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Abstract

Background—~Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect. Most of
the genetic factors that contribute to the development of CDH remain unidentified.

Objective—Identify genomic alterations that contribute to the development of diaphragmatic
defects.

Methods—A cohort of 45 unrelated patients with CDH or diaphragmatic eventrations were
screened for genomic alterations by array comparative genomic hybridization (aCGH) or SNP-
based copy number analysis.

Results—Genomic alterations that were likely to have contributed to the development of CDH
were identified in eight patients. Inherited deletions of ZFPM2 were identified in two patients with
isolated diaphragmatic defects and a large de novo 8q deletion overlapping the same gene was
found in a patient with non-isolated CDH. A de novo microdeletion of chromosome 1941942 and
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two de novo microdeletions on chromosome 16p11.2 were identified in patients with non-isolated
CDH. Duplications of distal 11q and proximal 13g were found in a patient with non-isolated CDH
and a de novo single gene deletion of FZD2 was also identified in a patient with a partial
pentalogy of Cantrell phenotype.

Conclusions—Haploinsufficiency of ZFPM2 can cause dominantly inherited isolated
diaphragmatic defects with incomplete penetrance. Our data define a new minimal deleted region
for CDH on 1g41qg42, provide evidence for the existence of CDH-related genes on chromosomes
16p11.2, 11923-24 and 1312 and suggest a possible role for FZD2 and Whnt signaling in
pentalogy of Cantrell phenotypes. These results demonstrate the clinical utility of screening for
genomic alterations in individuals with both isolated and non-isolated diaphragmatic defects.

Keywords
Diaphragmatic hernia; ZFPM2; microdeletion 1q41942; microdeletion 16p11.2; FZD2

INTRODUCTION

Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that occurs in
approximately 1/4000 live births and is defined as a protrusion of abdominal viscera into the
thorax through an abnormal opening or defect in that is present at birth [1,2] In some cases
the herniated viscera are covered by a membranous sac and can be difficult to distinguish
from a diaphragmatic eventration in which there is extreme elevation of a part of the
diaphragm that is often atrophic and abnormally thin. The majority of CDH cases are
sporadic with the recurrence risk for isolated CDH typically quoted as <2% based on a
multifactorial inheritance.[3] However, there is a growing body of evidence that small
chromosomal anomalies can predispose to the development of CDH.[4-10]

The identification of a predisposing genomic change greatly enhances the ability of
physicians to provide individualized genetic counseling and to formulate optimal treatment
and surveillance plans. This would suggest that screening for genomic changes by array
comparative genomic hybridization (aCGH) or SNP-based copy humber analysis should be
performed on all patients with diaphragmatic defects.[10,11] However, this practice has not
been universally applied.

Efforts to map the locations of all reported chromosomal anomalies associated with CDH
have revealed many regions of the genome that are recurrently deleted, duplicated or
translocated in individuals with CDH.[12, 13] Each of these genomic regions is likely to
harbor one or more CDH-related genes. For some of theses regions, a specific gene has been
implicated in the development of diaphragmatic defects. Chromosome 8922923, for
example, is recurrently deleted and translocated in individuals with CDH. This region
harbors the zinc finger protein, multitype 2 (ZFPM2) gene that has been implicated in the
development of diaphragmatic defects based the identification of a de novo truncating
mutation in a child with a severe diaphragmatic eventration and the development of similar
diaphragmatic defects in mice that are homozygous for a hypomorphic allele of Zfpm2.[14]
In contrast, chromosome 1g41g42—uwhich is also recurrently deleted in individuals with
CDH—nharbors a number of genes, none of which have been clearly shown to cause
diaphragmatic defects in humans or animal models.[15]

In this report we screened a cohort of 45 individuals with diaphragmatic defects for genomic
alterations by high-resolution aCGH or SNP-based copy number analysis. Chromosomal
anomalies that are likely to have caused or contributed to the development of diaphragmatic
defects were identified in eight patients. These findings allow us to define the inheritance
pattern of diaphragmatic defects associated with haploinsufficiency of ZFPM2 and delineate
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a new minimal deleted region for CDH on 1g41qg42. They also provide evidence for the
existence of CDH-related genes on chromosomes 16p11.2, 11g23-24 and 13912 and suggest
a possible role for FZD2 and Wnt signaling in the development of various phenotypes seen
in pentalogy of Cantrell.[16]

METHODOLOGY

Patient accrual

For array studies, informed consent was obtained from a convenience sample of 45 patients
with CDH or diaphragmatic eventrations and, when possible, their parents in accordance
with IRB-approved protocols. None of these patients have been previously published with
the exception of Patient 5 and Patient 7 whose clinical findings were summarized by
Shinawi et al. and Fruhman et al. respectively.[17,18]

For sequence analysis of ZFPM2, a cohort of 52 patients with CDH and 10 patients with
diaphragmatic eventrations were screened for deleterious changes. This cohort consisted of a
subset of patients from the array cohort and similarly consented individuals. ZFPM2
sequence analyses for these individuals have not been previously published.

Array comparative genomic hybridization and SNP-based copy number analyses

In most cases, chromosomal deletions and duplications were identified or confirmed by
array comparative genomic hybridization on a research basis using Human Genome CGH
244K or SurePrint G3 Human CGH 1M Oligo MicroarrayKits (G4411B, G4447; Agilent
Technologies, Santa Clara, CA) prepared according to the manufacturer’s protocols and
analyzed as previously described using individual sex matched controls with no personal or
family history of CDH.[7] Putative copy number changes were defined by twoor more
adjacent probes at 244K resolution or three or more adjacent probes at 1M resolution with
log, ratios suggestive of a deletion or duplication when compared to those of adjacent
probes.

In two cases—Patient 2 and Patient 6—causative chromosomal deletions were identified
prior to accrual and further aCGH testing was unwarranted based on the molecular data
already available. The deletion in Patient 2 was identified using an Illumina CytoSNP bead
version 12.2 (Illumina, Inc., San Diego, CA, USA) and the deletion in Patient 6 was
identified and defined on a clinical basis using a 105K Combimatrix Molecular Diagnostics
array (Combimatrix Molecular Diagnostics, Irvine, CA, USA) hybridized, extracted, and
evaluated according to manufacturers’ instructions.

Identification of previously reported copy number variants

To determine if putative changes identified by aCGH or SNP-based copy number analysis
had been described previously in normal controls, we searched for similar deletions or
duplications in the Database of Genomic Variants (http://projects.tcag.ca/variation/).

Confirmation of Genomic Changes

Changes that were not identified in the Database of Genomic Variants were confirmed by
real-time quantitative PCR with the exception of causative changes identified in Patients 3
and 7 which were confirmed by chromosome analysis and Patients 4 and 6 which were
confirmed by FISH analysis.

J Med Genet. Author manuscript; available in PMC 2012 May 1.
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Quantitative real-time PCR

Quantitative real-time PCR (qPCR) analysis experiments were designed and carried out as
previously described.[7] For quantitative real-time PCR analysis within the ZFPM2 gene
experiments were designed in a manner similar to the standard curve method described by
Boehm et al. with a region of the c140rf145 gene serving as a control locus.[19]

Chromosome Analyses and FISH Studies

Chromosome analyses were performed for Patients 3 and 7 on a clinical basis by the
Molecular Genetics Laboratory at Baylor College of Medicine. FISH analyses were
performed for Patient 4 by the Cytogenetic Laboratory at Texas Tech University Health
Sciences Center School of Medicine and for Patient 6 by Combimatrix Molecular
Diagnostics.

Long-range PCR amplification and sequencing

Long amplification PCR was carried out using the TaKaRa long range PCR system
(TaKaRa Bio, Otsu, Shiga, Japan) according to manufacturer’s instructions. PCR products
were gel-purified, sequenced, and analyzed using Sequencher 4.7 software (Gene Codes
Corporation, Ann Arbor, Michigan, USA).

Identification of ZFPM2 sequence changes

RESULTS

Primers were designed to amplify the coding sequence and the intron-exon boundaries of
ZFPM2 and used to amplify patient DNA. Sequence changes in PCR amplified products
identified by comparison with control DNA sequences using Sequencher 4.7 software (Gene
Codes Corporation, Ann Arbor, Michigan, USA).

Hispanic control samples were obtained from the Baylor Polymorphism Resource, a
collection of approximately 600 anonymous control samples from major ethnic and racial
backgrounds.

Identification of genomic changes in patients with CDH or diaphragmatic eventrations

Forty-five subjects with congenital diaphragmatic hernias or diaphragmatic eventrations of
varying severity were screened for chromosomal anomalies by aCGH or SNP-based copy
number analysis. Eight subjects carried genomic changes that likely contributed to the
development of their diaphragmatic defects. Clinical and molecular data from these subjects
are summarized in Table 1.

Patient 1 is a male of mixed ancestry who was diagnosed at 9 days of age with intestinal
malrotation and a large, left-sided diaphragmatic eventration (Figure 1). Later in life, he was
diagnosed with left-sided radioulnar synostosis. Despite normal motor development, at 24
months of age he had only two words. However, he made rapid progress with speech
therapy and by 31 months of age he was speaking in 4-word sentences.

aCGH analysis revealed an ~1 Mb deletion that included only the ZFPM2 gene on
chromosome 8qg22.3-23.1 (Figure 1). Quantitative and long-range PCR analysis revealed
that the patient’s father carried the same deletion (data not shown). A review of his father’s
medical records did not reveal evidence of a diaphragmatic anomaly despite an extensive
evaluation after a severe automobile accident which included an abdominal CT scan. We
screened the coding sequence and associated intron exon boundaries of Patient 1’s
remaining ZFPM2 allele looking for changes that might account for the difference in
phenotype between him and his father but no sequence changes were identified.

J Med Genet. Author manuscript; available in PMC 2012 May 1.
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Patient 2 is a Caucasian male that was diagnosed prenatally with a left-sided CDH. His
brother was similarly affected with CDH and died of complications related to his hernia.
Except for a single umbilical artery, no additional anomalies were identified after birth. He
died at 2 day of age from respiratory insufficiency and pulmonary hypertension. SNP-based
copy number analysis revealed a deletion on chromosome 8g23.1 that included a portion of
the 3’ coding region of ZFPM2 and the first coding exon of oxidation resistance gene 1
(OXR1) based on mRNA transcript variant 1. Quantitative PCR analysis revealed that exons
7 and 8 of ZFPM2 were included in the deletion (Figure 1). No sequence changes were
identified in the coding sequence and intron/exon boundaries of the remaining allele.

Patient 3 had a de novo ~32 Mb deletion from 8922.3 to 8q24.23 that overlapped the
ZFPM2 deletions seen in Patient 1 and 2 and also included the EXT1 and TRPS1 genes that
are associated with Langer-Giedion syndrome (OMIM #150230). This Hispanic female was
diagnosed prenatally with a large left-sided posterolateral CDH. Fetal MRI at 34 5/7 weeks
also revealed an omphalocele and symmetrically short extremities. Due to severe pulmonary
hypoplasia she was placed in neonatal hospice care immediately after birth and died shortly
thereafter.

Patient 4 is a Caucasian male who had a normal prenatal course. He was born at 37 weeks
gestation and his perinatal course was complicated by persistent hypoglycaemia. A
diaphragmatic hernia was identified incidentally on a chest x-ray at 11 months of age during
an investigation for failure to thrive. His motor and language development were delayed and
he developed seizures at 20 months of age. CNS studies revealed right hemisphere cerebral
volume loss with ex vacuo dilatation of the right lateral ventricle with diffuse thin cortical
mantle, atrophy in the right hippocampus and a thin corpus callosum. aCGH analysis
revealed a de novo 2.2 Mb interstitial deletion of 1q41-1g42.12 (Figure 2).

Patients 5 and Patient 6 were found to have de novo interstitial deletions of 16p11.2—a
recurrent microdeletion region flanked by low-copy repeats. Patient 5 is a two-year old male
of mixed ancestry who had a severe right-sided posterolateral CDH, micrognathia, a U-
shaped palatal cleft, paternally inherited autosomal dominant polydactyly, and dysmorphic
features consistent with 16p11.2 which were previously described.[17] He continues to need
dietary supplementation via G-tube and supplemental oxygen when ill.

Patient 6 was a male infant conceived by intrauterine insemination with non-consanguineous
Caucasian parents as donors. A left-sided diaphragmatic hernia was diagnosed prenatally.
After birth, both of his thumbs were found to be proximally placed, hypoplastic and non-
articulating with the left thumb having a pedunculated appearance. Additional findings
included an extra thoracic vertebra and 13 pairs of ribs. He required extra corporal
membrane oxygenation within the first day of life, developed severe diffuse edema, and died
on the 17th day of life as a result of his severe respiratory insufficiency and pulmonary
hypertension.

Patient 7 was born at 37 6/7 weeks to non-consanguineous Hispanic parents. She had
persistent respiratory distress at birth and intubation was complicated by micrognathia and a
tongue anomaly. Further evaluation revealed a left-sided CDH, a ventricular septal defect
(VSD), and atrial septal defect (ASD), partial cleft palate, small anteriorly placed anus, and
dysmorphic features. A marker chromosome was identified by G-banded chromosome
analysis and was shown be the result of an unbalanced maternal translocation between
chromosome 13q and 11q resulting in a 47,XX,+der(13)t(11;13)(q23;g12.3) chromosome
complement.[18] Her prognosis was deemed poor in light of her multiple anomalies, and she
died shortly after support was withdrawn on day of life 8. Additional findings at autopsy
included abnormal lung fissures and coronary artery anomalies.

J Med Genet. Author manuscript; available in PMC 2012 May 1.
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Patient 8 is a two-year old Caucasian male who was diagnosed prenatally with a left-sided
anterior CDH, and a large omphalocele. Postnatal cardiac evaluation revealed a large
perimembranous VVSD and a patent foramen ovale (PFO) versus ASD. Additional anomalies
included bilateral inguinal hernias, left-sided cryptorchism and premature fusion of the
coronal sutures evident on head CT performed at 7 and 12 months of age. An MRI obtained
at 11 months of age revealed diminished bifrontal and bitemporal parenchyma white matter
associated with thinning of the corpus callosum, delayed myelination and generous extra-
axial CSF spaces.

aCGH analysis revealed a de novo 17.4 kb deletion that involved only the frizzled homolog
2 gene (FZD2) on chromosome 17g12.2. Amplification of the breakpoint by long-range
PCR followed by sequencing revealed that the deletion had occurred between two Alu
repeats; an Alu-Sh proximally and an Alu-Sq distally. Matsuzaki et al. has reported deletions
of this gene in 3/90 normal Yoruban individuals from Ibadan, Nigeria.[20] However, these
changes were not identified by McCarroll et al. who analyzed the same cohort.[21]

To determine if the mutations in Patient 8’s remaining FZD2 allele may have contributed to
his phenotype, we sequenced the coding region of his remaining FZD2 allele but did not
identify any sequence changes.

Twenty changes not reported in the Database of Genomic Variants were identified in this
cohort by aCGH and confirmed by either gPCR and/or FISH analysis (Table 2). In two cases
the extent of the copy number variation was larger than that seen in the parents. Patient
TX-28 appeared to have four copies of a region on 11q13.5 while her parents each had 3
copies compared to control. Patient TX-50 had no copies of a region on 17g25.1 while his
parents each had one copy compared to control. TX-50 also had two copies of a region on
Xp27.1, similar to his mother, which could represent a de novo event.

Identifying ZFPM2 sequence changes in patients with CDH and diaphragmatic

eventrations

To determine if detrimental sequence changes in ZFPM2 were a common cause of CDH or
diaphragmatic eventrations, we screened the coding region and intron-exon boundaries of
this gene in 52 patients with CDH (Table 3) and 10 patients with diaphragmatic eventrations
(Table 4). Three non-synonymous changes were identified which had not been previously
described in the 1000 Genomes project or dbSNP. A D98N change was identified in a male
with an isolated posterior left-sided hernia with a large sac. His mother did not carry a D98N
allele but the father was unavailable for analysis. This change was predicted to be possibly
damaging by PolyPhen (http://genetics.bwh.harvard.edu/pph/) but non-deleterious by
SNPs3D (http://www.snps3d.org/).[22, 23] The same change was reported by Bleyl et al. in
an individual with bilateral CDH.[24] However, they concluded that the change was likely
to be a benign SNP since it was also identified in control samples.

A QB889E change was identified in a Hispanic female with a right-sided CDH, ambiguous
genetalia and a double vagina. Her mother did not carry the change but the father was
unavailable for analysis. This change was predicted to be benign by PolyPhen, non-
deleterious by SNPs3D, and was subsequently identified in 5 of 152 (3.3%) Hispanic control
chromosomes.

A paternally inherited S210T mutation in an African American male with a left-sided CDH
and dysmorphic features. This change was predicted to be benign by PolyPhen and non-
deleterious by SNPs3D.

J Med Genet. Author manuscript; available in PMC 2012 May 1.
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DISCUSSION

aCGH and SNP-based copy number analyses are commonly used as a primary screening
tool to identify genomic aetiologies in patients with congenital anomalies. Identification of
these changes can provide information that physicians can use to hone the prognostic and
recurrence risk information given to families and to create individualized therapeutic and
surveillance plans for patients.

Haploinsufficiency of ZFPM2 causes autosomal dominant isolated diaphragmatic defects
with incomplete penetrance

ZFPM2 is a transcriptional co-factor that forms heterodimers with GATA transcription
factors to regulate gene expression during development.[25] The role of ZFPM2 in
development of diaphragmatic defects was first demonstrated by Ackerman et al. who
showed that mice homozygous for a hypomorphic mutation in Zfpm2 develop diaphragmatic
eventrations.[14] In the same publication, they reported a de novo heterozygous R112X
mutation in an infant with severe diaphragmatic eventrations and pulmonary hypoplasia who
died shortly after birth.[14]

Patient 1 is the second child in which haploinsufficiency for ZFPM2 has been seen in
association with a severe diaphragmatic eventration. Although Patient 2’s deletion affects
both the 3’ end of ZFPM2 and the first coding exon of OXR1, it is likely that disruption of
ZFPM2 underlies the development of CDH in this patient since OXR1 appears to be
involved in the prevention of oxidative damage—a process that has not been implicated in
the development of diaphragmatic defects.[26] Although DNA is not available on Patient 2°s
brother, it is likely that he inherited the same deletion from his mother which contributed to
his CDH. Alterations in ZFPM2 activity may also be the major, if not the sole, genetic factor
that contributed to the development of CDH in Patient 3 and previously reported individuals
with CDH with deletions and translocation involving 8922923 (Supplemental Table 2).[13]
Since both Patient 1 and Patient 2 inherited their deletions from unaffected parents we
conclude that loss-of-function alleles of ZFPM2 are associated with autosomal dominant
diaphragmatic defects—CDH or diaphragmatic eventrations—with incomplete penetrance.

The identification of the causative genomic changes in Patient 1 and 2, both of whom had
only minor anomalies—radioulnar synostosis diagnosed at 2 and half years of age and a
single umbilical artery, respectively—provide further evidence that such studies should be
considered in individuals who appear to have isolated diaphragmatic defects.

Alterations in ZFPM2 underlie a small fraction of congenital diaphragmatic defects

Screening of the ZFPM2 gene in 52 patients with CDH and 10 patients with diaphragmatic
eventrations failed to identify any clearly deleterious changes in the ZFPM2 gene. Similarly,
Ackerman et al. did not find deleterious ZFPM2 sequence changes in 29 additional post
mortem samples from children with diaphragmatic defects.[14] However, Bleyl et al.,
screened 96 CDH patients—53 with isolated CDH, 36 with CDH and additional anomalies,
and 7 with CDH and known chromosomal anomalies—and identified a rare amino acid
change, M703L, in a patient with isolated CDH that is predicted to be possibly damaging by
PolyPhen and deleterious by SNPs3D (Supplemental Table 3).[24] These data suggests that
severe, deleterious alterations in ZFPM2 account for only a small portion of diaphragmatic
defects. It is unclear, however, whether individual changes, like M703L, increase the risk for
CDH and, if so, to what degree.

J Med Genet. Author manuscript; available in PMC 2012 May 1.
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Delineation of new minimal deleted region for CDH on 1q41q42

Chromosome 1941942 has been shown to be recurrently deleted in individuals with CDH.
The 1941942 minimal deleted region for CDH was previously defined by the maximal
region of overlap between a patient reported by Kantarci et al. and a patient described by
Van Hove et al. who were subsequently referred to as Patient 7 and Patient 4, respectively,
by Shaffer et al.[6, 15, 27] This interval spanned ~6.3 Mb (220,120,384-226,397,002 hg19)
and contained 48 RefSeq genes.

The maximal proximal and distal breakpoints of our Patient 4’s deletion are located inside
the CDH region defined by Shaffer et al.[15] These breakpoints can be used to define a new
minimal deleted region for CDH on chromosome 1g41g42 which spans ~2.2 Mb
(223,073,839-225,318,623 hg19) and contains only 15 RefSeq genes (Figure 2).

This refined minimal deleted region for CDH does not contain the H2.0-like homeobox
(HLX) gene which has been considered a candidate gene for CDH based on its expression in
the murine diaphragm and the diaphragmatic defects identified in HIx~/~ mice.[28-30].
Although it is possible that haploinsufficiency of HLX can contribute to the formation of
diaphragmatic defects in humans, its exclusion from the minimal deleted region for CDH
suggests that alterations in HLX function are not required for the development of CDH in
association with 1g41qg42 deletions.

The dispatched homolog 1 (DISP1) gene has also been considered a candidate gene for
CDH and is located within the new minimal deleted interval for CDH. DISP1 is a membrane
spanning protein that plays an essential role in SHH signaling.[31] The potential role of
DISP1 in the formation of CDH is supported by evidence that murine Displ is expressed in
the pleuroperitoneal fold (PPF), a structure that is often considered to be the primordial
mouse diaphragm and the identification of a somatic Alal471Gly mutation—predicted to be
benign by PolyPhen but “not tolerated” by SIFT (http://blocks.fhcrc.org/sift/SIFT.html)—in
a patient with CDH and other anomalies.[32] However, abnormalities in other SHH
signaling proteins have yet to be clearly shown to cause CDH. Truncating mutations
(W475X and Y734X) in DISP1 have been found in two individuals with microforms of
holoprosencephaly and their unaffected mothers—consistent with DISP1’s role in SHH
signaling—but not in individuals with diaphragmatic defects.[32, 33] This suggests that
consideration should be given to the possible role of other 1q41q42 genes in the
development of CDH. The tumor protein p53 binding protein, 2 (TP53BP2) gene could play
arole in CDH development by modulating apoptosis and cell proliferation through
interactions with other regulatory molecules and has been shown to play a critical role in
heart and CNS development in mice.[34, 35] The WD repeat domain 26 (WDR26) gene is
another candidate gene that is widely expressed and could play a role in the development of
CDH by regulating cell signaling pathways and modulating cell proliferation.[36, 37]

CDH is recurrently seen in 16p11.2 microdeletion syndrome

Recurrent 16p11.2 microdeletions result in a constellation of defects including
developmental delay, cognitive impairment, behavioral problems, seizures and congenital
anomalies.[17] Both Patient 5 and Patient 6 have de novo deletions of this region suggesting
that CDH should be added to the list of congenital anomalies associated with this
microdeletion syndrome.

The T-box 6 gene (TBX6) is located on 16p11.2 and encodes a transcription factor that has
been shown to play a critical role in important developmental processes including paraxial
mesoderm differentiation and left right patterning.[38, 39] As a result, TBX6 has been
hypothesized to contribute to many of the congenital anomalies associated with 16p11.2.[17]
It is possible that haploinsufficiency of TBX6 also contribute to the development of CDH.

J Med Genet. Author manuscript; available in PMC 2012 May 1.
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Evidence of CDH-related genes on distal chromosome 11q and proximal chromosome 13q

Patient 7 carried an extra derivative 13 chromosome making her trisomic for a portion of the
chromosome 13 extending to 13g12.3 and a portion of chromosome 11 extending from
11923 to the telomere—47,XX,+der(13)t(11;13)(q23.2;q12.3). A similar chromosomal
complement 47,XY ,+der(13)t(11;13)(q21;q14) was seen in a boy with CDH described by
Park et al. suggesting that upregulation of genes on distal 11q and/or proximal 13q may play
a role in the development of CDH.[40] In support of this hypothesis, duplications of 11q
have been recurrently seen in patients with CDH with many cases being associated with an
unbalanced 3:1 meiotic segregation of the common t(11;22) translocation—resulting in a
47,XX or XY,+der(22)t(11;22)(923.3;911.2) chromosomal complement.[13, 41] Multiple
cases of CDH associated with trisomy 13 have also been described providing support for the
existence of one or more CDH-related genes on chromosome 13.[13]

The role of FZD2 and Wnt signaling in the development of CDH and defects associated
with pentalogy of Cantrell

The cardiac, diaphragmatic and anterior wall defects seen in Patient 8, are similar to those
described in pentalogy of Cantrell—a constellation of defects described by Cantrell et al.
that includes, a supraumbilical omphalocele, a lower sternal cleft, a defect in the central
tendon of the diaphragm, a defect in the pericardium, and an intracardiac anomaly.[16] A de
novo deletion of FZD2 was identified in Patient 8 but similar deletions have been reported in
normal individuals from Ibadan, Nigeria.[20] Although this suggests that haploinsufficiency
of FZD2 is unlikely to be the sole cause of this patient’s phenotype, several lines of evidence
suggest that decreased FZD2 expression may have contributed to this child’s phenotype.

Frizzled genes encode a family of seven transmembrane domain proteins that act as
receptors for Wnt signaling proteins.[42] FZD2 is expressed in a variety of organs during
development (Supplemental Table 1) and its protein product has been shown to interact with
WNT3A and WNT5A and to signal through both the canonical (Wnt/beta-catenin) and non-
canonical (Wnt/Ca++ and cyclic GMP) Wnt pathways.[43] In chick embryos, Wnt3a and
Wnt5a modulate the migration of mesodermal precursors and Wnt3a has been shown to
control the movement patterns of cardiac progenitor cells.[44, 45] Wnt signaling has also
been shown to play a role in the development of CDH and omphalocele in humans. X-linked
dominant mutations in PORCN, a gene that encodes a protein that modifies Wnt proteins—
including WNT3A—for membrane targeting and secretion, have been shown to cause CDH
and omphalocele as part of focal dermal hypoplasia (Goltz syndrome; OMIM #305600).[46,
47]

It is possible that deletion of FZD2, in combination with other genetic and/or environmental
factors, caused dysregulation of these Wnt signaling pathways, leading to the development
of the cardiac defects, CDH and omphalocele seen in Patient 8. The potential role of frizzled
signaling in developmental processes that require directional tissue movements followed by
tissue fusion is supported by the work of Yu et al. who recently showed that mouse frizzled
1 (Fzd1) and frizzled 2 (Fzd2) genes play an essential and partially redundant role in the
correct positioning of the cardiac outflow tract and closure of the palate and ventricular
septum.[48] Genetic changes that disrupt these processes may ultimately be found to
contribute to other cases of partial or complete pentalogy of Cantrell.

Genomic changes of unknown significance

The majority of the rare genomic changes catalogued in Table 2 are not located within
genomic regions that have been shown to be recurrently deleted or duplicated in individuals
with CDH and do not affect genes/pathways that have been clearly implicated in the
development of diaphragmatic defects. Although the significance of these changes is

J Med Genet. Author manuscript; available in PMC 2012 May 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wat et al.

Page 10

presently unknown, it is likely that future studies, in humans and animal models, will help to
clarify whether these changes increase the risk of developing diaphragm defects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

A) Array comparative genomic hybridization data from Patient 1 showing an 8g22.3g23.1
single gene deletion of ZFPM2. B) The relative location of the ZFPM2 gene in relation to
aCGH data from the deletion region in Patient 1 is represented by a gray bar. C) A chest
radiograph of Patient 1 demonstrating a severe diaphragmatic eventration containing loops
of bowel. D) The same radiograph shown in panel C with the limits of the diaphragmatic
eventration outlined in yellow. E) Quantitative PCR analysis demonstrates a normal copy
number for ZFPM2 Exon 6 but a reduced copy number for Exons 7 and 8 in DNA from
Patient 2 (Pt2) and his mother (M). Normal copy number values are seen in DNA from
Patient 2’s father (F) and DNA from two unrelated controls (C1, C2).
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Figure 2.

Array comparative genomic hybridization data from Patient 4 is shown above a schematic
representation of a portion of the 1g41-1g42 region. Genes in this region are represented by
block arrows. Red vertical bars mark the limits of the deletion in Patient 4 and delineate the
minimal deleted region for congenital diaphragmatic hernia (CDH) in this region of the
genome. Genes with all or a portion of their coding sequence inside the minimal deleted
region are shown in green.
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Table 3

ZFPM2 sequence changes in patients with CDH
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Number of Patients
(Inheritance .
Observed change Pattern) Exon 1000 Genomes /dbSNP (Heterozygosity) Predicted effect (PolyPhen/SNPs3D)
Non-synonymous changes
D98N 1 (Non-maternal, 3 No/No Possibly damaging/Non-Deleterious
father not available)
S210T 1 (Paternal) 6 No/No Benign/Non-Deleterious
A403G 11 8 Yes/Yes (0.341) Benign/Non-Deleterious
E782D 10 8 Yes/Yes (0.078) Benign/Non-Deleterious
Q889E 1 (Non-maternal 8 No/No—3.3% Hispanic control chromosomes Benign/Non-Deleterious
father not available)
A1055V 1 (Non-maternal, 8 Yes/Yes (0.146) Benign/Non-Deleterious
father not available)
Synonymous changes
P454p 4 8 Yes/Yes (0.234) -
P592P 3 8 Yes/Yes (0.101) -
V795V 2 8 Yes/Yes (0.120) -
Y992Y 3 8 Yes/Yes (0.104) -
H1069H 4 8 Yes/Yes (0.234) -
L1123L 3 8 Yes/Yes (0.156) -

*
Data accessed on 3/8/2011
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Table 4

ZFPM2 sequence changes in patients with diaphragmatic eventrations

Observed change | Number of Patients | Exon | 1000 Genomes™/dbSNP (Heterozygosity) | Predicted effect (PolyPhen)
Non-synonymous changes
A403G 1 8 Yes/Yes (0.341) Benign/Non-Deleterious
E782D 2 8 Yes/Yes (0.078) Benign/Non-Deleterious
Synonymous changes
P454P 1 8 Yes/Yes (0.234) --
P592P 1 8 Yes/Yes (0.101) -
V795V 2% 8 Yes/Yes (0.120) --
H1069H 1 8 Yes/Yes (0.234) -

*
Data accessed on 3/8/2011

Fk

Homozygous in one of the patients
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