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Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of
four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers
of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins
impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies
on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix,

and nuclear receptors in epithelial differentiation.

1. Introduction

The epithelial tissue in various organs (e.g., lungs, intestines,
and skin) is composed of a seat of epithelial cells that separate
the biological compartments in the body with different
internal environments. The intercellular adhesion complex
between epithelial cells consists of tight junctions, adherens
junctions, and desmosomes and is fundamental to the
construction of the epithelial cell seat and the maintenance
of cellular polarity [1, 2].

Within the intercellular adhesion complex, tight junc-
tions possess two distinct functions in the epithelium
tissue (Figure 1(a)). They function as a barrier controlling
molecular penetration of ions, solutes, water, and cells
through intercellular space and act as a fence dividing apical
and basolateral domains to compartmentalize the plasma
membrane [3]. These characteristics of tight junctions allow
epithelium to prevent pathogens and foreign substances
from invading and to facilitate directional exchange of
materials.

Tight junctions comprised 4 kinds of transmembrane
proteins: occludin, claudins, junctional adhesion molecules
(JAMs), and tricellulin as well as numerous cytosolic proteins
(Figure 1(b)). The cytosolic proteins are roughly divided into
two groups depending on the presence or absence of PDZ
(PSD-95, Dlg, and ZO-1) domains: the PDZ proteins (ZO-1,
-2, -3, Par-3, -6, and membrane-associated guanylase kinase
protein [MAGI]-1, -2, -3, etc.) and the non-PDZ proteins
(cingulin, heteromeric G proteins, atypical PKC [aPKC], rab-
3b, -13, PTEN, etc.) [5, 6]. Thus, a growing body of studies
has clarified the molecular components of tight junctions,
but it is still obscure how they accumulate and form tight
junctions.

The intercellular adhesion complex and cell polarity
should be established during differentiation of stem cells into
epithelial cells. In this paper, we focus on transmembrane
proteins of tight junctions and highlight the participation of
tight junctions, extracellular matrix, and nuclear receptors in
epithelial differentiation.
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FiGure 1: Functions of tight junctions and molecular components. (a) Functions of tight junctions. Barrier function: tight junctions limit
the penetration of intercellular material and impose selective permeability. Fence function: tight junctions restrict the diffusion of proteins
and lipids in a cell membrane. (b) Schematic drawing of bicellular junction proteins. Transmembrane and scaffold proteins of tight junctions
and polarity proteins are presented. These drawings are modified from a previously published review [4].

2. Transmembrane Proteins of Tight
Junctions and Their Involvement in
Epithelial Differentiation

2.1. Occludin. Occludin is a tetraspan membrane protein
with two extracellular loops (EC1 and EC2), a short intra-
cellular turn, and N- and C-terminal cytoplasmic domains
[7]. Among these domains, the long C-terminal domain is
phosphorylated at serine, threonine, and tyrosine residues
by various protein kinases including src family kinase and
CK2 [8, 9]. The C-terminal region of occludin also directly
binds to ZO-1 [10], and the phosphorylation of some tyro-
sine residues prevents both the interaction with ZO-1
and the assembly at tight junctions [11]. In addition, the
phosphorylation of some threonine and serine residues
enhances occludin trafficking to tight junctions and the
barrier function [9]. Although there are four splicing variants

in occludin [12], the biological significance of each variant in
tight junctions is unclear.

Overexpression of full-length and mutated occludin gene
in Madin-Darby canine kidney cells or Xenopus cells [13]
suggests that occludin contributes to the barrier function
of tight junctions. By contrast, occludin-deficient embryonic
stem cells differentiate into polarized epithelial cells with
well-developed tight junctions [14]. Moreover, occludin-null
mice are born with normal structure and barrier function
of tight junctions in the intestinal epithelial tissue [15], but
they exhibit various phenotypes, such as growth retardation,
hyperplasia of gastric mucosa, absence of cytoplasmic gran-
ules in striated duct cells of the salivary gland, thinning of
the compact bone, brain calcification, and testicular atrophy.
These phenotypes imply that occludin may be involved in
neither epithelial differentiation nor the barrier function but
in other unknown roles.
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Occludin interacts with a variety of cellular signaling
molecules and may contribute to the signal transduc-
tion. For example, occludin binds to transforming growth
factor [TGF]-f type I receptor and regulates TGF-fS-de-
pendent disassembly of tight junctions during epithelial-to-
mesenchymal transition [16]. It also associates with nonre-
ceptor tyrosine kinase c-Yes, aPKC, PI-3 kinase, and protein
phosphatases 2A [6, 17]. Furthermore, occludin regulates
the organization of actin and the directional migration in
epithelial cells [18]. In addition, it is reported that occludin is
concerned with apoptosis via activation of the small GTPase
RhoA, mitogen-activated protein kinase (MAPK), and Akt
signaling pathways [19, 20].

2.2. Claudins. The claudin family consists of 24 distinct
members in human and mice with three others recently
identified [4, 21, 22]. They are 18- to 27-kDa tetraspan
proteins with N- and C-terminal cytoplasmic domains and
two extracellular loop domains, and are expressed in tissue-
and cell type-specific manners [3, 23]. In addition, isoforms
of some claudins (e.g., claudin-10 and -18) are generated by
alternative splicing and exhibit different expression patterns
and functions [24, 25].

Claudin genes have few introns, and several pairs of
them are located in close proximity in human and mouse
genome. For example, in humans, Claudin-3 and Claudi-4
are located on chromosome 7, Claudin-6 and Claudin-9 on
chromosome 16, Claudin-8 and Claudin-17 on chromosome
21, and Claudin-22 and Claudin-24 on chromosome 4 [26].
Gene duplication is assumed in these claudins, and the co-
ordinated expression is reported at least for Claudin-3 and
Claudin-4 genes [27].

Claudins are indeed the backbone of tight junctions,
since they can reconstitute tight-junction strands even in
fibroblasts [28]. All claudins except for claudin-12 possess
a PDZ-binding motif and are capable of direct interaction
with the proteins containing PDZ domain such as ZO-1,
-2, -3, multi-PDZ domain protein (MUPP-1), and PALS-1
associated TJ protein via the cytoplasmic tail (PAT]) [29—
32]. Hence, claudins are linked to the actin cytoskeleton
through binding to the scaffolding proteins (ZO-1 and ZO-
2), stabilizing tight junctions [33].

It should be noted that the posttranslational modifica-
tion of claudins influences their localization and function.
First, the phosphorylation of claudins is associated with
tight-junctions assembly and paracellular permeability. For
example, phosphorylation of claudin-3, -5, and -16 by pro-
tein kinase A facilitates tight-junctions assembly and func-
tionality [34, 35]. Phosphorylation of claudin-1 and/or
claudin-4 by MAPK and aPKC is also reported [36]. Second,
palmitoylation of claudins at the dicysteine motif, which
is conserved through the claudin family, is thought to in-
crease claudin accumulation in tight junctions and enable
their translocation to detergent-resistant plasma membranes
(lipid rafts) [37]. Third, O-glycosylation in some claudins,
claudin-1, -3, and -4 by O-linked N-acetylglucosamine
transferase is predicted, but the function of this modification
is unknown [38].

Physiological roles of claudins have been clarified from
studies of transgenic and knockout mice or human diseas-
es [39]. Mutations in claudin-1 gene cause neonatal ich-
thyosis and sclerosing cholangitis in humans, and claudin-1-
deficient mice result in neonatal death due to the disturbance
of skin permeability [40, 41]. Claudin-2 knockout mice
show no obvious phenotypic changes (e.g., of growth and
behavior) [42]. The deletion of claudin-2 gene causes the
decrease in Na* paracellular permeability [43]. Claudin-
7-null mice die within 12 days of birth owing to severe
salt wasting, chronic dehydration, and growth retardation,
which are caused by the breakdown of NaCl homeostasis
[44]. Claudin-11 (also known as oligodendrocyte-specific
protein) KO mice exhibit slowed CNS nerve conduction,
markedly hindlimb weakness, and sterility in males due to
the absence of tight-junction strands in CNS myelin and
between Sertoli cells [45]. Mutations of claudin-14 gene
lead to autosomal recessive deafness in mice and humans,
suggesting that claudin-14 is associated with the cation-
restrictive barrier in outer hair cells of the cochlea in the ear
[46, 47]. Claudin-15-deficient mice show uneventful birth
and growth but manifest an enlarged upper small intestine
due to increased proliferation of normal cryptic cells [48].
Moreover, in the adult small intestine of Claudin-15-deficient
mice, luminal Na® and K* homeostasis is disturbed, and
glucose absorption is significantly decreased [43]. Various
mutations in claudin-16 gene are seen in patients of familial
hypomagnesemia with hypercalciuria and nephrocalcinosis,
an autosomal recessive disease with severe Mg?" and Ca’*
wasting [49]. In fact, claudin-16 is expressed in epithelial cells
of the thick ascending loop of Henle [50]. Taken together
with the finding that mutations in claudin-19 gene also show
similar phenotypes with abnormal Mg?* reabsorption [51],
it appears that claudin-16 and -19 modulate paracellular
absorption of Mg?* and Ca?* in the kidney.

2.3. Junctional Adhesion Molecules (JAMs). JAMs belong to
the immunoglobulin (Ig) superfamily and are N-glyco-
sylated transmembrane proteins of tight junctions [5, 52].
They consist of two extracellular Ig-like domains, a sin-
gle transmembrane region, and a C-terminal cytoplasmic
domain that ends in a canonical PDZ domain-binding site.
JAMs are classified into two subgroups by their sequence
and structure. JAM-A (also referred as JAM/JAM-1/106 anti-
gen/F11R), JAM-B (also known as VE-JAM/mJAM-3/hJAM-
2), and JAM-C (also known as mJAM-2/hJAM-3) have a
class 1I PDZ-binding domain at C-terminal ends, which
directly interact with proteins containing PDZ domains: ZO-
1 [53], AF-6/afadin [54], MUPPI [30], and PAR-3 [55]. On
the other hand, coxsackie and adenovirus receptor (CAR),
endothelial cell-selective adhesion molecule (ESAM), and
JAM4 contain a class [ PDZ domain-binding motif at their
C-terminal ends, associate with Ligand-of-Numb protein X1
and MAGI-1 [56-59]. In addition, it has been reported that
JAM-A, JAM-B, and JAM-C interact with integrins L2
(LFA-1), o431 (VAL-4), and aM32 (Mac-1), respectively, via
the extracellular domains [60, 61].

JAM-A contributes to the formation of tight junctions
and cell polarity through homophilic binding and inter-
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TaBLE 1: Nuclear receptors induce the expression of claudins.

Induced claudin

Nuclear receptors . Cells References
expression
Cldn1, Cldn4 Human nasal epithelium [83]
Retinoic acid receptor Cldn3 Human urothelium [84]
Cldné, Cldn7 Mouse F9 stem cell [81]
Cldn23 Mouse epidermis [82]
Hepatocyte nuclear Cldn6, Cldn7 Mouse F9 stem cell [85, 86]
factor 4a (HNF4«) Cldn1 Mouse hepatocyte [87]
Androgen receptor Cldn3 Mouse Seltoli cell [88]
Progesterone receptor Cldn3, Cldn4 Mouse amniotic epithelium [89]
Corticoid receptor Cldn3, Cldn4 Gill epithelium [90]
Vitamin D receptor Cldn2, Cldn12 Mouse intestinal Caco-2 cell [91]

action with PAR-3/aPKC/PAR-6 complex in epithelial cells
[62, 63]. JAM-B and JAM-C also associate with PAR-3 via
PDZ-binding domain [52]. JAM-B and JAM-C are expressed
in Sertoli cells and spermatids, and JAM-C is essential for the
polarization of round spermatids [64]. By contrast, ESAM is
observed in endothelial cells and platelets, and the deletion
of ESAM gene increases VEGF-induced permeability in mice
endothelial cells [65-67]. Interestingly, JAM-C is expressed
in undifferentiated embryonic stem cells more abundantly
than in differentiated cells [68]. However, JAM-C mutant
mice do not show developmental defects. Further studies are
required to elucidate the role of JAMs in epithelialization.

2.4. Tricellulin. Tricellulin, a tetraspan protein that concen-
trates at tricellular contacts of epithelial cells, was identified
by using gene chip analysis to compare parental epithelial
cells and cells undergoing EMT [69]. It is phosphorylated by
CK1, and its expression is repressed by SNAI1, a zinc-finger
type transcription factor that plays an important role in
EMT [70]. In addition, tricellulin concentrates at tricellular
tight junctions in cochlear vestibular epithelial cells and the
recessive mutations of tricellulin gene cause nonsyndromic
deafness [71]. Moreover, tricellulin is related to the epithelial
barrier and organization of both bicellular and tricellular
tight junctions. Interestingly, tricellulin is incorporated into
claudin-based tight junctions independently of ZO-1 bind-
ing and is translocated from bicellular to tricellular tight
junctions in the presence of occludin [72].

3. Possible Involvement of Claudins in
Epithelial Differentiation

During embryonic development in mice, claudin-6 is first
detected in the epithelial zone of embryonic bodies at
least in part via the bone morphogenic protein-signaling
pathway [73], and afterwards observed in several types of
epithelial tissues such as the epiblast and hypoblast (to E7.5),
the definitive endoderm (to E8.5), the entire gut, optic
vesicles, and a small region of the forebrain (at E9.5) [74].
Although these results imply that claudin-6 is involved in
epithelialization, the examined claudin-6-null mice show no

abnormality [74]. Other claudins might compensate for the
function of claudin-6.

The epithelial-mesenchymal transition (EMT) is a pro-
cess during which epithelial cells convert to mesenchymal cell
morphology. This occurs in normal developmental processes
including mesoderm and neural-crest formation and in the
invasive process in tumors of epithelial origin. EMT has two
steps: loss of intercellular adhesion (adherens and tight
junctions) and acquiring cell motility [75]. Snail directly
binds to the promoter of E-cadherin, claudin-3, claudin-4,
and claudin-7 and represses the expression of those genes
[76], thereby inducing EMT. Therefore, not only E-cadherin,
but also claudins are possibly related to EMT.

In the development of gut tube, endodermal cells dif-
ferentiate into gut epithelial cells and form a lumen as the
cells polarize. Claudin-15 associates with single lumen
formation and forms ion-permeable pores from the study of
knockdown of it using morpholino in zebrafish [77]. These
findings also suggest that claudins directly relate to epithelial
differentiation.

4. Involvement of Nuclear Receptors in
Epithelial Differentiation

Retinoids have numerous biological effects on vertebrate
development, differentiation, proliferation, and homeosta-
sis through two types of nuclear receptors, retinoic acid
receptors (RARs) and retinoid X receptors (RXRs) [78, 79].
Using a mouse F9 stem-cell line, we previously showed
that various RXR/RAR heterodimers exerted both specific
and redundant functions in endodermal (epithelium-like
cells) differentiation [80]. In addition, we found that the
RXRa/RARy pair mediated the induced expression of tight-
junctions molecules (occludin, claudin-6, and claudin-7)
and the establishment of both polarized epithelial mor-
phology and functional tight junctions (Table 1) [81]. It is
also reported that retinoid receptors and the kinase IKK1
cooperatively regulate claudin-23 expression in keratinocytes
and participate in the formation of the epidermal barrier
(Table 1) [82].

Hepatocyte nuclear factor 4o (HNF4«), another member
of the nuclear receptor superfamily, transcriptionally con-
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FIGURE 2: Models of HNF4a-triggered formation of tight junctions and microvilli in F9 cells. (a) In an undifferentiated state, several
junctional proteins are accumulated to premature junctions. (b) HNF4« provokes the formation of junctional complexes and microvilli via
induction of expression of occludin [OCLN], claudin-6 [CLDNG6], claudin-7 [CLDN7], and ezrin/radixin/moesin-binding phosphoprotein

50 [EBP50].

trols the expression of a large number of target genes involved
in nutrient and drug metabolism, hematopoiesis, and blood
coagulation [92-94]. It is initially detected in primitive
endoderm and subsequently in visceral endoderm (VE)
during early mouse development [95]. In adults, HNF4« is
expressed in a variety of epithelial cells of the liver, kidney,
intestine, pancreas, and stomach. HNF4« also participates
in the differentiation of VE cells and hepatocytes [96, 97].
Interestingly, we demonstrated that HNF4« triggered the
expression of tight-junction molecules (occludin, claudin-
6, and claudin-7) and translocated tight junction proteins
(ZO-1, -2, -3, JAM-B, and JAM-C) and cell polarity proteins
(PAR-3, PAR6, aPKC, CRB3, Pals1, and PAT]J) to tight junc-

tions as well as the formation of functional tight-junctions
and epithelial polarity [85, 86] (Figure2 and Table1).
HNF4« also induced the expression of ezrin/radixin/moesin-
(ERM-) binding phosphoprotein 50 and phosphorylation
and apical concentration of ERM proteins [98] (Figure 2).
Thus, HNF4« initiates the formation of tight-junctions
and microvillus and induces differentiation in epithelial
cells.

Androgen and estrogen receptors induce the differentia-
tion of prostate and mammary gland epithelium, respectively
[99]. Several other nuclear receptors, including those of
progesterone, corticoid, vitamin D, and PPARgamma, induce
the expression of claudins in various cells (Table 1) [83,



84, 89-91]. Taken collectively, it is strongly suggested that
nuclear receptors induce the expression of tight junctions
and cell-polarity proteins and provoke epithelial differenti-
ation with the formation of cell junctions and cell polarity.

5. Involvement of Extracellular Matrix in
Epithelial Differentiation

Extracellular matrix (ECM, also known as basement mem-
brane) is composed of various proteins, such as collagen,
laminin, fibronectin, heparan sulfate proteoglycan, and
nidogen, and these proteins are expressed in an organ- and
development-dependent manner [100, 101]. In epithelial
tissue, ECM functions to support epithelial cells and to
stimulate their proliferation. ECM also seems to be essential
for the differentiation of epithelial cells [102]. For instance,
laminin and collagen type IV promote the differentiation
of intestinal epithelial cells [103], and ECM functions
to increase the ability of proliferation and differentiation
of human renal cells and to maintain the differentiated
epithelial cells for a long term [104].

Concerning the relationship between ECM and tight
junctions, ECM proteins, especially fibronectin, increase the
expression of claudin-18 and occludin along the plasma
membrane in alveolar epithelial cells, and enhance the
barrier function [105]. In turn, claudins recruit certain
types of matrix metalloproteinases (MMPs, which serve as
proteinases for ECM) onto cell surfaces and enhance the
activation of MMP [106]. Thus, ECM and tight junctions
influence the expression and function of each other’s com-
ponents in ways that suggest exciting avenues for further
research.

6. Conclusion

Our knowledge of the molecular nature of tight junctions is
still expanding. For instance, MarvelD3 has similar structure
to occludin and tricellulin and is able to partially compensate
for the deletion of those genes [107]. Bves/Popla, which
belongs to the Popeye family Popdc, modulates RhoA and
ZONAB/DbpA, a y-box transcription factor, and associates
with tight-junctions proteins via ZO-1 in epithelial cells
[4, 108-110]. In addition, a novel RhoGEF (p114RhoGEF)
is identified to be involved in maturation of tight junctions
via restricted activation of RhoA [111]. Thus, a variety of
extracellular and intracellular proteins appear to participate
in the formation and function of tight junctions in epithelial
cells.

However, there remain several open questions in tight
junctions. (1) Where are tight-junctions proteins assembled
(e.g., cytoplasmic versus junctional assembly)? (2) How are
they recruited into the junctions (e.g., do cargo proteins
exit)? (3) What accounts for the selectivity of heteromeric
or homomeric claudin-claudin interactions? (4) What is
the functional relevance of posttranslational modification
of tight-junctions proteins? In addition, it should also be
determined how tight-junctions proteins regulate epithelial
differentiation.
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