinformatics, University of Georgia, Athens,
Georgia 30602, USA; 21Department of Biochemistry and Biophysics,
University of California, San Francisco, California 94143, USA;

22Biological and Medical Informatics Program, University of Cal-
ifornia, San Francisco, California 94143, USA; 23Howard Hughes
Medical Institute, Bethesda, Maryland 20814, USA; 24Department
of Computer Science, Royal Holloway, University of London,
London WC1E 7HU, United Kingdom; 25Softberry Inc., Mount
Kisco, New York 10549, USA; 26The Genome Analysis Centre,
Norwich Research Park, Norwich NR4 7UH, United Kingdom;
27The Sainsbury Laboratory, Norwich Research Park, Norwich NR4
7IH, United Kingdom; 28Computation Institute, University of
Chicago, Chicago, Illinois 60637, USA; 29BGI-Shenzhen, Shenzhen
518083, China; 30Broad Institute, Cambridge, Massachusetts 02142,
USA; 31Department of Computer Science, Iowa State University,
Ames, Iowa 50011, USA; 32Molecular and Cellular Biology, Genome
Center, University of California, Davis, California 95064, USA.

Acknowledgments
We thank Robert Edgar, Arend Sidow, and George Asimenos for
their help with using Evolver. We thank three anonymous re-
viewers for comments and discussion on previous versions of
this manuscript. We acknowledge the following grants: ENCODE
DAC (data analysis center) subaward on NHGRI grant no.
U01HG004695 to the European Bioinformatics Institute; ENCODE
DCC (data coordination center) NHGRI grant no. U41HG004568;
Browser (Center for Genomic Science) NHGRI grant no.
P41HG002371; GENCODE subaward on NHGRI grant no.
U54HG004555 to the Sanger Center; NCI 1U24CA143858-01; NIH
HG00064; PTDC/BIA-BEC/100616/2008; PTDC/EIA-EIA/100897/
2008; the Fundacao para a Ciencia e Tecnologia; National Na-
tural Science Foundation of China (30725008; 30890032;
30811130531; 30221004); a National Basic Research Program
of China (973 program no. 2011CB809200); the Chinese 863
program (2006AA02Z177; 2006AA02Z334; 2006AA02A302;
2009AA022707); NSF, Major Research Instrumentation grant DBI
0821263 (University of Georgia Georgia Advanced Computing
Resource Center), and NSF EF-0949453.

References

Alekseyev M, Pevzner P. 2009. Breakpoint graphs and ancestral genome
reconstructions. Genome Res 19: 943–957.

Alkan C, Sajjadian S, Eichler E. 2011. Limitations of next-generation
genome sequence assembly. Nat Methods 8: 61–65.

Altschul S, Gish W, Miller W, Myers E, Lipman D. 1990. Basic local
alignment search tool. J Mol Biol 215: 403–410.

Batzoglou S, Jaffe D, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B,
Mesirov JP, Lander ES. 2002. ARACHNE: A whole-genome shotgun
assembler. Genome Res 12: 177–189.

Bentley D. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16:
545–552.

Bergeron A, Mixtacki J, Stoye J. 2006a. A unifying view of genome
rearrangements. In WABI ’06 proceedings of the sixth international
workshop on algorithms in bioinformatics. Vol. 4175 of LNBI. pp. 163–173.

Bergeron A, Mixtacki J, Stoye J. 2006b. On sorting by translocations. J Comput
Biol 13: 567–578.

Blanchette M, Kent W, Riemer C, Elnitski L, Smit A, Roskin K, Baertsch R,
Rosenbloom K, Clawson H, Green ED, et al. 2004. Aligning multiple
genomic sequences with the threaded blockset aligner. Genome Res 14:
708–715.

Butler J, Maccallum I, Kleber M, Shlyakhter I, Belmonte M, Lander E,
Nusbaum C, Jaffe DB. 2008. ALLPATHS: De novo assembly of whole-
genome shotgun microreads. Genome Res 18: 810–820.

Chaisson M, Pevzner P. 2008. Short read fragment assembly of bacterial
genomes. Genome Res 18: 324–330.

Chaisson M, Brinza D, Pevzner P. 2009. De novo fragment assembly with
short mate-paired reads: Does the read length matter? Genome Res 19:
336–346.

Chapman JA, Ho I, Sunkara S, Luo S, Schroth GP, Rokhsar DS. 2011.
Meraculous: de novo genome assembly with short paired-end reads. PLoS
ONE 6: e23501. doi: 10.1371/journal.pone.0023501.

Assemblathon 1

Genome Research 2239
www.genome.org

Church D, Goodstadt L, Hillier L, Zody M, Goldstein S, She X, Bult CJ,
Agarwala R, Cherry JL, DiCuccio M, et al. 2009. Lineage-specific biology
revealed by a finished genome assembly of the mouse. PLoS Biol 7:
e1000112. doi: 10.1371/journal.pbio.1000112

Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH,
Tokishita S, Aerts A, Arnold GJ, Basu MK, et al. 2011. The ecoresponsive
genome of daphnia pulex. Science 331: 555–561.

Darling A, Mau B, Perna N. 2010. progressiveMauve: multiple genome
alignment with gene gain, loss and rearrangement. PLoS ONE 5: e11147.
doi: 10.1371/journal.pone.0011147.

Dohm J, Lottaz C, Borodina T, Himmelbauer H. 2007. SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res 17: 1697–1706.

Döring A, Weese D, Rausch T, Reinert K. 2008. SeqAn an efficient, generic
C++ library for sequence analysis. BMC Bioinformatics 9: 11. doi: 10.1186/
1471-2105-9-11.

Du J, Bjornson R, Zhang Z, Kong Y, Snyder M, Gerstein M. 2009. Integrating
sequencing technologies in personal genomics: optimal low cost
reconstruction of structural variants. PLoS Comput Biol 5 e1000432. doi:
10.1371/journal.pcbi.1000432.

Dunham A, Matthews LH, Burton J, Ashurst JL, Howe KL, Ashcroft KJ, Beare
DM, Burford DC, Hunt SE, Griffiths-Jones S, et al. 2004. The DNA
sequence and analysis of human chromosome 13. Nature 428: 522–528.

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P,
Bettman B, et al. 2009. Real-time DNA sequencing from single
polymerase molecules. Science 323: 133–138.

Ewing B, Hillier L, Wendl M, Green P. 1998. Base-calling of automated sequencer
traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.

Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman
M, Barber GP, Clawson H, Coelho A, et al. 2011. The UCSC Genome
Browser database: update 2011. Nucleic Acids Res 39: D876–D882.

Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton J, Walker BJ, Sharpe
T, Hall G, Shea TP, Sykes S, et al. 2011. High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proc Natl
Acad Sci 108: 1513–1518.

Green R, Krause J, Briggs A, Maricic T, Stenzel U, Kircher M, Patterson N, Li H,
Zhai W, Fritz MH-Y, et al. 2010. A draft sequence of the Neandertal
genome. Science 328: 710–722.

Hedges S, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base
of divergence times among organisms. Bioinformatics 22: 2971–2972.

Hernandez D, Francxois P, Farinelli L, Osterås M, Schrenzel J. 2008. De novo
bacterial genome sequencing: Millions of very short reads assembled on
a desktop computer. Genome Res 18: 802–809.

Holmes I, Durbin R 1998. Dynamic programming alignment accuracy.
J Comput Biol 5: 493–504.

Hubisz M, Lin M, Kellis M, Siepel A. 2011. Error and error mitigation in low-
coverage genome assemblies. PLoS ONE 6: e17034. doi: 10.1371/
journal.pone.0017034.

Huson D, Halpern A, Lai Z, Myers E, Reinert K, Sutton G. 2001. Comparing
assemblies using fragments and mate-pairs. In Proceedings of workshop
algorithms in bioinformatics (ed. O Gascuel and B Moret), pp. 294–306.
Springer-Verlag, Aarhus, Denmark.

Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis
ER, Dangl JL, Jones CD. 2007. Extending assembly of short DNA
sequences to handle error. Bioinformatics 23: 2942–2944.

Kelley D, Schatz M, Salzberg S. 2010. Quake: quality-aware detection and
correction of sequencing errors. Genome Biol 11: R116. doi: 10.1186/gb-
2010-11-11-r116.

Kent W, Haussler D. 2000. GigAssembler: An algorithm for the initial
assembly of the human genome. Technical Report UCSC-CRL-00-17.

Korbel J, Abyzov A, Mu X, Carriero N, Cayting P, Zhang Z, Snyder M,
Gerstein MB. 2009. PEMer: a computational framework with
simulation-based error models for inferring genomic structural variants
from massive paired-end sequencing data. Bioinformatics 10 R23. doi:
10.1186/gb-2009-10-2-r23.

Kurtz S, Narechania A, Stein JC, Ware D. 2008. A new method to compute
K-mer frequencies and its application to annotate large repetitive
plant genomes. BMC Genomics 9: 517. doi: 10.1168/1471-2164-9-517.

Lander E, Linton L, Birren B, Nusbaum C, Zody M, Baldwin J, Devon K,
Dewar K, Doyle M, FitzHugh W, et al. 2001. Initial sequencing and
analysis of the human genome. Nature 409: 860–921.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.
2009. The sequence alignment/map format and SAMTools.
Bioinformatics 25: 2078–2079.

Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, et al.
2010a. The sequence and de novo assembly of the giant panda genome.
Nature 463: 311–317.

Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
et al. 2010b. De novo assembly of human genomes with massively
parallel short read sequencing. Genome Res 20: 265–272.

Lin Y, Li J, Shen H, Zhang L, Papasian CJ, Deng HW. 2011. Comparative
studies of de novo assembly tools for next-generation sequencing
technologies. Bioinformatics 27: 2031–2037.

Lindblad-Toh K, Wade C, Mikkelsen T, Karlsson E, Jaffe D, Kamal M, Clamp
M, Chang JL, Kulbokas EJ, Zody MC, et al. 2005. Genome sequence,
comparative analysis and haplotype structure of the domestic dog.
Nature 438: 803–819.

Liu Y, Qin X, Song X-Z, Jiang H, Shen Y, Durbin KJ, Lien S, Kent MP, Sodeland
M, Ren Y, et al. 2009. Bos taurus genome assembly. BMC Genomics 10:
180.

Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM,
Yang S-P, Wang Z, Chinwalla AT, Minx P, et al. 2011. Comparative and
demographic analysis of orang-utan genomes. Nature 469: 529–533.

MacCallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A,
Malek J, Mckernan K, Ranade S, Shea TP, et al. 2009. ALLPATHS 2:
small genomes assembled accurately and with high continuity from
short paired reads. Genome Biol 10: R103. doi: 10.1186/gb-2009-10-
10-r103.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen Y-J, Chen Z, et al. 2005. Genome sequencing
in microfabricated high-density picolitre reactors. Nature 437: 376–380.

Meader S, Hillier L, Locke D, Ponting C, Lunter G. 2010. Genome assembly
quality: Assessment and improvement using the neutral indel model.
Genome Res 20: 675–684.

Medvedev P, Brudno M 2009. Maximum likelihood genome assembly.
J Comput Biology 16:1101–1116.

Metzker ML. 2010. Sequencing technologies—the next generation. Nat Rev
Genet 11: 31–46.

Miller J, Koren S, Sutton G. 2010. Assembly algorithms for next-generation
sequencing data. Genomics 95: 315–327.

Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly
BV, Lewis KLT, et al. 2008. The draft genome of the transgenic tropical
fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991–996.

Mullikin J, Ning Z. 2003. The phusion assembler. Genome Res 13: 81–90.
Myers EW. 1995. Toward simplifying and accurately formulating fragment

assembly. J Comput Biol 2: 275–290.
Myers EW. 2005. The fragment assembly string graph. Bioinformatics 21:

ii79–ii85.
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz

SA, Mobarry CM, Reinert KH, Remington KA, et al. 2000. A whole-
genome assembly of Drosophila. Science 287: 2196–2204.

Narzisi G, Mishra B. 2011. Comparing de novo genome assembly: The long
and short of it. PLoS ONE 6: e19175. doi: 10.1371/
journal.pone.0019175.

Pandey V, Nutter R, Prediger E 2008. Applied Biosystems SOLiD System:
Ligation-based sequencing. Next generation genome sequencing: Towards
personalized medicine, pp. 29–41. Wiley, NY.

Parra G, Bradnam K, Ning Z, Keane T, Korf I. 2009. Assessing the gene space
in draft genomes. Nucleic Acids Res 37: 289–297.

Paten B, Diekhans M, Earl D, St. John J, Ma J, Suh B, Haussler D. 2011a.
Cactus graphs for genome comparisons. J Comput Biol 18: 469–481.

Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. 2011b.
Cactus: Algorithms for genome multiple sequence alignment. Genome
Res 21: 1512–1528.

Pevzner P, Tang H, Waterman M. 2001. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci 98: 9748–9753.

Phillippy A, Schatz M, Pop M. 2008. Genome assembly forensics: finding
the elusive mis-assembly. Genome Biol 9: R55. doi: 10.1186/gb-2008-9-3-
r55.

Pop M, Salzberg SL. 2008. Bioinformatics challenges of new sequencing
technology. Trends Genet 24: 142–149.

Pourmand N, Karhanek M, Persson HH, Webb CD, Lee TH, Zahradnikova A,
Davis RW. 2006. Direct electrical detection of DNA synthesis. Proc Natl
Acad Sci 103: 6466–6470.

Richter D, Ott F, Auch A, Schmid R, Huson D. 2008. MetaSim: a sequencing
simulator for genomics and metagenomics. PLoS ONE 3: e3373. doi:
10.1371/journal.pone.0003373.

Sanger F, Nicklen S, Coulson A. 1977. DNA sequencing with
chain-terminating inhibitors. Proc Natl Acad Sci 74: 5463–5467.

Simpson J, Durbin R. 2010. Efficient construction of an assembly string
graph using the FM-index. Bioinformatics 26: i367–i373.

Simpson J, Wong K, Jackman S, Schein J, Jones S, Birol I. 2009. ABySS: A
parallel assembler for short read sequence data. Genome Res 19: 1117–
1123.

Trapnell C, Salzberg SL. 2009. How to map billions of short reads onto
genomes. Nat Biotechnol 27: 455–457.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO,
Yandell M, Evans CA, Holt RA, et al. 2001. The sequence of the human
genome. Science 291: 1304–1351.

Warren R, Sutton G, Jones S, Holt R. 2007. Assembling millions of short DNA
sequences using SSAKE. Bioinformatics 23: 500–501.

Earl et al.

2240 Genome Research
www.genome.org

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P,
Agarwala R, Ainscough R, Alexandersson M, An P, et al. 2002. Initial
sequencing and comparative analysis of the mouse genome. Nature 420:
520–562.

Worley K, Gibbs R. 2010. Genetics: Decoding a national treasure. Nature
463: 303–304.

Zerbino D, Birney E. 2008. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 18: 821–829.

Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B. 2011. A practical
comparison of de novo genome assembly software tools for next-
generation sequencing technologies. PLoS ONE 6: e17915. doi: 10.1371/
journal.pone.0017915.

Received May 20, 2011; accepted in revised form September 8, 2011.

Assemblathon 1

Genome Research 2241
www.genome.org

