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Transgenic mice expressing prion protein (PrP) molecules with several different internal deletions display spontaneous neurodegenera-
tive phenotypes that can be dose-dependently suppressed by coexpression of wild-type PrP. Each of these deletions, including the largest
one (�32–134), retains 9 aa immediately following the signal peptide cleavage site (residues 23–31; KKRPKPGGW). These residues have
been implicated in several biological functions of PrP, including endocytic trafficking and binding of glycosaminoglycans. We report here
on our experiments to test the role of this domain in the toxicity of deleted forms of PrP. We find that transgenic mice expressing �23–134
PrP display no clinical symptoms or neuropathology, in contrast to mice expressing �32–134 PrP, suggesting that residues 23–31 are
essential for the toxic phenotype. Using a newly developed cell culture assay, we narrow the essential region to amino acids 23–26, and we
show that mutant PrP toxicity is not related to the role of the N-terminal residues in endocytosis or binding to endogenous glycosami-
noglycans. However, we find that mutant PrP toxicity is potently inhibited by application of exogenous glycosaminoglycans, suggesting
that the latter molecules block an essential interaction between the N terminus of PrP and a membrane-associated target site. Our results
demonstrate that a short segment containing positively charged amino acids at the N terminus of PrP plays an essential role in mediating
PrP-related neurotoxicity. This finding identifies a protein domain that may serve as a drug target for amelioration of prion neurotoxicity.

Introduction
Transmissible spongiform encephalopathies are progressive neu-
rodegenerative conditions including Creutzfeldt–Jakob disease
in humans and bovine spongiform encephalopathy in cattle
(Prusiner, 2004). These diseases are caused by conformational
conversion of the endogenous cell surface protein, the cellular
isoform of prion protein (PrP C), into an insoluble, �-rich iso-
form, the scrapie isoform of prion protein (PrP Sc), that is self-
propagating and infectious (Prusiner, 1998; Aguzzi and
Polymenidou, 2004). Historically, research in the prion field has
focused on the chemical nature of the infectious agent, with rel-
atively little attention being paid to the mechanism by which
PrP Sc and other abnormal forms of prion protein (PrP) cause
neurodegeneration.

Loss of a normal functional activity of PrP C is unlikely, by
itself, to explain prion neurotoxicity, since mice carrying targeted
deletion of the PrP gene do not display a prion disease phenotype
(Büeler et al., 1992; Manson et al., 1994; Mallucci et al., 2002).

Nevertheless, several lines of evidence suggest that PrP C plays a
role in neurotoxic signaling pathways that in some way contrib-
ute to prion-induced pathology (Harris and True, 2006). For
example, genetic elimination of neuronal PrP C expression in
adult mice greatly prolongs survival and causes reversal of
scrapie-associated neuropathology, despite massive accumula-
tion of PrP Sc (Mallucci et al., 2003, 2007).

Transgenic mice expressing PrP molecules that harbor inter-
nal deletions in the unstructured, N-terminal half of the protein
provide potentially important clues to the neurotoxic and neu-
roprotective signaling mechanisms underlying PrP-associated
neurodegeneration (Solomon et al., 2010a). These deletions,
including �32–121 and �32–134 (Shmerling et al., 1998),
�94 –134 (Baumann et al., 2007), and �105–125 (Li et al.,
2007), induce a spontaneous neurological illness character-
ized by neuronal loss and/or white matter abnormalities. Sig-
nificantly, the disease phenotype in each of these lines is
suppressed in a dose-dependent fashion by coexpression of
wild-type (WT) PrP, suggesting that WT and mutant mole-
cules physically interact with each other and/or compete for
binding to a common partner.

Interestingly, each of these neurotoxic PrP deletions, includ-
ing the largest one (�32–134), retains 9 aa (residues 23–31,
KKRPKPGGW) immediately following the signal peptide cleav-
age site. These residues have been implicated in several properties
of PrP C, including endocytic trafficking (Sunyach et al., 2003;
Taylor et al., 2005) and binding of glycosaminoglycans (GAGs)
(Pan et al., 2002; Warner et al., 2002; Taubner et al., 2010). We
therefore wondered whether the 23–31 domain might play some
role in the neurotoxic properties of deleted forms of PrP.
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The present study was undertaken to
investigate this idea using a combination
of transgenic and cell culture approaches.
We report here that removal of residues
23–31 eliminates the toxicity of deleted
forms of PrP in vivo as well as in a cell
culture assay. We also demonstrate that
PrP toxicity is not dependent on endocy-
tosis or binding to endogenous cell sur-
face GAGs, but is potently inhibited by
exogenous GAGs. Our results have
implications for the molecular mecha-
nisms underlying PrP-associated toxic-
ity, and they suggest that the 23–31
region of PrP may represent a novel tar-
get for therapeutic intervention in prion
diseases.

Materials and Methods
Plasmid construction. cDNAs encoding murine
�23–134 and �32–134 PrPs were generated by
PCR amplification using the following primers:
�23–134, 5�-GTCCGAAAGCTTCTCGAGGCC
GCCACCATGGCGAACCTTGGCTACTGGCT
GCTGGCCCTCTTTGTGACTATGTGGACTG
ATGTCGGCCTCTGCAGGCCCATGATCCAT
TTTGGC-3� (upstream) and 5�-TCGGACTCT
AGACTCGAGTCATCATCCCACGATCAGGA
AGAT (downstream); �32–134, 5�-TTGTA
CAAGCTTCTCGAGGCCGCCACCATGGCGA
ACCTTGGCTACTGG-3� (upstream) and 5�-
TCGGACTCTAGACTCGAGTCATCATCCCA
CGATCAGGAAGAT-3� (downstream). WT
and �105–125 PrP cDNAs were prepared as de-
scribed previously (Li et al., 2007). The upstream
primers contain HindIII and XhoI restriction
sites, along with a Kozak consensus sequence.
The downstream primers contained XhoI and
XbaI sites. The resulting PCR products were di-
gested with HindIII and XbaI and cloned into pcDNA 3.1 (�) Hygro
(Invitrogen).

The QuikChange Site-Directed Mutagenesis kit (Stratagene) was used
to introduce additional mutations into plasmids encoding �105–125 and
�32–134 PrP. To mutate amino acids 23–27 from KKRPK to KRHPS,
templates were subjected to PCR amplification using the following
primers: 5�-GTCGGCCTCTGCAAACGACACCCATCGCCTGGAG
GGTGGAACACCG-3� (upstream) and 5�-CCGGTGTTCCAC-
CCTCCAGGCGATGGGTGTCGTTTGCAGAGGCCGAC-3� (down-
stream). To delete residues 23–26, the PCR amplification was
performed using the following primers: 5�-TCGGCCTCTGCAAGC-
CTGGAGGGTGG-3� (upstream) and 5�-CCACCCTCCAGGCTTG-
CAGAGGCCGAC-3� (downstream).

Generation of Tg(�23–134) mice. A fragment encoding �23–134 PrP
was released from the pcDNA3.1 (�) Hygro plasmid described above by
digestion with XhoI and was ligated into XhoI-digested expression vector
MoPrP.Xho (Borchelt et al., 1996). The transgene was released from the
recombinant plasmid by NotI restriction digest and purified on GFX
PCR DNA purification columns (GE Healthcare). The purified DNA was
then injected into the pronuclei of fertilized eggs from C57BL/6J � CBA
F1 hybrid mice. Transgenic founders were bred initially to Tga20 �/�

mice and then to Zurich I Prn-p0/0 mice on a pure C57BL/6 background
(EMMA). Genotyping of transgenic mice was performed by PCR analysis
of tail DNA prepared using the Puregene DNA Isolation kit (Gentra
Systems). Primers P1 and P4 (Chiesa et al., 1998) were used for geno-
typing. These primers will amplify both �23–134 PrP and Tga20
transgenes, which can be distinguished from each other by size. P2

and P4 primers (Chiesa et al., 1998) were used to amplify the Prn-p�

and Prn-p0 alleles.
Histology. Animals were perfused with 4% paraformaldehyde, after

which brains were isolated and postfixed in the same solution. Paraffin
sections were stained with hematoxylin and eosin as described previously
(Li et al., 2007).

Immunofluorescence localization. BHK, N2a, and HEK cells were main-
tained as previously described (Christensen and Harris, 2009). Cells were
plated on glass coverslips at �50% confluence. The day after plating, cells
were transfected with Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions.

For surface staining, cells were placed on ice for 15 min, washed twice
with cold PBS, and incubated in PrP antibody 6H4 (Prionics) in Opti-
MEM (Invitrogen). Cells were then washed twice with PBS and fixed for
10 min at room temperature in 4% paraformaldehyde in PBS. After washing,
cells were stained with Alexa Fluor 488 goat anti-mouse IgG (Invitrogen).

For internal staining, cells were fixed as above, permeabilized with
0.2% Triton X-100 for 5 min at room temperature, and then stained with
antibody 6H4 along with rabbit polyclonal antibodies for the Golgi
marker, giantin (Covance), or the ER marker, TRAP (Millipore). Cells
were then stained with Alexa Fluor 488 goat anti-mouse IgG and Alexa
Fluor 594 goat anti-rabbit secondary antibodies (Invitrogen).

After staining, coverslips were mounted on glass slides and viewed in
Nikon TE-2000E inverted fluorescence microscope. Images captured
with MetaMorph software (Molecular Devices).

Endocytosis assays. N2a cells were plated on glass coverslips 1 d before
transfection with Lipofectamine 2000 according to the manufacturer’s
instructions. Cells were removed from incubator, placed on ice for 15
min, and then surface-labeled on ice with PrP antibody 6H4 in Opti-

Figure 1. Schematic of PrP constructs and comparison of sequences in the 23–31 region. A, Schematic of wild-type PrP and
three different deletion constructs. Structural domains of PrP are indicated by the colored blocks: SS (blue), signal sequence; OR
(pink), octapeptide repeats; CC (red), charge cluster; HD (green), hydrophobic domain; GPI (purple), GPI attachment signal. The
amino acid sequence of PrP in the 23–31 region is shown above the block diagram; the � symbols above the sequence indicate
positively charged amino acids. The dotted lines indicated deleted regions in each construct. B, Consensus alignment for the
conserved region immediately following the signal sequence cleavage site in PrP from different species. Sequences were aligned
using VectorNTI software. Color coding is as follows: red foreground on yellow background indicates consensus residues that are
completely conserved in all sequences; blue foreground on cyan background indicates consensus residues derived from a block of
similar residues at that position; black foreground on green background indicates consensus residues derived from occurrence of
�50% of a single residue at that position; green foreground on white background indicates residues that are weakly similar to the
consensus residue at that position; black foreground on white background indicates nonsimilar residues. C, Consensus alignment
for the conserved region immediately following the signal sequence cleavage site in PrP, Doppel, and Shadoo from different
species. The color key is the same as in B.
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MEM. Cells were then returned to 37°C for 60 min to induce PrP inter-
nalization. Next, cells were washed twice with PBS, treated with 0.5%
trypsin/0.2% EDTA on ice to remove surface proteins, and fixed for 10
min at room temperature in 4% paraformaldehyde in PBS. Fixative was
removed and cells were washed with PBS. Cells were permeabilized with
0.2% Triton X-100 for 5 min at room temperature, blocked for 1 h in 2%
goat serum in PBS, and stained with fluorescently conjugated secondary
antibodies in goat serum/PBS for 1 h. Finally, coverslips were mounted
on glass slides and visualized by fluorescent microscopy as described
above.

HEK cells stably expressing WT and mutant PrPs were plated on glass
coverslips. The following day, cells were placed on ice for 10 min, and surface
PrP was labeled with PrP antibody 6H4 in Opti-MEM on ice for 15 min.
Cells were then washed, warm medium was added, and cells were incubated
at 37°C for 30 min to allow endocytosis to occur. At the end of this period,
cells were fixed without permeabilization as described above. All cells were
labeled with Alexa 488-coupled anti-mouse IgG (Invitrogen). Coverslips
were then mounted on glass slides and visualized as described above.

Western blotting and PrP insolubility assay. Brain homogenates (10%
w/v) were prepared by mechanical dissociation of single hemispheres using
plastic pestles (South Jersey Precision Tool and Mold) in PBS containing
Protease Inhibitor Cocktail Tablet (Roche). The suspension was clarified for
5 min at 2300 � g in a microcentrifuge. Total protein in the supernatant was

quantitated using the BCA kit (Pierce). After separation by SDS-PAGE, pro-
teins were transferred to PVDF membranes (Millipore) and probed over-
night with PrP antibodies (6H4, 6D11, 32.1.1, or P45-66) in 5%
nonfat milk, washed with TBS/0.1% Tween, and incubated in HRP-
conjugated secondary antibodies (Sigma-Aldrich; or Pierce). Blots
were developed with ECL detection system (GE Healthcare).

Detergent-resistant membrane localization. Isolation of detergent-resistant
membranes was conducted as previously described (Christensen and Harris,
2009). Briefly, HEK cells stably expressing WT or mutant�23–134 PrPs were
lysed in 25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, and 1% Triton
X-100, on ice. Lysates were mixed with a 60% OptiPrep solution (Sigma-
Aldrich) to achieve at final concentration of 40% OptiPrep. An OptiPrep
gradient ranging from 0% (top) to 30% (bottom) was layered atop the lysate/
OptiPrep mixture. After 4°C ultracentrifugation for 4 h at 172,000 � g, a 200
�l aliquot of each gradient fraction was methanol precipitated and analyzed
by Western blotting with anti-PrP antibody (6H4) and anti-flotillin anti-
body (BD Biosciences).

Cell culture assays for mutant PrP toxicity. Cell viability and H2AX
phosphorylation assays were performed as described previously (Massig-
nan et al., 2010). In the first assay, HEK cells stably expressing WT or
mutant PrPs were treated with Zeocin (500 �g/ml) or (2 R,3S,4 R,5R,6S)-
5-amino-6-[(1 R,2S,3S,4 R,6S)-4,6-diamino-3-[(2 R,3R,4 R,5R)-3,5-
dihydroxy-5-methyl-4-methylamino-oxan-2-yl]oxy-2-hydroxycyclohexyl]

Figure 2. Analysis of PrP expression in Tg(�23–134) mice. A, Brain homogenates containing equal amounts of total protein from mice expressing the indicated forms of PrP were either untreated
(� symbols) or were treated with PNGase F to remove N-linked oligosaccharides (� symbols). Samples were then subjected to Western blotting with anti-PrP antibody 6H4. The arrowhead points to the C1
cleavage product of full-length PrP (Chen et al., 1995) in lane 2. B, Brain homogenates containing equal amounts of total protein from mice expressing the indicated forms of PrP were subjected to Western
blotting with the indicated anti-PrP antibodies. The schematic below the blot indicates the locations of the epitopes recognized by each of the antibodies. Molecular size markers are given in kilodaltons.
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oxy-2-(1-hydroxyethyl)oxane-3,4-diol (G418)
(400 �g/ml) for 48 h, after which cell viability
was assayed by MTT reduction. In the second
assay, HEK cells were treated for 30 min with
Zeocin, after which cells were lysed, and phos-
phorylated H2AX analyzed by Western blot-
ting using the Odyssey fluorescent imaging
system (LI-COR). Actin levels were analyzed as
a loading control.

GAG experiments. To test the effect of exog-
enous GAGs on mutant PrP toxicity, heparin
(100 �g/ml) (Sigma-Aldrich) or pentosan sul-
fate (100 �g/ml) were included during incuba-
tion with G418 or Zeocin. Three different
molecular size forms of PS were tested: 3000 Da
(Sigma-Aldrich); 4500 or 5000 Da (both from
Biopharm). Cell viability or phosphorylated
H2AX was then measured as described above.

To test the role of endogenous GAGs, cells
were either pretreated for 1 h with 5 mU/ml
heparinase II (Sigma-Aldrich) or were incu-
bated for 24 h with 30 mM sodium chlorate in
Opti-MEM before addition of Zeocin. Cell viability or phosphorylated
H2AX were then measured as described above.

To measure the effect of chlorate on GAG sulfation, cells were
pretreated with 30 mM sodium chlorate in Opti-MEM for 24 h, after
which 25 �Ci/ml 35SO4 (PerkinElmer) was added, and cells were
incubated for an additional 48 h. Cells were then lysed, and radioac-
tive counts in cell lysates were measured in a scintillation counter.

To measure the effect of heparinase digestion on cell surface GAGs,
cells were incubated for 48 h in Opti-MEM containing 25 �Ci/ml 35SO4,
after which the labeling medium was removed and cells were incubated
for 30 min in fresh medium containing heparinase II. Cells were then
lysed, and radioactivity in cell lysates was measured in a scintillation
counter.

Results
Construction of transgenic mice expressing �23–134 PrP
Tg(F35) mice expressing PrP deleted for residues 32–134 exhibit
cerebellar ataxia and neurodegeneration, and succumb to illness
by 100 d in the absence of full-length PrP (Shmerling et al., 1998).
The �32–134 deletion preserves residues 23–31 (KKRPKPGGW)
immediately following the signal sequence cleavage site (Fig. 1A).
This region, which includes a cluster of four positively charged
residues, is highly conserved in PrP from several mammalian
species (Fig. 1B). Multiple positively charged residues are also
present in the region following the signal peptide cleavage site in
nonmammalian PrPs and in the PrP paralogs, Doppel and Sha-
doo (Fig. 1B,C).

To investigate the role of residues 23–31 in the neurotoxicity
of �32–134 PrP, we generated transgenic mice expressing �23–
134 PrP under control of a modified version of the endogenous
Prn-p promoter. �23–134 represents a further deletion that abol-
ishes the entire N terminus of PrP, including residues 23–31 (Fig.
1A). Seven transgene positive founders were recovered. In case
�23–134 PrP proved to be highly toxic in the absence of WT PrP,
we first bred Tg(�23–134) founders to Tga20�/� mice (Fischer et
al., 1996) that overexpress WT PrP. Tg(�23–134)/Tga20�/0

progeny were subsequently bred to Prn-p0/0 mice on the C57BL/6
background to obtain Tg(�23–134)/Prn-p0/0 offspring lacking
endogenous or transgenically encoded WT PrP.

Two Tg(�23–134) lines, designated H (high) and L (low),
were found to be positive for transgene expression by RT-PCR
(data not shown) and Western blotting (Fig. 2A). The H and L
lines express �23–134 PrP at �2 and 0.5 times the level of endog-
enous PrP, respectively. Thus, the Tg(�23–134H) line has a PrP

expression level comparable with that of Tg(F35) mice expressing
�32–134 PrP (Shmerling et al., 1998). On Western blots, the
majority of �23–134 protein migrates as a single species of �30
kDa. After enzymatic removal of the N-linked oligosaccharides
using PNGase F, the protein migrates as a single band of the
expected size (�16 kDa), slightly faster than the endogenous C1
fragment, which is missing residues 23–111 (Chen et al., 1995).
Thus, similar to �32–134 PrP (Shmerling et al., 1998), the �23–
134 protein exists primarily in a glycosylated form. Western blot
analysis with a panel of PrP-specific antibodies demonstrates
that, as expected, �23–134 PrP is recognized by a C-terminal
specific antibody (6H4, residues 144 –152), but not N-terminally
directed antibodies (M32.1.1, residues 23–50; P45-66, residues
45– 66; 6D11, residues 95–100) (Fig. 2B).

Tg(�23–134) mice show no clinical illness or histopathology
Both the H and L lines of Tg(�23–134) mice on the Prn-p0/0

background remained clinically normal for �400 d (Fig. 3). Con-
versely, 100% of Tg(F35) mice on the Prn-p0/0 background exhib-
ited tremor and ataxia by 32 d, which progressed to a total
hindlimb paralysis and finally death by 100 d (Fig. 3). In ad-
dition, Tg(�23–134)/Prn-p0/0 mice of both lines demon-
strated no histopathological abnormalities for at least 1 year
(as long as they were observed) (Fig. 4) (data not shown). In
contrast, Tg(F35)/Prn-p0/0 mice showed significant degenera-
tion of cerebellar granule neurons by 10 weeks of age (Fig. 4).
We conclude that �23–134 PrP, in contrast to �32–134 PrP
expressed at an equivalent level, does not cause significant
neurotoxicity in transgenic mice.

Cellular localization and biochemical properties of �23–134
PrP in cultured cells
We tested whether the lack of toxicity of �23–134 PrP was attrib-
utable to an alteration in its cellular localization compared with
�32–134 PrP. In transfected BHK cells, �23–134 PrP, like WT
and �32–134 PrPs, was localized to the cell surface when assayed
by immunostaining of intact cells with PrP antibody 6H4 (Fig.
5A–C). Furthermore, the �23–134 protein, like the WT and �32–
134 proteins, was attached to the cell surface by a glycosylphos-
phatidylinositol (GPI) anchor, as demonstrated by its release
after treatment of cells with phosphatidylinositol-specific phos-
pholipase C (PIPLC), a bacterial enzyme that cleaves the GPI
anchor (Fig. 5D–F). After PIPLC treatment, both �23–134 and

Figure 3. Tg(�23–134) mice remain healthy, while Tg(F35) mice develop a fatal neurological illness. The plot shows the
percentage of mice of the indicated genotypes remaining alive at each age. The number of mice, of either sex, in each group was
12 for Tg(�23–134H)/Prn-p0/0, 12 for Tg(�23–134L)/Prn-p0/0, 14 for Tg(F35)/Prn-p0/0, 7 for Tg(F35)/Prn-p�/0, 6 for Prn-p0/0,
and 7 for Prn-p�/0.
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WT PrPs were detected in the cell culture medium by Western
blotting of methanol-precipitated proteins (data not shown). In-
tracellularly, �23–134 PrP colocalized with the Golgi marker,
giantin, in BHK cells, demonstrating trafficking through the se-
cretory pathway, similar to WT and �32–134 PrPs (Fig. 5G–I).
Similar results were obtained when localization and biochemical
analyses were performed on �23–134 PrP expressed in trans-
fected HEK and N2a cells (data not shown), as well as in cerebel-
lar granule neurons cultured from Tg(�23–134) mice (Fig. 5J–M).

After ultracentrifugation at 265,000 � g, �23–134 PrP in de-
tergent lysates of transfected BHK cells was found in the super-
natant fraction, similar to WT PrP and in contrast to PG14 PrP,
an aggregation-prone mutant PrP (data not shown).

Additionally, when �23–134 PrP was
analyzed by density gradient flotation, we
found that, like WT PrP, �23–134 PrP
was distributed in fractions that contained
the lipid raft resident protein flotillin-1
(data not shown).

In conclusion, our analyses reveal that
�23–134 PrP has a cellular localization
and solubility similar to those of WT and
�32–134 PrPs.

�23–134 PrP is not toxic in a cell
culture assay
We previously reported a cell culture assay
for the toxicity of certain mutant forms of
PrP, including �32–134 and �105–125
(Massignan et al., 2010). The assay is
based on the ability of these mutant PrP
molecules to render cells hypersensitive to
several cationic drugs, including G418,
hygromycin, and Zeocin. The assay mim-
ics several essential features of PrP toxicity
seen in transgenic mice, including rescue
by coexpression of wild-type PrP.

We assayed the toxic activity of �23–
134 PrP and compared it with the activity
of �32–134 and �105–125 PrPs. Stably
transfected HEK cells expressing these
mutant PrP molecules were incubated for
48 h in the presence of 400 �g/ml G418,
and cell viability was assayed by enzymatic
reduction of the MTT reagent. As reported
previously (Massignan et al., 2010), we
found that cells expressing �32–134 or
�105–125 PrP showed significantly re-
duced viability compared with control
cells expressing WT PrP or empty vector,
with �105–125 being more potent than
�32–134, reflective of the relative toxici-
ties of these two molecules in transgenic
mice (Fig. 6). In contrast, HEK cells ex-
pressing �23–134 did not show altered vi-
ability in this assay. Similar results were
obtained for several clones expressing
each construct at equivalent levels as de-
termined by Western blotting (data not
shown). These results demonstrate that the
lack of toxicity of �23–134 in transgenic
mice is reflected in a cell culture assay.

Mutant PrP toxicity is not correlated with endocytosis
The discrepancy between the toxic activities of �32–134 and �23–
134 PrPs in both in vivo and in vitro settings suggests that residues
23–31 may represent an important toxicity-determining region.
This positively charged region has been previously implicated in
several properties of PrP, one of which is endocytic trafficking and
targeting to clathrin-coated pits (Nunziante et al., 2003; Sunyach et
al., 2003; Taylor et al., 2005). We therefore investigated whether
endocytosis was necessary for the toxicity of deleted forms of PrP.

We used two complementary assays to measure the endocy-
tosis of WT, �23–134, �32–134, and �105–125 PrPs. Our initial
experiments used transiently transfected N2a neuroblastoma
cells, which were previously shown to exhibit significant consti-

Figure 4. Tg(�23–134) mice display normal cerebellar histology, while Tg(F35) mice show cerebellar atrophy and massive loss
of granule neurons. A–D show hematoxylin/eosin-stained cerebellar sections from 70-d-old mice of either sex of the indicated
genotypes. The area outlined by the box in each panel is shown at higher magnification in E–H. Scale bars: (in A) A–D, 1 mm; (in
E) E–H, 50 �m.
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tutive endocytosis of PrP C (Shyng et al.,
1993, 1995a). After immunolabeling sur-
face PrP at 4°C, cells were incubated at
37°C to initiate endocytosis. After 1 h,
cells were treated with trypsin to remove
residual surface PrP and were then fixed,
permeabilized, and incubated with a fluo-
rescently conjugated secondary antibody
to selectively visualize internalized PrP.
Cells expressing all constructs that were
immunolabeled at 4°C but not warmed to
37°C demonstrated strong labeling of the
cell surface, reflective of the initial distri-
bution of the PrP before endocytosis (Fig.
7A–D). After incubation at 37°C, both
WT and �105–125 PrPs exhibited punc-
tate intracellular fluorescence staining
corresponding to endosomal compart-
ments to which antibody-labeled PrP had
been delivered (Fig. 7E,H). In marked
contrast, �23–134 and �32–134 PrPs
were not significantly endocytosed, since
no antibody-labeled PrP appeared inside
the cells (Fig. 7F,G).

We confirmed these results in another
cell type using a second kind of assay to
measure PrP endocytosis. In this experi-
ment, using stably transfected HEK cells,
internalization of PrP was scored by ob-
serving the loss of antibody-bound PrP
from the cell surface. Cells were labeled at
4°C with antibody 6H4 and were then in-
cubated at 37°C to initiate endocytosis.
Subsequently, cells were fixed without per-
meabilization and PrP remaining on the cell
surface was visualized by incubation with a
fluorescently labeled secondary antibody. In
control cells that were not warmed to 37°C,
surface staining for PrP was, as expected,
observed for each of the constructs (Fig.
7I–L). After incubation at 37°C, surface
staining remained visible for �23–134 and
�32–134 PrPs (Fig. 7N,O), but not for WT
or �105–125 PrPs (Fig. 7M,P), reflecting
impaired endocytosis of the two former
mutants, and paralleling the results ob-
tained using the other assay in N2a cells.

Since neither �32–134 nor �23–134
PrP were efficiently endocytosed, we con-
clude that the lack of toxicity of the latter
mutant cannot be attributed to its im-
paired endocytosis. In addition, �105–
125 PrP, which elicits a neurodegenerative
phenotype like �32–134 PrP (Li et al.,
2007), is constitutively endocytosed. To-
gether, these results demonstrate a lack of correlation between
mutant PrP neurotoxicity and endocytic trafficking.

Lys 23-Pro 26 are necessary for the toxicity of �105–125 and
�32–134 PrPs
To further examine the connection between PrP toxicity and endo-
cytosis, we performed mutagenesis of the 23–31 region of �105–125
PrP. We constructed two versions of �105–125 PrP with alterations

in the 23–31 region that have been shown previously to abolish en-
docytosis of WT PrP: the triple mutation K24R/R25H/K27S [similar
to that in the study by Sunyach et al. (2003)] and deletion �23–26
(Taylor et al., 2005). As expected, both of these alterations abolished
endocytosis of �105–125 PrP as assayed by loss of surface staining
for PrP in HEK cells (Fig. 8A–F) and quantified in Figure 8G.

We next tested how these alterations in the 23–31 region af-
fected the toxicity of �105–125 PrP as measured by the drug

Figure 5. �23–134 PrP traffics through the Golgi apparatus and is GPI-anchored to the cell surface. A–I, BHK cells were
transiently transfected with plasmids encoding the indicated forms of PrP, along with a plasmid encoding DsRed (A–F) targeted to
the ER (to mark transfected cells). A–F, Cells were incubated either with (D–F ) or without (A–C) PIPLC to cleave GPI-anchored cell
surface proteins and were then stained live on ice with anti-PrP antibody 6H4. Cells were then fixed without permeabilization and
stained with fluorescently tagged secondary antibody to reveal PrP. Nuclei were visualized by staining with DAPI. The panels show
merged green (PrP), red (Ds-Red ER), and blue (DAPI) images. G–I, Fixed and permeabilized cells were stained with anti-PrP
antibody 6H4 (green), along with an antibody to the Golgi marker, giantin (red), and DAPI (blue). J–M, Cerebellar granule neurons
were isolated from either wild-type mice (J, L) or Tg(�23–134) mice (K, M ). Cells were stained for PrP (green) either without
permeabilization (J, K ), or after fixation, permeabilization, and costaining for giantin (red) (L, M ). Cell nuclei were stained with
DAPI (blue). Scale bars: (in I ) A–I, 25 �m; (in M ) J–M, 40 �m.
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hypersensitivity assay. Interestingly, introduction of the K24R/
R25H/K27S triple mutation had no effect on the toxicity of
�105–125 PrP, whereas the �23–26 deletion rendered �105–125
PrP nontoxic (Fig. 8H). A similar phenomenon was observed
when these two alterations were introduced into the �32–134 PrP
molecule (Fig. 8H). Together, these results demonstrate that the
toxicity of �105–125 and �32–134 PrPs is independent of endo-
cytosis, but requires the presence of 4 aa (Lys 23-Pro 26) at the N
terminus.

Mutant PrP toxicity is abrogated by exogenous GAGs
Another well documented functional activity of the N-terminal
region of PrP is binding to GAGs. Residues 23–35 have been
shown to constitute one of several GAG binding sites in PrP (Pan
et al., 2002; Warner et al., 2002; Taubner et al., 2010), and there is
evidence that binding of GAGs alters several activities of PrP C,
including its endocytic trafficking (Shyng et al., 1995b) and its
conversion to PrP Sc (Caughey and Raymond, 1993). We there-
fore investigated the role of GAG binding in the toxicity of mu-
tant PrP using in vitro assays.

To explore the role of GAG binding in the toxicity of �32–134
and �105–125 PrPs, we tested the effect of heparin and pentosan
sulfate (PS), two GAGs known to bind PrP C, in the drug hyper-
sensitivity assay. We found that addition of both compounds to
HEK cells expressing �105–125 PrP significantly diminished cell
death in the presence of G418 (Fig. 9A) or Zeocin (data not
shown) when assayed by MTT reduction. Pentosan sulfate had a
more potent effect than heparin, corresponding to the higher
affinity of the former for PrP C (Brimacombe et al., 1999). The
rescuing effect of PS was seen with both low- and high-
molecular-weight forms of PS, indicating that the effect was not
dependent on the size of the molecule (data not shown). As an
additional control, we treated untransfected HEK cells with hep-
arin in the presence of G418 and did not observe any effect on cell
viability even at very high concentrations of G418 that were suf-
ficient to kill a significant proportion of the cells (data not
shown). This result demonstrated that suppression of �105–125
toxicity by heparin is not due to an overall increase in cell viabil-
ity, or inhibition of the action of G418. We observed a similar
rescuing effect of heparin and PS from the toxicity of �32–134
PrP in the HEK cell viability assay with G418 (data not shown).

To confirm these results using another assay, we tested the
effect of heparin and PS on Zeocin-induced phosphorylation of

histone H2AX in cells expressing �105–125 PrP. H2AX is a vari-
ant histone that is rapidly phosphorylated in response to double-
strand breaks in DNA induced by genotoxic agents like Zeocin.
We showed previously that HEK cells expressing �105–125 PrP
exhibit enhanced phosphorylation of H2AX after treatment with
Zeocin (Massignan et al., 2010), presumably reflecting increased
entry of Zeocin into the cells. We observed here that both heparin
and PS suppressed this Zeocin-induced increase in H2AX phos-
phorylation (Fig. 9B,C), consistent with the ability of these com-
pounds to suppress Zeocin-induced cell death as measured by
MTT reduction (data not shown). Again, PS was more potent
than heparin.

Since GAGs have been shown to induce endocytosis of PrP
(Shyng et al., 1995b), we tested the possibility that the sup-
pressive effect of these compounds on mutant PrP toxicity was
due to removal of PrP from the cell surface. PrP internaliza-
tion was analyzed as described above, based on loss of surface
staining for PrP. We found that treatment with PS or heparin
at concentrations that suppressed �105–125 and �32–134
toxicity induced internalization of WT and �105–125 PrP, but
not �32–134 PrP (data not shown). These results demonstrate
that heparin and PS are likely to be rescuing mutant PrP tox-
icity by a mechanism that does not depend on internalization
of PrP from the cell surface.

Mutant PrP toxicity is not dependent on endogenous GAGs
Given our observation that exogenous GAGs are capable of in-
hibiting the toxicity of mutant PrPs, we wondered whether en-
dogenous, cell-derived GAGs might be required as part of the
mechanism by which mutant PrPs exert their toxic activity. We
therefore analyzed the effect of interfering with the synthesis of
endogenous GAG chains, and of cleaving these chains enzymat-
ically, on the toxicity of �105–125 PrP in the HEK cell drug
hypersensitivity assay.

Chlorate inhibits GAG chain sulfation by acting as a com-
petitive inhibitor of ATP-sulfurylase (Baeuerle and Huttner,
1986). We pretreated HEK cells expressing �105–125 PrP for
24 h with sodium chlorate, and then analyzed H2AX phos-
phorylation in response to Zeocin exposure. We observed that
chlorate treatment had no significant effect on the level of
H2AX phosphorylation (Fig. 10). To confirm that chlorate
treatment was inhibiting GAG sulfation, we quantitated cellu-
lar incorporation of 35SO4. We found that incubation with
chlorate reduced 35SO4 incorporation to �60% of the levels in
untreated cells (data not shown). The residual level of cell-
associated radioactivity after chlorate treatment most likely
represents 35SO4 incorporation into other intracellular sul-
fated proteins and amino acids (data not shown).

We also investigated the effect on �105–125 PrP toxicity of
enzymatically digesting cell surface GAG chains using hepari-
nase II. This enzyme cleaves heparan sulfate chains at the one
to four linkages between hexosamines and uronic acid resi-
dues. We pretreated HEK cells expressing �105–125 PrP for 30
min with heparinase II and then analyzed Zeocin-induced
phosphorylation of H2AX. We found that heparinase II treat-
ment had no effect on phosphorylated H2AX levels (Fig. 11).
To confirm that heparinase II had cleaved cell surface GAG
chains, we monitored release of radioactivity from cells that
had been previously labeled with 35SO4. We found that cell-
associated radioactivity decreased by �40% after heparinase
II treatment for both wild-type (data not shown) and �105–
125 PrPs (data not shown), similar to the reduction produced
by treatment with chlorate.

Figure 6. �23–134 PrP is not toxic in a cell culture assay. HEK cells stably expressing the
indicated constructs were treated for 48 h in the presence or absence of 400 �g/ml G418, after
which cell viability was measured by MTT reduction. Cell viability is expressed as the value for
MTT reduction (A570) of G418-treated cells as a percentage of the value for untreated cells. The
bars show mean values � SEM. The asterisks indicate values that are significantly different
from those for WT PrP (p 	 0.0001).
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Together, these results indicate that
cell surface heparan sulfate chains and sul-
fation of endogenous GAG chains are not
necessary for the toxicity of �105–125 PrP
in an in vitro assay.

Discussion
Several deletions in the N-terminal tail of
PrP induce spontaneous neurodegenera-
tion in transgenic mice (Shmerling et al.,
1998; Baumann et al., 2007; Li et al., 2007)
and display toxic activity in a cell culture
assay (Massignan et al., 2010). Each of
these deletions, including the largest one
(�32–134), retains a highly conserved
segment of 9 aa immediately following the
signal peptide cleavage site (residues 23–
31; KKRPKPGGW). This study was un-
dertaken to investigate the role of residues
23–31 in the toxic activity of deleted forms
of PrP. Our results demonstrate that these
residues are essential for toxicity in both
transgenic mice and cell culture. The
contribution of these residues does not
depend on their role in endocytic traf-
ficking or binding of endogenous GAGs.
However, we have discovered that addi-
tion of exogenous GAG molecules can
dramatically suppress the toxicity of de-
leted PrP forms. These results suggest
possible mechanisms underlying PrP
toxicity, and they implicate the 23–31
region as a possible therapeutic target in
treatment of prion diseases.

Importance of residues 23–31
We report here that, in contrast to
Tg(F35) mice expressing �32–134 PrP,
which develop a spontaneous neurode-
generative illness within 3 weeks of birth,
Tg(�23–134) mice remain healthy and
free of neuropathology for �1 year. Both
kinds of mice express the transgene at
comparable levels under control of the
identical, modified PrP promoter. Since
the only difference between the proteins
encoded by these two transgenes is the
presence (in �32–134) or absence (in
�23–134) of residues 23–31, our results
strongly implicate 23–31 as an essential
neurotoxicity-determining region. These
in vivo results were confirmed by a new
cell culture assay we developed based on
hypersensitivity to the toxic effects of sev-
eral cationic drugs (Massignan et al., 2010). This assay demon-
strates that the removal of as few as 4 aa from the N-terminal
region (Lys 23-Pro 26) is sufficient to abrogate the toxicity of �32–
134 and �105–125 PrPs.

Interestingly, there is evidence that the 23–31 region may also
be essential for the ability of wild-type PrP to protect cells against
the toxic effects of deleted forms of PrP or Doppel (Atarashi et al.,
2003; Drisaldi et al., 2004; Yoshikawa et al., 2008). In this regard,
we have found that �23–134 and �23–31 PrPs display greatly

diminished ability to suppress the neurodegenerative phenotype
of mice coexpressing �32–134 PrP (J.A. Turnbaugh, L. Wester-
gard, D.A. Harris, unpublished observations).

How might the 23–31 region play a role in the toxic activity of
deleted forms of PrP? These nine residues have been implicated
previously in several biological functions of PrP C, including the
following: endocytic trafficking and localization to clathrin-
coated pits (Sunyach et al., 2003; Taylor et al., 2005), binding of
GAGs (Pan et al., 2002; Warner et al., 2002; Taubner et al., 2010),

Figure 7. �105–125 PrP, but not �23–134 or �32–134 PrPs, are endocytosed in N2a and HEK cells. A–H, Living N2a cells
expressing the indicated constructs were surface-labeled for PrP at 4°C. One set of cultures (A–D) was immediately fixed and
stained with fluorescent secondary antibody to confirm the initial distribution of surface PrP. The other set of cultures (E–H ) was
warmed to 37°C for 1 h to allow endocytosis to occur, after which surface PrP was removed with trypsin, and then the cells were
fixed, permeabilized, and stained with fluorescent secondary antibody to reveal the distribution of internalized PrP. Accumulations
of PrP in endocytic structures are visible in E and H, but not in F and G. I–P, Living HEK cells expressing the indicated constructs were
surface labeled for PrP at 4°C. One set of cultures (I–L) was immediately fixed and stained with fluorescent secondary antibody to
confirm the initial distribution of surface PrP. The other set of cultures (M–P) was warmed to 37°C for 1 h to allow endocytosis to
occur, after which cells were stained with fluorescent secondary antibody without permeabilization to reveal the amount of PrP
remaining on the surface. Loss of surface PrP, indicative of endocytosis, is evident in M and P, but not in N and O. Scale bar: (in P)
A–P, 50 �m. Quantification of PrP endocytosis using ImageJ software was performed by measuring the average pixel intensity of
PrP immunofluorescence inside the cell (Q) or on the cell surface (R) after warming to 37°C compared with the initial surface
immunofluorescence. PrP signals were normalized to fluorescence signal for DAPI, as a measure of cell number. The bars show
mean values � SEM. The asterisks indicate values that are significantly different from those for WT PrP (p 	 0.001).
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nuclear localization (Gu et al., 2003), retrograde axonal transport
(Hachiya et al., 2004a,b), antimicrobial activity (Pasupuleti et al.,
2009), binding of the Alzheimer’s A� peptide (Chen et al., 2010),
regulation of �-secretase activity (Parkin et al., 2007), and transduc-
tion of polypeptide segments across the lipid bilayer (Wadia et al.,
2008). Of these putative functions, the most extensively character-
ized are endocytic trafficking and GAG binding. The relationship
between these two functions and the toxicity of PrP mutants was
therefore the focus of the studies reported here.

Endocytosis is not required for toxicity
PrP C is a GPI-anchored membrane protein that is constitutively
endocytosed via clathrin-coated pits and recycled back to the cell

surface (Shyng et al., 1993, 1994). Previ-
ous studies indicated that the N-terminal
region of PrP C, including residues 23–31,
plays an important role in targeting the
protein to clathrin-coated pits and pro-
moting its subsequent endocytosis. Dele-
tion of Lys 23-Pro 26 (Taylor et al., 2005) or
mutation of three of the four positively
charged residues (Sunyach et al., 2003)
has been shown to significantly impair
endocytosis of mammalian PrP C. In addi-
tion, several N-terminal deletions reduce
endocytosis of chicken PrP C (Shyng et al.,
1995a).

Our results indicate that endocytosis is
not required for the toxicity of deleted
forms of PrP. Neither �23–134 nor �32–
134 PrP were endocytosed, yet the latter
mutant was toxic in our in vitro assay and
in transgenic mice. Moreover, the triple
mutation K24R/R25H/K27S abolished
endocytosis of �105–125 PrP but had no
effect on its toxicity. Thus, we conclude
that the lack of toxicity of �23–134 PrP
both in transgenic mice and in cell culture
is not caused by impaired endocytosis.

Exogenous GAGs inhibit mutant PrP
toxicity, but endogenous GAGs are not
required for toxicity
Previous studies have identified GAG
binding sites in PrP using recombinant
protein and synthetic peptides. Three re-
gions of PrP were identified as sufficient
for binding of heparin and heparan sulfate
(HS), including residues 23–52, 53–93,
and 110 –128 (Pan et al., 2002; Warner et
al., 2002). The first region contains the se-
quence KKRPKP (residues 23–28), which
is similar to a previously identified HS
binding consensus sequence XBBBXXBX,
where B is a basic residue and X is an un-
charged or hydrophobic residue (Cardin
and Weintraub, 1989). There is evidence
that the GAG-binding domains of PrP
may interact with glypican-1, an endog-
enous heparan sulfate proteoglycan that
mediates lipid raft association of PrP C

(Taylor et al., 2009). Moreover, exoge-
nous GAGs stimulate endocytosis of

PrP C (Shyng et al., 1995b). In addition to their interaction
with PrP C, GAGs have also been shown to inhibit formation of
PrP Sc, and to delay disease in animal models (Caughey and
Raymond, 1993; Doh-ura et al., 2004).

Our data demonstrate that two GAGs, heparin and PS, when
applied exogenously, significantly suppress the toxicity elicited
by PrP mutants in our cell culture assay. The strength of this effect
correlates with the binding affinity of these molecules for PrP
(Brimacombe et al., 1999), with PS being more potent than hep-
arin. In contrast, we report that the toxicity of �105–125 and
�32–134 PrPs is not dependent on endogenous GAGs, since in-
hibition of GAG sulfation using chlorate or enzymatic release of
surface GAG chains with heparinase does not affect toxic activity

Figure 8. Residues 23–26 are essential for the endocytosis and toxicity of �32–134 and �105–125 PrPs. Transfected HEK cells
expressing the indicated constructs were surface labeled for PrP at 4°C. (KRHPS indicates the triple mutation K24R/R25H/K27S.)
One set of cultures (A–C) was immediately fixed and stained with fluorescent secondary antibody to confirm the initial distribution
of surface PrP. The other set of cultures (D–F ) was warmed to 37°C for 1 h to allow endocytosis to occur, after which cells were
stained with fluorescent secondary antibody without permeabilization to reveal the amount of PrP remaining on the surface. Loss
of surface PrP, indicative of endocytosis, is evident in D, but not in E and F. Scale bar: (in F ) A–F, 50 �m. G, Quantification of PrP
endocytosis using ImageJ software was performed by measuring the average pixel intensity of PrP immunofluorescence on the cell
surface after warming to 37°C compared with the initial surface immunofluorescence. PrP signals were normalized to fluorescence
signal for DAPI, as a measure of cell number. The bars show mean values � SEM. The asterisks indicate values that are significantly
different from those for WT PrP (p 	 0.001). H, HEK cells expressing the indicated constructs were treated for 48 h in the presence
or absence of 400 �g/ml G418, after which cell viability was measured by MTT reduction. (KRHPS indicates the triple mutation
K24R/R25H/K27S.) Cell viability is expressed as the value for MTT reduction (A570) of G418-treated cells as a percentage of the value
for untreated cells. The bars show mean values � SEM. The asterisks indicate values that are significantly different from those for
WT PrP (p 	 0.0001).
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in the cell culture assay. Together, these
results suggest that exogenously applied
GAGs do not act by interrupting a func-
tional interaction between PrP and en-
dogenous GAGs. Rather, mutant PrP
toxicity may depend on binding to other,
non-GAG molecules on the cell surface
through the 23–31 region, perhaps via
electrostatic interactions involving posi-
tively charged residues. This interaction
may be competitively inhibited by supra-
physiological levels of exogenous, nega-
tively charged GAGs. A prediction from
the results presented here is that intracere-
bral administration of GAGs such as PS will
ameliorate neurodegeneration in Tg(�105–
125) or Tg(F35) mice. We are currently test-
ing this possibility.

Possible mechanisms for involvement
of residues 23–31 in the toxicity of
mutant PrP and PrP Sc

How does the 23–31 region of PrP func-
tion in a cellular context to influence PrP
toxicity? We have recently found that ex-
pression in transfected cells of �105–125
PrP induces large, spontaneous ionic cur-
rents that can be detected by patch-
clamping techniques (Solomon et al.,
2010b). These currents, which are pro-
duced by relatively nonselective, cation-
permeable channels or pores in the cell
membrane, can be silenced by overex-
pression of wild-type PrP, paralleling the
ability of wild-type PrP to suppress the
neurodegenerative phenotype of Tg(�105–
125) mice. Similar currents are induced by
PrP molecules carrying several different
point mutations in the central region that
cause familial prion diseases in humans.
These results indicate that the neurotoxic-
ity of some mutant forms of PrP is attrib-
utable to enhanced ion channel activity.

Interestingly, the ionic currents associ-
ated with �105–125 PrP can be rapidly
inhibited by treatment with PS (Solomon
et al., 2010b). In addition, we have found
that deletion of residues 23–31 abolishes
the current-inducing ability of �105–125
PrP (Solomon et al., 2011). These results
suggest that exogenous GAGs block inter-
actions of the 23–31 region of PrP with the
membrane or with a cell surface receptor,
and this interaction is essential for induc-
ing current activity.

It has been reported that residues 23–29 of PrP can function as
an autonomous “protein transduction domain” (PTD) that is
capable of translocating polypeptides (either PrP itself or reporter
proteins) across the lipid bilayer into the cytoplasm (Wadia et al.,
2008). This process, which is thought to involve lipid raft-
mediated macropinocytosis, depends on an interaction of the
PTD with cell surface GAGs, and can be inhibited by exogenous
GAGs. Thus, it is possible that the toxicity of �105–125, �32–

134, and other deleted forms of PrP involves the PTD activity of
the N terminus, perhaps via formation of channels or pores in the
lipid bilayer.

The results reported here may have relevance to the mecha-
nisms by which PrP Sc elicits toxic effects during natural prion
diseases. We have postulated that PrP Sc may activate some of the
same neurotoxic signaling pathways as �105–125 and other de-
leted forms of PrP (Li et al., 2007). If so, then residues 23–31 may

Figure 9. GAGs suppress the toxicity of �105–125 PrP in cell culture. A, HEK cells expressing WT or �105–125 PrP were treated
for 48 h in the presence or absence of 400 �g/ml G418, after which cell viability was measured by MTT reduction. Cell viability is
expressed as the value for MTT reduction (A570) of G418-treated cells as a percentage of the value for untreated cells. Where
indicated, PS or heparin (each at 100 �g/ml) were present during the 48 h incubation period. The bars show mean values � SEM.
The asterisks indicate values that are significantly different between PS- or heparin-treated cells compared with cells not treated
with GAGs (p 	0.0001). B, HEK cells expressing WT or�105–125 PrP were pretreated for 1 h in the presence of absence of heparin
(“Hep”) (100 �g/ml) or PS (100 �g/ml), after which incubation was continued for an additional 30 min in the presence or absence
of Zeocin (400 �g/ml). Cells were then lysed and analyzed for phosphorylated H2AX (�-H2AX) and actin by Western blotting. The
positions of �-H2AX, ubiquitinated �-H2AX (Ub-�-H2AX), and actin are indicated. C, Western blot signals for �-H2AX were
quantitated and normalized to the amount of actin. �-H2AX levels in the presence of Zeocin were expressed as a fold change
relative to levels in the absence of Zeocin. A single experiment, representative of at least three similar ones, is shown.
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play an important role in mediating scrapie-induced neurode-
generation. To test this idea, we are currently investigating
whether PrP molecules deleted for residues 23–31, which convert
to PrP Sc (J. A. Turnbaugh and D. A. Harris, unpublished data),
are impaired in their ability to induce neuropathology in scrapie-
infected mice. Interestingly, GAGs have been reported to signif-
icantly prolong incubation times in mouse models of scrapie, an
effect that has generally been attributed to the ability of GAGs to
inhibit conversion of PrP C into PrP Sc (Caughey and Raymond,
1993; Doh-ura et al., 2004). Our results raise the possibility that
GAGs also mitigate scrapie symptoms by blocking a PrP Sc-
related toxic signaling pathway. N-terminal residues of PrP, in-
cluding the 23–31 region, have been reported to play a role in
several aspects of PrP Sc formation and processing (Zulianello et
al., 2000; Supattapone et al., 2001; Solforosi et al., 2007; Ostap-
chenko et al., 2008; Ashok and Hegde, 2009), suggesting that this
region may affect both toxicity and PrP Sc conversion phenom-
ena. Given these considerations, the 9 aa domain we have studied
here represents an attractive target for therapeutic intervention.
Small molecules that bind to this positively charged region may
prove to be effective in reducing the toxic effects of PrP Sc as well
as inhibiting its formation.
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