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Although the role of colour in mate choice is well known, few tests of colour vision have been based on

mating behaviour. Females of the fiddler crab Uca mjoebergi have recently been shown to use claw

coloration to recognize conspecific males. In this study I demonstrate that the females use colour vision for

this task; preferentially approaching yellow claws over grey claws regardless of their intensity while failing to

discriminate between yellow claws differing in intensity. This is one of only a handful of studies confirming

the involvement of colour vision in mate choice and the first conclusive evidence in fiddler crabs.
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1. INTRODUCTION
Colours can act as visual signals to attract the attention of

conspecifics and to provide information about reproductive

status, condition and individual or species identity (Roulin

2004; Price 2006). However, to be effective, such signals

have to be detected by the intended receiver, and thus must

be tuned to address their sensory and neural mechanisms

(Johnstone1997).While animals that lack colour visionmay

be able to differentiate between colours based on differences

in intensity, they lose the more reliable information

associated with spectral composition (Kelber et al. 2003).

A behavioural test is needed to prove that an animal is

able to discriminate between stimuli that differ in spectral

composition, irrespective of their relative intensity, and

thus actually possesses colour vision (Menzel 1979;

Burkhardt 1983; Goldsmith 1990; Kelber et al. 2003). If

the animal’s spectral sensitivity is known, it can be used to

specifically choose test stimuli with the same probably

perceived intensity, although this is not always reliable

(see Kelber et al. 2003). Alternatively, an experiment can

be designed to test the animal’s ability to discriminate

between a certain colour and various shades of grey, or

between monochromatic colours varying in intensity

(reviewed by Kelber et al. 2003).

Most tests of colour vision use food rewards to train test

subjects to make these discriminations (reviewed by

Kelber et al. 2003), e.g. deer (Birgersson et al. 2001),

horses (Macuda & Timney 1999), birds (Goldsmith et al.

1981; Osorio et al. 1999), fishes (Neumeyer 1986),

blowflies (Fukushi 1990), butterflies (Kelber & Pfaff

1999; Kinoshita et al. 1999), bees (Frisch 1971) and

stomatopods (Marshall et al. 1996). However, as many

animals use colour and achromatic vision for different

tasks or in different situations (Giurfa et al. 1997; Osorio

et al. 1999; Kelber et al. 2003; Osorio & Vorobyev 2005), it

may be a mistake to assume that the use of colour vision in
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one task, such as feeding, necessarily translates to other

behaviours, such as mate recognition.

There are numerous studies on the role of colour in

mate choice in invertebrates, particularly butterflies

(Rutowski 1977; Silberglied & Taylor 1978; Wiernasz &

Kingsolver 1992; Jiggins et al. 2001) and damselflies

(Gorb 1998; Córdoba-Aguilar 2002). However, although

butterflies (Kelber & Pfaff 1999; Kinoshita et al. 1999),

blowflies (Fukushi 1990), mantis shrimps (Marshall

et al. 1996), bees (Frisch 1914), and jumping spiders

(Nakamura & Yamashita 2000) and numerous other

invertebrates have been shown to possess colour vision,

these tests are all based on food training, phototaxis or

avoidance behaviours (see Kelber et al. 2003). The one

exception is glow-worms, which use colour vision to

perceive the bioluminescent signals of potential mates

(Booth et al. 2004). Even in vertebrates, proof of the

involvement of colour vision in mate choice has only been

shown conclusively in two species of toad (Gnyubkin et al.

1975; Kondrashev et al. 1976; Dimentman et al. 1978;

Orlov & Maximov 1982). However, several birds, such as

budgerigars (Pearn et al. 2001), bluethroats (Andersson &

Amundsen 1997) and zebra finches (Bennett et al. 1996),

and fishes, such as sticklebacks (Rick et al. 2006) and

guppies (Smith et al. 2002) probably use colour vision to

perceive ultraviolet signals involved in mate choice.

Jumping spiders have also been shown to use ultraviolet

signals in mate choice. However, this study cannot

confirm the existence of colour vision as it failed to rule

out the involvement of brightness cues (Lim et al. 2007).

The aim of this paper is to test the colour vision

capabilities of fiddler crabs in a biologically significant

context. The walking legs, carapaces and chelae of

ocypodid crabs, particularly the well-studied fiddler crabs

(genus Uca), are often brilliantly coloured (Crane 1975).

However, despite this arrayof colours and their likely role in

social displays (Detto et al. 2004, 2006; Hemmi et al.

2006), there is still some debate over whether ocypodid

crabs are actually capable of colour vision and what role it

might play. At least, two spectrally distinct classes of
This journal is q 2007 The Royal Society
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Figure 1. Claw colours of Uca mjoebergi and paint colours used in experiments. (a,b) Extremes in natural variation of claw colour
in Uca mjoebergi. (c,d ) Uca mjoebergi males painted with ‘light yellow’ and ‘yellow’ paint.
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Figure 2. Reflectance spectra of the different paints and the
hypothetical spectral sensitivities. (a) The grey paints are
relatively flat across the spectrum and vary in intensity, while
the yellow paints plateau at approximately 500 nm and above
600 nm. None of the paints reflect in the ultraviolet. (b) The
spectral sensitivities of U. thayeri used to model the chromatic
and achromatic responses of U. mjoebergi to the different paints.
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photoreceptor are required for colour vision (Goldsmith

1990) but the number possessed by fiddler crabs is still in

question. Scott & Mote (1974) found evidence of only one

receptor type with a peak sensitivity approximately

510 nm, Horch et al. (2002), on the other hand, found

two receptor types with peak sensitivities approximately

430 nm and between 510 and 540 nm. The most recent

work based on microspectrophotometry found a single

visual pigment type with peak absorption between 508 and

530 nm in the main retinular cells (R1-7; Jordão et al.

2007). However, Jordão et al. (2007) suggest there may be

an additional short wavelength-sensitive pigment in the

eighth retinular cell (R8) of the rhabdom that would render

fiddler crabs capable of dichromatic colour vision.

Behavioural experiments based on spontaneous phototaxis

further suggest that Uca pugilator females can distinguish

between red and blue lights (Hyatt 1975). However

an innate intensity-based preference overshadow any

potential preference for colour in another ocypodid,

Heloecius cordiformis (Detto 2007, unpublished data).

Uca mjoebergi is an endemic Australian fiddler crab

characterized by a mottled brown carapace and the male’s

yellow major claw (figure 1a,b). Females leave their

burrows and wander through the colony in search of a

male before mating within his burrow. Males wave their

enlarged yellow claw at any moving, crab-sized object, and

females have been shown to use the coloration of the

male’s claw to recognize conspecifics (Detto et al. 2006).

Females have a strong preference for uniformly yellow

claws over those painted red and white, and are even able

to discriminate between natural yellow claws and those

painted with a yellow that appears very similar to the

human visual system (Detto et al. 2006). The social

importance of colour in these crabs and the demonstration

of an apparently colour-based preference in an experi-

mental situation make them ideal candidates for a

behavioural test of colour vision in mate choice.
2. MATERIAL AND METHODS
To determine whether U. mjoebergi use differences in spectral

composition to discriminate between colours, and thus
Proc. R. Soc. B (2007)
possess colour vision, I tested their ability to consistently

discriminate yellow from various shades of grey. Experiments

were conducted in October 2005 on an intertidal mudflat in

the East Point Reserve, Darwin, Australia (12824 035 00 S,

130850 000 00 E).

I quantified the colour of the paints, as perceived by the

crabs, to ensure that they differed primarily in intensity or

spectral composition. I measured the spectral reflectance of

the yellow and grey paints relative to a white ‘Spectralon’

standard with a USB2000 UV–VIS portable spectro-

photometer (Ocean Optics, Inc., Dunedin, FL, USA).
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Figure 3. Perceived spectral composition and intensity of the different claw colours. (a) The chromatic signal based on the
difference between the natural logarithms of the receptor signals. The greys are spectrally similar, although white differs slightly.
Both yellows are spectrally distinct from the greys and each other due to the low saturation of light yellow. (b) The achromatic
signals based on the normalized sum of the two receptor signals. The greys differ significantly in intensity, as do dark and light
yellow, which fall between 75% grey and white.
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I used the lmax values of 430 and 520 nm of the fiddler

crab Uca thayeri (see Horch et al. 2002) to calculate

the hypothetical spectral sensitivities of U. mjoebergi

(Govardovskii et al. 2000; figure 2b). Then, following the

methods reviewed by Kelber et al. (2003), I calculated the

quantum catches of the two receptor types (Q430 and Q520) as

the product of their spectral sensitivities, the reflectance

spectra of the different colours, and the relative quantum

units for standard daylight (D65, Wyszecki & Stiles (1982),

kindly provided by Misha Vorobyev), integrated over

wavelength (300–700 nm). I then calculated the receptor

signals (Qs430 and Qs520) as a percentage of the quantum

catch compared with a white surface reflecting 100%.

Differences in spectral composition are characterized by the

chromatic signal, calculated as follows:

Df Z lnðQs430ÞKlnðQs520Þ: ð2:1Þ

The achromatic (intensity) signal is represented by the sum of

the two receptor signals.

When the crabs were reproductively active, during neap

tide, I caught wandering females and placed them under a

container 15 cm from two identical plaster casts of a

U. mjoebergi male’s 21.8 mm claw. The claws were attached

to servomotors programmed to move synchronously 40 times

a minute over an angle of 158, with a pause of 0.5 s at the

beginning and apex of each cycle. This movement was not

designed to mimic the wave of a real male, rather to attract the

attention of the females and make the artificial claws more

attractive. I started the servomotors before lifting the

container remotely to release the female. I then recorded

which claw she approached to within approximately 2 cm.

Females that left the area without approaching either claw

(approx. 75%) were considered not to have made a choice

and new females were tested on the same combination until

one made a choice.

Females were given a choice between a yellow claw (Dulux

Tiny Tin yellow enamel) and a claw painted white, 75% grey,

50% grey, 25% grey or black (made by mixing appropriate

amounts of white and black Dulux Tiny Tin enamel paint). The

grey and yellow claws were randomly positioned and the

combinations randomly tested throughout the low tide period

to eliminate any directional or temporal effects. Each com-

bination was tested until 15 females successfully made a choice.

I conducted the same experiment with two tethered, size-

matched (within 1 mm claw length), and handedness-matched

males in place of the plaster claws. The males were tethered
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with 1 cm of cotton super-glued to their carapace and tied to a

nail stuck in the ground, allowing some restricted movement

(as per Detto et al. 2006). I painted the males’ claw either with

the same yellow paint as above or with the light yellow paint,

made by mixing one part yellow to 14 parts white paint

(figure 1c,d ). The experimental conditions were otherwise the

same as when using plaster claws, and the females did not

appear to treat the artificial and real males any differently. I

repeated the experiment 25 times using different pairs of males

and new females each time. If the crabs are basing their choice

on intensity, they should be able to discriminate between the

light and dark yellow claws. If they are unable to distinguish

between the different yellows, they are most likely basing their

choice on colour, independently of intensity.
3. RESULTS
Spectral measurements confirmed that the grey paints

were relatively flat from 400 to 700 nm. They varied

primarily in their intensity, which decreased progressively

from white through to black. Both the light and dark

yellow paints reflected most strongly above 600 nm, but

the light yellow reflected more strongly over the entire

spectrum, and was less saturated than the dark yellow

(figure 2a). Neither the yellow nor any of the grey paints

reflected in the ultraviolet.

As perceived by theoretical spectral sensitivities

(figure 2b), both the light and dark yellow paints are

spectrally distinct from the different greys, and from each

other (figure 3a). As the light yellow is less saturated, it is

chromatically more similar to the greys than the dark

yellow. Based on the achromatic model, light yellow is

considerably brighter than dark yellow which is similar in

intensity to 75% grey (figure 3b).

Uca mjoebergi females consistently (greater than 85%)

approached claws painted yellow over those painted grey,

regardless of their intensity (figure 4). Furthermore, the

females did not discriminate between two shades of yellow

differing significantly in intensity; 14 approached the

males with dark yellow claws while 11 approached the

males with light yellow claws (G-test, pZ0.5, nZ25).
4. DISCUSSION
Colour is believed to play a role in the social interactions of

ocypodid crabs (Crane 1975; Zeil & Hofmann 2001;

Detto et al. 2004). However, until a recent study
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Figure 4. The proportion of U. mjoebergi females approaching
yellow claws over claws when presented with various shades
of grey. Females approached yellow significantly more than
any of the grey levels (G-test, p!0.001, nZ15).
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demonstrated that female U. mjoebergi use claw coloration

to recognize conspecific males (Detto et al. 2006), there

was no quantitative evidence that colour is important to

fiddler crabs. Furthermore, although Hyatt (1975)

suggested that the preference for red over blue light in

U. pugilator was due to the social importance of their blue

carapace colour, the role of colour vision in fiddler crab

social interactions remained unproven.

I showed here that female U. mjoebergi are able to

discriminate between stimuli based solely on chromatic

differences; preferring claws painted yellow over those

painted grey, regardless of their intensity. If the crabs were

basing their choice on the relative intensity of the paints,

they would have been able to discriminate between yellow

and black or white. The ability to discriminate between

stimuli based on chromatic differences, independently of

intensity, is proof of the presence of colour vision (Menzel

1979; Kelber et al. 2003). This is one of only a handful of

studies confirming the involvement of colour vision in

mate choice (see Kelber et al. 2003; Booth et al. 2004) and

the first conclusive evidence in fiddler crabs.

Although other studies have found that female birds

prefer brighter males, as a signal of male quality (e.g. Hill

1991), U. mjoebergi females did not discriminate between

male claws of two shades of yellow that differed in intensity

and spectral composition. Furthermore, they were able to

discriminate between yellow and several greys which were

chromatically distinct but achromatically more similar than

the two yellows. Thus, although there is considerable natural

variation in the intensity of the yellow colour of U. mjoebergi

males’ claws (see figure 1a,b), females do not appear to

approach males based on differences in claw brightness.

These results highlight the importance of examining an

animal’s capacity for colour vision within the context of

interest. The vast majority of studies of colour vision are

based on training regimes based on food rewards

(reviewed by Kelber et al. (2003)), and as such are

effective at examining the role of colour vision in foraging

behaviour. While these studies demonstrate that an animal

is capable of colour vision, this does not necessarily mean

that the animal uses it in other situations.

Species-specific colours, like those common in fiddler

crabs (Crane 1975), may influence the evolution of visual

pigments (Goldsmith 1991; Endler 1992) and vice versa

(Endler 1992; Ryan & Keddy-Hector 1992; Ryan 1998;

Carleton et al. 2005). For instance, the females of two
Proc. R. Soc. B (2007)
sympatric species of Lycaena butterflies appear to use wing

colour to identify conspecific males and their visual

pigments are well matched to facilitate such discrimi-

nations (Bernard & Remington 1991). The coloration of

cichlid fish is believed to play a role in speciation

(Seehausen & von Alphen 1998; Couldridge & Alexander

2001) and there is some evidence that their spectral

sensitivities match their nuptial coloration (Carleton et al.

2005). Reproductive isolation in fiddler crabs may be

aided by their species-specific coloration, but whether

their colours evolved in response to a pre-existing sensory

bias or drove the evolution of the visual pigments is

unknown. To answer this question, the spectral sensi-

tivities of fiddler crab photoreceptors will need to be

accurately identified, and compared across a variety of

differently coloured species.

This research conformed to the ethical guidelines of The
Australian National University.
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