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The accuracy and precision of segmentations of medical images has been difficult to
quantify in the absence of a ‘ground truth’ or reference standard segmentation for clinical
data. Although physical or digital phantoms can help by providing a reference standard,
they do not allow the reproduction of the full range of imaging and anatomical
characteristics observed in clinical data.

An alternative assessment approach is to compare with segmentations generated by
domain experts. Segmentations may be generated by raters who are trained experts or by
automated image analysis algorithms. Typically, these segmentations differ due to intra-
rater and inter-rater variability. The most appropriate way to compare such
segmentations has been unclear.

We present here a new algorithm to enable the estimation of performance
characteristics, and a true labelling, from observations of segmentations of imaging
data where segmentation labels may be ordered or continuous measures. This approach
may be used with, among others, surface, distance transform or level-set representations
of segmentations, and can be used to assess whether or not a rater consistently
overestimates or underestimates the position of a boundary.
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1. Introduction

The segmentation of structures from medical images is a key objective in many
quantitative and qualitative applications of imaging. A variety of different
segmentation approaches have been developed and exploited different charac-
teristics of images. To evaluate the success of a particular segmentation
approach, it is common to compare with segmentations obtained interactively by
experts. When experts outline structures interactively, they may infer the
location of the boundary of a structure from the imaging data.
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Validation may be carried out by comparison with either the boundary or the
region enclosed by the boundary. Similarly, some segmentation algorithms use a
boundary representation directly, whereas others use regions or local neighbour-
hood information.

Previous work for estimating a reference standard from segmentations has used
the expectation-maximization (EM) algorithm to estimate performance charac-
teristics and the hidden ‘true’ segmentation from a collection of independent
binary segmentations, indicating the presence or absence of a structure in a given
image (Warfield et al. 2002), and from a collection of segmentations with multi-
category labellings, such as grey matter, white matter and cerebrospinal fluid
(Warfield et al. 2004). The method has been used to characterize image
segmentations (Rohlfing et al. 2003) and to infer labellings from repeated
registrations (Rohlfing et al. 2004). These approaches are not appropriate when an
ordering is present in the representation of the segmentation, such as when the
segmentation boundary is represented by a signed distance transform or level set,
and, in other representations, where a continuous score is present at each voxel.

When an expert or algorithm outlines a boundary, there may be a systematic
bias in the placement of the boundary, and we would like to be able to characterize
and compensate for such a bias. In this paper, we present an algorithm, first
reported in Warfield et al. (2006), which aims to characterize the performance of
segmentation generators where the segmentation is represented by a boundary, and
key performance parameters for a particular segmentation relate to the potential
bias and variance in the boundary placement. In this paper, we have carried out
an updated and expanded evaluation of the algorithm of Warfield et al. (2006).

The objective of this paper was to generalize the existing methodology in
simultaneous ground truth estimation and performance level estimation, as
described in Warfield et al. (2004), to segmentations represented by a continuous
score per voxel. Here we propose a model in which we summarize the quality of a
rater-generated segmentation by the mean and variance of the distance between
the segmentation boundary and a reference standard boundary. We propose an
EM algorithm to estimate the reference standard boundary and the bias and
variance of each rater. This enables interpretation of the quality of a
segmentation generator, be it a human expert or an algorithm. A good quality
rater will have a small average distance from the true boundary (low bias) and a
high precision (small variance of distance from the true boundary).

We applied the proposed algorithm to the assessment of brain tumour
segmentations. We evaluated the algorithm by testing its operation on phantoms
to confirm its operation with a known reference standard, and we assessed the
significance of the method by comparing and contrasting with other means of
measuring segmentation similarities using the Dice (1945) overlap measure and
STAPLE (Warfield et al. 2004).

2. Method

(a) Notation and assumptions

We observe a set of segmentations of an image, created by some number of
human expert or algorithmic raters. It is our goal to estimate the true labelling
of the image and to estimate the performance characteristics of each rater in
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comparison. The true labelling is unknown (hidden), but if it was not hidden,
then it would be straightforward to compute the bias and variance parameters
for each rater, characterizing the way in which the rater labelling differs from
the true labelling. Since the true labelling is hidden, here we describe an EM
algorithm (Dempster et al. 1977) in order to estimate the true labelling and
rater performance parameters. Our EM algorithm proceeds iteratively, first
estimating the complete data log-likelihood function, and then identifying
the parameters that maximize the estimated complete data log-likelihood
function. The estimation of the complete data log-likelihood involves
computing the expected value of this function conditioned upon the observed
rater labellings and previous estimates of the rater parameters. Computation of
this expectation requires the estimation of the conditional probability of the
true score given the observed scores and rater performance parameters.
The iteration procedure is guaranteed to converge locally to the maximum of
the observed data likelihood.

Let i=1, ..., I index the raters generating a segmentation of an image and
j=1, ..., Jindex the voxels in the image. The label of each voxel is a continuous
scalar, such as may be obtained from a distance transform or level-set
representation of a segmentation (but is not restricted to those sources) and is
referred to as a score. The score s;; assigned by rater ¢ for voxel j has the following
composition:

Sij = Tj + ﬁi + 8’ij7 (21)

where 7; is the underlying true score for this voxel and @, is the bias of rater i.
The error term is assumed to have an uncorrelated normal distribution, i.e.
e; ~N(0, 0?), for each rater 4. That is, we characterize the rater performance by
a bias §; and a variance o7. We assume that, given an image to be scored, the
raters score the image independently.

We wish to estimate the bias and variance that characterize the performance
of each rater. If the true score was known, we could estimate the rater
parameters 0= (g, §) by solving the complete data log-likelihood problem,

0 = arg max log Pr(s,|a,B). (2.2)

Since the true score is unknown, we instead estimate the complete data log-
likelihood using the EM algorithm (McLachlan & Krishnan 1996) by computing
its expected value under a conditional probability density function (pdf) for the
true scores given the rater scores and previous estimates of the rater parameters.
That is, we identify the rater parameters by solving

0" = arg max Ellog Pr(s,7|a,B)|s, B(t_l)]y (2.3)

where the conditional expectation is evaluated with respect to p(r|s,8¢~Y). In
order to compute this expectation, we need to evaluate the conditional
probability density for the true scores given the rater scores and rater parameter
estimates. We now derive the required densities and estimators.
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In the absence of spatial correlations between voxels, the joint distribution of
the scores of all the voxels conditional upon the true scores and rater parameters
is assumed to have the form

J I 7;

Pr(s|t,a,B) HH¢{—+6)}, (2.4)
j=1i=1 g

where ¢{-} is the pdf of the standard normal distribution, N(0, 1). For notational

simplicity, we write the pdf N(u, 0°) as ¢,(u).

Equation (2.4) states the key assumption of our approach. Restating this
assumption, we assume that each rater is independently assigning scores, and
that the error in assigning a score, after accounting for the rater-specific bias and
rater-specific variance, has the standard normal distribution. Here we have also
assumed that there is no spatial correlation among true scores, but this
assumption could be easily relaxed by incorporating a Markov random field model
for the spatial dependence of the true scores, as has been used in other related
work (Warfield et al. 2004).

(b) A conditional pdf for the true scores

In this section, we apply Bayes’ theorem in order to derive the posterior
distribution Pr(7|s,0,8) from the distribution of the observed scores
Pr(s|r,a,8).

Since the true score is independent of the rater bias and variance, the posterior
distribution is

Pr(r|s,a,8) = Pr(s|r,0,8)" 27‘.3732% (2.5)
Pr(r|s,a,8) = Pr(s|t,0,8)- %m (2.6)
Pr(r|s,a,8) = Pr(s|r,0,0)" %. (2.7)

Upon integrating the expression of equation (2.7) over 7, since the marginal
distribution integrates to 1, we have

LPT’(T|3, o,B)dr = LPT(3|T, a,0): #(;)m dr, (2.8)
-t r(s|t,o r(7) dr
1= Pr(slo. ) JTP (s|t,0,B)Pr(r) dr, (2.9)

and on substituting the expression from equation (2.7) for Pr(s|s, ), we have

Pr(s|r,a,8)Pr(r)

|, Pr(s|r,o,8)Pr(r) dr’ (2.10)

Pr(r]s,a,6) =
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We have considerable freedom in choosing the prior distribution on 7,
J
=[[Pr(r) (2.11)
j=1
A multivariate Gaussian distribution is a natural choice, and in the absence of

other information we may choose a multivariate uniform distribution, with scale
parameter h,

J
1
Pr(r) =[] Ua(r)) = T (2.12)
j=1
which simplifies the form of the posterior:
Pr(s|t,a, ,8)(1/}#)

)z = 2.13
T’(T|3, 0,6) (1/h‘])J‘TPT’(S‘T, 0’76) dr ( )
Pr(r|s,0,8) = Prisir, o, f) (2.14)

|, Pr(s|r,o,8) dr’
Let the bias-adjusted score be denoted by u; = s; — 8;. From equations (2.4)

and (2.11), we have
J I
T‘O- ,LL H H I'LLJ " ) (215)
where the normalizing constant is

I
Z:J J H ) [ b0, (uyy— 7)) dry... dr. (2.16)
TJ 71 j=1 i=1

Therefore, we can write for each voxel,

P?”(T]—‘M, - —P?" H¢o :u'y
I 2
——Pr H N exp{ %}
I
= % {H (2ma?) 1/2} exp (w;;) Pr(7;), (2.17)
7 i=1

which is a product of normal distributions with mean w; and variance a?,

and where

1 (uy—15)° 11

§Z y :_5 Z_Q /"LZJ 2#1]7' +T)
i=1 Z i=1 Uz

1 I ,u2 I I 1

5[20—3 ST 215
i=1 1 =1 Z i=1 Z
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If Pr(r;) of equation (2.17) is uniform, then completing the square and
identifying the terms in a Gaussian pdf yields the following variance and

mean terms:
1 L1

i=1
W 17 . (2.20)
If Pr(r)) of equation (2.17) is distributed as N(u, , 07, 2, then it acts analogously
to another rater with the specified mean and variance.

Observe that the mean score for voxel j, u;, indicated by this distribution is an
inverse rater variance-weighted sum of the difference between the score of the
rater and the rater bias, and that the variance of the distribution is the harmonic
mean of the rater variances.

(¢) Estimating the complete data log-likelihood

The parameters maximizing the conditional expectation of the complete data
log-likelihood can be found from

0\ = arg max E[log Pr(s,7|a,B)|s, 0(’5_1)}, (2.21)
6 = arg max E[log Pr(s|t,0,8)|s, B(t_l)}, (2.22)

I
ZZIO < ) exp (‘%(Mj—qf))b, 0“_1)],

_ (2.23)

9\ = = arg max E

I 1
0" = arg max ZZ [—log 7T 5 (,LLZQ-]-—Q,LLU-E(T]-) + E(TJQ)):| (2.24)

=1 j=1

Now, given the distribution Pr(7|s,a,) above, we have

E(rj) = pui'™Y, (2.25)

E(T?) = var(7;) + E(7 ) (2.26)

E(r3) = (")) 4 (uh) Y, (2.27)

Hence,

! 1

g = arg maﬁx ZZ [ log ;, — ('U’t]_zliu,ltj(t D4 G )(z‘ 1) + (u )(f 1))]'
oP =1 =1 z

(2.28)
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Figure 1. Estimated true labels from synthetic raters. The specified labelled data were created with
two regions of intensity equal to 100 and 200, respectively. Five raters with a bias of + 10 units and
a variance of 100 units and five raters with a bias of —10 units and a variance of 50 units were
simulated to create synthetic segmentations. The estimation scheme was used to estimate each
rater bias and variance, and the hidden true labelling. As can be seen in (c), despite the noisy and
limited observations such as that shown in (b), the estimated reference standard appears very
similar to the specified data of (a). The closeness of the estimated parameters for each of the raters
to the specified values confirms that the estimate is effective. (a) Synthetic true labelling. (b) Rater
segmentation with a bias of +10 units and a variance of 100 units. (c¢) Estimated true labelling.

On differentiating equation (2.28) with respect to the parameters § and ¢ and
solving for a maximum, we find the following estimators for the rater
performance parameters:

1 < _
8" =7 Z(sij_T](‘t ), (2:29)
j=1
2 _ 1% (0 __(t=1)\2 |/ 2(t-1)
(a7) =3 Z (sij—ﬁi —7; > + (07) : (2.30)
j=1

The rater bias estimator is the average observed difference between the rater
score and the previously estimated true score over all the voxels, and the
rater variance estimator is a sum of a term describing a natural empirical
variance estimator (given the estimates of the rater bias and the true score) and a
term that is the harmonic mean of the previous estimates of the rater variances
over all the raters. Thus, the estimated variance for a rater cannot be smaller
than the variance associated with the true score estimate.

3. Results

We applied the proposed estimation scheme to a set of digital phantoms, generated
by synthetic raters with pre-specified bias and variance parameters, in order to
determine whether the estimation scheme would correctly identify the bias and
variance of segmentation generators for which we knew the true parameter values.

We applied the proposed estimation scheme to MRI scans of four different brain
tumours. We compared the estimated true contour with that obtained from
averaging the segmentations. We compared the segmentations identified as best
and worst by the algorithm with the original MRI scan visually, and by computing
a spatial overlap measure between the reference standard and each segmentation.
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Figure 2. Illustration of MRI showing a brain tumour, and a set of boundaries delineated by
different raters. Each boundary was drawn interactively by the rater to delineate the extent of the
tumour that the rater perceived. A signed distance transform of each contour is calculated, with
the voxels inside the contour at negative distances from the boundary and the voxels outside the
contour at positive distances from the boundary. (a) MRI of a brain tumour. (b) Cropped region of
interest. (¢) Rater 1 contour. (d) Rater 2 contour. (¢) Rater 3 contour. (f) Rater 4 contour.
(g9) Rater 5 contour. (h) Rater 6 contour. (i) Signed distance transform of rater 6 contour.

(a) Estimation of parameters of synthetic raters using a digital phantom

Segmentations were generated by randomly perturbing an image consisting of
two rectangular regions of intensity equal to 100 and 200, respectively. Ten
random segmentations were generated, drawing from five synthetic raters with a
bias of +10 units and a variance of 100 units and five synthetic raters with a bias
of —10 units and a variance of 50 units. The estimation scheme was executed and
estimates of the true image and of the performance characteristics of each rater
were obtained. This is illustrated in figure 1. The estimated bias was 9.9968 +
0.003 and —9.99681+0.0002, which is a tight estimate around the true value.
The estimated variance was 100.16 £0.28 and 50.11240.101, which again is very
close to the specified values of the rater variances.
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Figure 3. Estimated true segmentation from human rater segmentations. The estimated true
contour is consistent with the human raters, and has a better spatial overlap with the rater
segmentations, as measured by the Dice coefficient, than with the average segmentation. The best,
worst and median rater segmentations as determined by the algorithm are also displayed. (a) MRI
of a brain tumour. (b) Average contour. (¢) Estimated true contour. (d) Best rater segmentation.
(e) Worst rater segmentation. (f) Median rater segmentation.

(b) Segmentations of MRI of brain tumours by human raters

Fach brain tumour was segmented up to three times by each of nine raters for
a maximum of 27 segmentations. Each rater segmentation consisted of a closed
contour delineating the extent of the tumour that the rater perceived in the MRI.
A signed distance transform of each contour was computed in order to obtain a
segmentation with each voxel representing the shortest distance from the
boundary. An illustration of one MRI of a brain tumour with corresponding
boundaries delineated by the rater is shown in figure 2.

The estimation scheme was executed to find the best overall reference
standard using all of the segmentations. The scheme was run for 100 iterations,
resulting in the sum of total estimated true scores changing by less than 0.01 at
the final iteration, which required less than 90s of computation time on a
PowerBook G4 in each case. One illustrative brain tumour is shown in figure 3,
together with the average contour and the estimated true contour. In
addition, the rater segmentations were evaluated based on the bias identified
by the algorithm, and the rater segmentations were ranked based on the
bias. Shown are the rater segmentations that are most alike, most different
from and the median segmentation from the true contour, on the basis of the
rater bias.
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Figure 4. Illustration of reference segmentation estimation with a tumour near the lateral
ventricles. Average and estimated true tumour contours from human rater segmentations,
binarized by thresholding the estimated true score at 0.0. (a) MRI of a brain tumour. (b) Region of
interest. (c) Contour from the average of rater distance transforms. (d) Estimated reference
standard contour.

We sought to summarize the spatial overlap between the rater segmentations,
the average segmentation enclosed by the contour obtained by averaging each of
the signed distance transforms and the segmentation defined by the zero level set
of the estimation procedure. Different raters perceived the tumour boundary
differently, and we measured the pairwise spatial overlap using the Dice measure.
The coefficient of variation of the Dice overlap measures between the estimated
reference segmentation and each of the rater segmentations was 0.15, which was
smaller than the coefficient of variation of the Dice overlap measures between
the average segmentation and the raters (0.17) and that between each rater
and the other raters (which ranged from the smallest of 0.16-0.36). This indicates
that there was considerable variability between the raters, but that the
estimated segmentation was more consistent with the raters than with both
the average of the segmentations and the other rater segmentations, and so is a
good summary of the segmentations.

Figures 4-6 illustrate the estimation procedure applied to three different
tumours. When the tumour has a high boundary contrast and is easily recognized,
the average is similar to that obtained with the estimation procedure accounting for
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Figure 5. Average and estimated true tumour segmentations from human rater segmentations,
binarized by thresholding the estimated true score at 0.0. (¢) MRI of a brain tumour. (b) Region of
interest. (¢) Average of rater segmentations. (d) Estimated tumour segmentation.

the rater bias and variance, but when the tumour has a boundary that is
challenging to identify, the average is not similar to that obtained with the
estimation procedure. For boundaries that are difficult to identify, the differences
in individual rater performance are important to take into account, and our
proposed estimation scheme enables the estimation of the tumour segmen-
tation that corresponds visually with the extent of the tumour perceived in the
MRI scan.

(¢) Comparison with reference standard estimation from binary segmentations

Although the identification of a boundary is the critical task for segmentations
in this setting, we can create a binary segmentation from the boundary by
identifying the regions inside and outside the boundary. This then allows us to
apply spatial overlap measures and previously described approaches to
estimating a reference standard segmentation from binary segmentations, such
as STAPLE (Warfield et al. 2004).

We binarized the rater segmentations and used STAPLE to make an estimate
of the reference standard segmentation, and to estimate the sensitivity,
specificity, positive predictive value and negative predictive value of each rater

Phil. Trans. R. Soc. A (2008)



2372 S. K. Warfield et al.

Figure 6. Average and estimated true tumour segmentations from human rater segmentations,
binarized by thresholding the estimated true score at 0.0. (¢) MRI of a brain tumour. (b) Region of
interest. (¢) Binarized average of rater segmentations. (d) Binarized estimated tumour
segmentation.

segmentation. We binarized the estimated reference standard segmentation at
50% probability, and computed spatial overlap measures between the binarized
segmentations and the binarized reference standard.

Figure 7 illustrates the reference standard segmentations estimated using
the algorithm proposed here, the best segmentation identified by this algorithm
as having the smallest rater bias, the binarized reference standard from
STAPLE and the best segmentation identified by STAPLE as having the
highest sensitivity.

The best contour estimate computed using the distance transform
representation, illustrated in figure 7, appears to underestimate the tumour
boundary, as it does not follow some of the intricate shape changes of the
boundary. However, both approaches identify the same rater segmentations
as the worst segmentations, most distant from the rater segmentations.
Figure 7 also illustrates the segmentations identified as best by each algorithm.
The Dice coefficient of spatial overlap between the reference standard
estimates and the best segmentations identified with each method is reported
in table 1.
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Figure 7. Comparison of the new algorithm and the binary STAPLE for the estimation of reference
standard segmentation. (a) Overlay of contour estimate. (b) Overlay of STAPLE reference estimate.
(c) Best rater segmentation identified with bias. (d) Best rater segmentation identified with sensitivity.

Table 1. Comparison of Dice coefficient overlap.

contour best

Dice coefficients STAPLE standard contour standard segmentation

STAPLE standard 1.0 0.67 0.72

contour standard 0.67 1.0 0.81

STAPLE best 0.94 0.63 0.68
segmentation

4. Discussion and conclusion

Validation of image segmentations using an estimated reference standard is
a valuable strategy for clinical imaging data where the true segmentation
is unknown. Previous algorithms were designed for binary or unordered
multi-category labels. Such methods may strongly penalize segmentations that
may differ by small mislocalizations, and may not be appropriate for boundary-
or surface-based segmentation algorithms.
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The novel approach developed here is suitable for segmentations represented
by a surface or boundary from which a distance may be computed, or for
boundaries represented directly by a level set. This may be especially well suited
to complicated structures where the true boundary is challenging to estimate,
such as in the MRI of brain tumours, or where spatial mislocalization of the
segmentation is expected and should be tolerated. An example of the latter
situation would be in the estimation of centre lines of blood vessels, or the colon,
or in the analysis of spicules in mammography.

We demonstrated that the estimation scheme was able to recover the true
parameters of synthetic raters, and from this form a good estimate of the
true image structure using digital phantoms. We demonstrated that, from a
collection of human segmentations of brain tumours, the estimation scheme was
able to identify a reference standard that was closer to the rater segmentations
than the raters were to each other. We compared the reference standard with an
estimate obtained by averaging and the results demonstrate that the average
segmentation is less representative of the true anatomy. We demonstrated that
the estimation scheme was able to rank the human raters, identifying the
best and worst segmentations and providing valuable estimates of the rater bias
and variance.

Future work will examine the possibility of incorporating a model for spatial
correlation in the true scores, which will enable us to relax the assumption of
voxelwise independence. It will also be interesting to examine alternatives for the
prior probability of each score, such as may be derived from an anatomical atlas.

It would be interesting to assess the value of incorporating a model of spatial
dependence of the true scores, such as by introducing a Markov random field
model for the spatial dependence of the true scores. In an earlier work (Warfield
et al. 2004) with unordered segmentation labels, we have found such a model
helpful when the segmentations are particularly noisy, but, in the more common
case of practical segmentations exhibiting high spatial dependence, a prior model
that favours spatially correlated reference standard labellings can be valuable
but is not critically important.

It would also be of interest to use local rather than global rater bias and
variance parameters. If the rater bias and variance are allowed to vary across
the image, it may be possible to identify regions in the image which are
particularly challenging to segment, and may better model a rater that
sometimes has a positive and sometimes a negative bias depending on the local
image features.
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