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Abstract

Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human
genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent
validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist
utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We
have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold
Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance.
The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 36720 K Whole Genome and CNV focused arrays, the
Agilent 161 M CGH and High Resolution and 26400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and
the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997
validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number,
size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost
effective CNV detection and validation for both basic and clinical applications.
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Introduction

Copy Number Variations (CNVs) are a major component of

human genomic variation and are thought to be important

contributors to phenotypic diversity and human disease [1]. These

unbalanced chromosomal rearrangements include duplications,

deletions and insertions with respect to a reference genome and lie

in the size continuum of genomic variation between small

insertions/deletions (indels; 1–1000 bp) and whole chromosomal

aneuploidies (multiples of 10 Mbps). Individual CNV events may

be benign or pathogenic and can manifest different phenotypes

depending on the genomic context of the variant [1,2]. Multiple

studies have mapped CNVs genome-wide in individual genomes

using several different technologies e.g. [3–11]. Such studies aim to

catalog the complement of CNVs within a single genome and to

understand their relationships to functional elements, including

their implications for normal and disease associated phenotypes.

These efforts are curated in databases such as the Database of

Genomic Variants (DGV) (http://projects.tcag.ca/variation/).

The extent to which CNVs exist in the human genome has not

been exhaustively assessed. However, numerous efforts including

the recent release of data from the 1000 Genomes Project [12]

suggest that the distribution of CNVs in the genome is biased

towards multiple hotspots including segmental duplications and

away from genes encoding protein complexes and other dosage

sensitive genes [3,8,13,14]. CNVs affect a significantly larger

fraction of the genome than Single Nucleotide Polymorphims

(SNPs) and may encompass several percent of the genome [3,8].

To date, three main technologies are used for accurate and

high-resolution genome-wide CNV mapping [15]; 1) array

Comparative Genome Hybridization (aCGH), 2) SNP and SNP

plus CGH combination array platforms and 3) 2nd generation

sequencing technologies [14,16–18]. Sequencing based technolo-

gies are theoretically able to provide base pair resolution of CNV

events. However, there remain several obstacles to using only

sequencing based methods for CNV mapping. At present, it is still

relatively expensive to sequence a genome to the required depth of

coverage (currently at least ,206) for reliable detection of CNVs

greater than 1 kb [3,12]. Moreover, it is still difficult to execute

large-scale genome-wide association type studies due to the limited

sample throughput of current 2nd generation DNA sequencing

formats. Furthermore, the requisite computational analysis

pipelines for identifying CNVs from whole genome sequence data

have immense hardware and software requirements. A combina-
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tion of algorithms is needed to capture a sufficient portion of the

CNVs in a sequenced genome [3], and these algorithms are not

yet mature enough to be used routinely on the many terabytes of

sequencing data generated per genome. In addition, mapping

short sequencing reads to non-unique regions of the genome is

ambiguous. Over the last 5 years however, increasingly dense and

sometimes targeted oligonucleotide arrays for CNV detection have

been developed. These have co-evolved with robust and

straightforward experimental procedures and with platform

specific CNV mining software that can be employed in a

reasonably powerful desktop computing workstation. Genome-

wide mapping of CNVs by array-based platforms has become a

standard approach in phenotype association studies, e.g. [19,20]

clinical cytogenetics e.g. [21] as well as a standard validation tool

for CNVs called from whole genome sequence data [3,8]. As such,

array based technologies are likely to be used for CNV mapping

for some time.

Currently there are multiple, widely used array platforms that

vary in methodology, coverage of the genome, resolution of CNV

calls, workflow, and subsequently in ability to accurately and

comprehensively detect CNVs. Here we assess the performances of

the leading array based platforms for genome-wide CNV detection

in the HapMap [22] CEU sample NA12878 against two Gold

Standard datasets (GSs). This study differs from previous platform

comparisons [23–26] in that we have compared the abilities of

these platforms to detect known, experimentally validated CNV

events genome-wide by taking advantage of the recently released,

independent lists of CNVs from the 1000 Genomes Consortium

[3,12] and ultra high-resolution aCGH [8]. These CNV sets are

considered the most accurate and complete sets of CNV calls for

any genome currently available. The platforms that were

compared were the Roche NimbleGen 4.2 M, 2.1 M and

36720 K whole genome (WG) and CNV focused designs, the

Agilent 161 M CGH and High Resolution and 26400 K CNV

focused and CGH+SNP designs, the Illumina Omni1Quad and

the Affymetrix SNP 6.0 arrays.

We attempted to carry out an unbiased comparative analysis of

the practical utilities of these platforms to detect known CNVs in

this sample by using data from experiments carried out by the

platform manufacturers and the recommended software. We

compared the size range, total number, and resolution of the CNV

calls from each platform to those of the Gold Standard sets. In

addition, we calculated the sensitivity of each platform and found

enormous differences. We also showed that each platform detects

additional CNVs that are not included in the stringent Gold

Standard sets. Finally, for the platforms that require control

samples, we investigated the value of using control DNA from a

single sequenced individual compared with that from a pool of

individuals. We found that the use of a single genome control led

to higher performance. These studies are important for maximiz-

ing value from the many thousands of CNV probing experiments

performed each year.

Results

Genome-wide CNV detection by twelve platforms
We compared the genome-wide CNV detection abilities of

twelve different array-based platforms from four different

manufacturers (summarized in Table 1): Roche NimbleGen

(hereafter referred to as NimbleGen) 4.2 M, 2.1 M and

36720 K whole genome (WG) and CNV focused designs, Agilent

161 M CGH and High Resolution designs and 26400 K CNV

focused and CGH+SNP designs, Illumina Human Omni1Quad

and Affymetrix SNP 6.0 arrays. These platforms differ in a

number of features including total number of probes and their

spacing; these and other experimental details are also included in

Table 1. Additionally, we compared two different conditions

(single genome control versus pool of genomes) for the two

NimbleGen 2.1 M designs. Thus a total of 14 different platform

CNV sets are compared in this paper.

DNA from the same sample, HapMap [22] CEU sample

NA12878, which has been extensively characterized by the 1000

Genomes Project [12], was hybridized to each platform. In most

cases, hybridizations were performed either by the company that

manufactures the arrays or by a service provider; however, one set

of NimbleGen experiments was performed by us, and the

Affymetrix SNP 6.0 array data was already published. Two

technical replicates were performed for all experiments. For most

cases the control DNA was comprised of the individual HapMap

CEU sample NA10851, which matched published results used in

our Gold Standard set (see below). However, for one Agilent

platform the well-characterized HapMap CEU NA12891 DNA

was used. Analyses of the raw data for generating the CNV lists

were carried out using the manufacturers’ software and recom-

mended parameter settings as described in the methods.

The different platforms called from 103 (NimbleGen 2.1 M

Whole Genome against pool) to 1981 (NimbleGen 2.1 M CNV)

total CNVs (Table S1) in the genome of NA12878. Only one

independently validated CNV (57 kb) was detected by all

platforms (Figure 1) and many other CNVs were unique to

individual or distinct sets of platforms. The CNV that was detected

by all platforms falls within an Olfactory Receptor gene cluster, a

known CNV hotspot [27]. This common CNV has been reported

by several studies using diverse methods e.g. [6,8,28,29]. The 1000

Genomes Project reports this CNV as two distinct events, a 57 kb

deletion on one allele and a 53 kb deletion on the other allele

entirely contained within the bounds of the 57 kb deletion.

However, aCGH cannot differentiate these two alleles and calls

the CNV as a single event. Interestingly the breakpoints lie in

consecutive segmental duplications indicating that this event is

likely to be mediated by non-allelic homologous recombination of

these segmental duplications [30]. In addition, the probe tracks

show that the probe densities for the twelve arrays are highly

variable. The size distributions of the CNVs called by each

platform are shown in Fig. 2. More than 50% of events called by

the NimbleGen CNV focused arrays are less than 2 kb in size,

with up to 36%,500 bp; this result is expected since these arrays

have high tiling density in known CNV regions and the largest

number of probes. More than 50% of the Illumina Omni1Quad

calls are ,3 kb whereas ,50% of the Agilent 26400 K CNV calls

are ,6 kb. More than 80% of CNVs called by the NimbleGen

4.2 M and 36720 K WG designs and Agilent 161 M CGH and

26400 K CGH+SNP arrays are 1–500 Kb in size. More than

90% of CNVs called by the NimbleGen 2.1 M WG, Agilent

161 M High Resolution and the Affymetrix SNP 6.0 arrays are in

the 1–500 kb size range. All the arrays have a similar frequency

distribution of CNV calls in the larger size ranges. The size

distributions of the Gold Standard CNV sets (described below) are

shown for reference. More than 50% of the 1000GP Gold

Standard CNVs are less than 500 bp (75%,1 kb) while more

than 50% of the 42 M Gold Standard CNVs are 500 bp-3 kb in

size.

The Different Platforms Can Detect Many Known CNVs
To determine the relative performances of the different

platforms we compared the CNV sets obtained from each array

to Gold Standard datasets. Two independent sets of Gold

Standard CNVs (GS CNVs) were assembled: one set was from

Comparative Analysis of CNV Detection Arrays
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the 1000 Genomes Pilot Project sequence data [3,12] and the

other from a study that used ultra-high resolution aCGH [8]. The

1000 Genomes Project Gold Standard (1000GP GS) is the set of

experimentally validated sequence-based CNV calls found in

NA12878 by the 1000 Genomes Project July 2010 data release.

The final set of 3997 unique CNVs in the genome of NA12878

was determined at base pair resolution using Read Depth, Split

Read and Paired-end analysis of 2nd generation sequencing data.

Each CNV in the final set was validated by aCGH (NimbleGen or

Agilent custom arrays) or by PCR. The validated CNV calls from

this sequence data are thought to be the most accurate set of calls

for this sample to date [3]. We also used a second gold standard,

the Roche NimbleGen 42 million aCGH Gold Standard (42 M

GS). This is the list of CNVs found in the genome of NA12878 by

aCGH using a set of 20 NimbleGen arrays containing ,42 million

long oligo probes (50–75 bp) in total tiling the non-repetitive

portion of the genome (median spacing ,56 bp) and by using

NA10851 as a control (the same control that we used). This set

consists of 756 unique CNVs .450 bp in size and containing a

minimum of 10 consecutive probes per CNV. Validation of a

Table 1. Summary of CNV detection platforms and experiments.

Platform
Total
Features

Median
Probe
Spacing

Data
Source

Technical
Replicates

Control
Sample Analysis

Total CNVs
Replicate 1,
Replicate 2

Total CNV
Overlap with
1000G GS

Total CNV
Overlap with
42 M GS

aCGH Platforms

Roche NimbleGen
Human CGH 4.2 M
WG Tiling Array

4,200,000
(50–75mers)

284 bp NimbleGen 2 NA10851 NimbleScan 2.6
(converted to
HG18 using
LiftOver from UCSC)

425,465 83, 87 115, 112

Roche NimbleGen
Human CNV 4.2 M
Array

4,200,000
(50–75mers)

284 bp Service
Provider

2 NA10851 NimbleScan 2.6
(converted to
HG18 using
LiftOver from UCSC)

1926, 1883 408, 386 310, 275

Roche NimbleGen
Human CGH 2.1 M
WG Tiling Array

2,100,000
(60mers)

1.1 kb NimbleGen 2 NA10851 NimbleScan 2.6 498, 482 73, 78 98, 95

Snyder 2 Pool of 7
females
(Promega)

229, 103 47, 18 64, 22

Roche NimbleGen
Human CNV 2.1 M
Array

2,100,000
(50–75mers)

1.2 kb
(backbone)

NimbleGen 2 NA10851 NimbleScan 2.6 1939, 1981 286, 299 251, 253

Snyder 2 Pool of 7
females
(Promega)

481, 605 66, 63 21, 24

Roche NimbleGen
Human CGH 36720 K
WG Tiling Array

720,000
(60mers)

2.5 kb NimbleGen 2 NA10851 NimbleScan 2.6 206, 187 24, 26 29, 29

Roche NimbleGen
Human CNV 36720 K
Array

720,000
(50–75mers)

4.8 kb
(backbone)

NimbleGen 2 NA10851 NimbleScan 2.6 819, 897 160, 179 166, 178

Agilent SurePrint G3
Human CGH
Microarray, 161 M

963,029
(60mers)

2.1 kb overall
(1.8 kb in
RefSeq Genes)

Service
Provider

2 NA10851 AGW6.5 825, 879 57, 59 94, 76

Agilent SurePrint G3
Human High
Resolution
Microarray, 161 M

963,331
(60mers)

2.6 kb Service
Provider

2 NA10851 AGW6.5 (converted
to HG18 using
LiftOver from UCSC)

1566, 1604 91, 90 114, 107

Agilent SurePrint G3
Human CNV
Microarray, 26400 K

442,892
(60mers)

1 kb in CNVs Service
Provider

2 NA10851 AGW6.5 (converted
to HG18 using
LiftOver from UCSC)

1055, 1002 49, 128 158, 184

aCGH+SNP Platforms

Agilent SurePrint G3
Human CGH+SNP
Microarray, 26400 K

292,097 (CGH)
(60mers)
119,091 (SNP)

7.2 kb overall
(4.5 kb in
Refseq genes)

Agilent 2 NA12891 AGW6.5 (converted
to HG18 using
LiftOver from UCSC)

120, 126 4, 5 15, 16

Illumina Human
Omni1-Quad
BeadChip

1,140,419
(SNP)

1.2 kb Service
Provider

2 N/A GenomeStudio
2010.2 (converted
to HG18 using
LiftOver from UCSC)

251, 267 62, 68 122, 122

Affymetrix SNP 6.0 946,000 (CGH)
(25mers)
906,000 (SNP)

CN 2.2 kb
SNP 1.3 kb
Overall 0.7 kb

Mc. Carroll
et al.

1 N/A Birdseed 162 49 67

doi:10.1371/journal.pone.0027859.t001
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ubset of calls was carried out by qPCR and by aCGH on a custom

designed Agilent CNV genotyping array [8]. Because the resolution

of this aCGH experiment far exceeds that of the platforms that were

analyzed in this paper, this validated set could be used as a gold

standard. We realize that the use of a NimbleGen specific gold

standard for comparing NimbleGen platforms to those of other

manufacturers may be of concern. However, the trends observed in

our comparison generally agree regardless of the gold standard

used, so we believe any such potential bias is negligible. These two

different gold standard sets are complementary since they were

derived from differing technologies that have different abilities to

detect CNVs (summarized in Table 2). In total, only 255 (6%)

1000GP GS CNVs (corresponding to 205 (27%) 42 M GS CNVs)

occur in both sets using the 50% reciprocal overlapping criterion

described below.

We assessed the performance of each array by several metrics

including the number of GS CNVs detected, their size, their

breakpoint resolution (i.e. the platform CNV size relative to defined

GS breakpoints), the sensitivity of each platform and the number of

non-GS CNVs called by each platform. To determine the validity of

a platform CNV call we used an extension of the criterion

established by the 1000 Genomes Project for counting two different

CNV calls as the same event [3]: a platform CNV is considered

Figure 1. Detection of a known 57 kb CNV on chromosome 1q44 by twelve different array platforms. Depicted are the log2 ratios of
NA12878 to the control genome and locations along the chromosome for each probe (blue dot) in this region. Gene, 1000 Genomes Project Gold
Standard CNVs (1000GP CNVs) and Segmental Duplication (SD) tracks are shown. The CNV highlighted in the red box was called by both replicates for
all twelve platforms using the manufacturer-recommended software and parameters. Red arrows indicate examples of additional array-specific CNV
calls. A. NimbleGen 4.2 M Whole Genome, B. NimbleGen 4.2 M CNV, C. NimbleGen 2.1 M Whole Genome, D. NimbleGen 2.1 M CNV, E. NimbleGen
36720 K Whole Genome, F. NimbleGen 36720 K CNV, G. Agilent 161 M CGH, H. Agilent 161 M High Resolution, I. Agilent 26400 K CNV, J. Agilent
26400 K CGH+SNP, K. Illumina Human Omni1Quad, L. Affymetrix SNP 6.0.
doi:10.1371/journal.pone.0027859.g001

Figure 2. Size distributions of CNV call sets. Data include CNVs
from all replicates of the fourteen different experiments listed in table 1
(twelve different platforms and two different conditions for NimbleGen
2.1 M arrays). The size distributions of the two Gold Standards are
overlaid for reference. The apparent frequency spikes are results of the
changing bin size.
doi:10.1371/journal.pone.0027859.g002

Comparative Analysis of CNV Detection Arrays
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validated if either it overlaps a single GS CNV by at least 50%

reciprocally, or there exists a set of GS CNVs such that each

member of the set overlaps the platform call by at least 50% of the

GS CNV size and the total number of base pairs of the platform call

that overlap some member of this set of GS CNVs is at least 50% of

the size of the platform call. Henceforth, any further mention of

overlap will imply these criteria unless otherwise stated.

Each platform identified many GS CNVs. A summary of the

sizes of the GS CNVs detected by each platform is shown in

Figure 3. Overall, the greatest absolute number of GS CNVs

Table 2. Summary of possible relationships between reference, experimental control and test genomes and the resulting abilities
of different methods to detect CNVs in the test genome (with respect to the reference genome).

Genome relationships
at a given locus

Test CNV detection by
aCGH against Control

Test CNV in 1000GP Gold Standard
(against Reference Genome)

Test CNV in 42 M aCGH Gold
Standard (against Control)

Test?Control = Reference yes yes yes

Test?Control?Reference yes yes yes

Test = Control?Reference no yes (but those .500 bp were removed
from our GS for fairer comparison)

no

Test = Control = Reference no no no

Test = Reference?Control yes no yes

Copy Number Variants in one genome can only be defined with respect to a reference genome. Comparisons to different reference genomes will produce different sets
of CNVs for the same test genome. Sequencing based methods directly compare the test genome to the reference genome. For array-based methods however, this
comparison is indirect as an experimental control genome is also required. The relationship between the reference genome and this control genome determines which
CNVs in the test sample (with respect to the reference genome) are detected.
doi:10.1371/journal.pone.0027859.t002

Figure 3. Resolution of array platform CNV calls for known Gold Standard CNVs. Each data point plots the size of a platform CNV versus
the size of the corresponding Gold Standard CNV that individually overlaps the platform call by 50% reciprocally. Events overlapping the 1000GP GS
CNVs are shown in blue. Events overlapping the 42 M GS CNVs are shown in pink. Total numbers of data points and R2 values are indicated in the
table below. Data is an aggregate of all events from two technical replicates for each platform except the Affymetrix SNP 6.0. The size distribution and
total number of platform CNVs that overlap Gold Standard CNVs in this way are also clearly visible.
doi:10.1371/journal.pone.0027859.g003

Comparative Analysis of CNV Detection Arrays

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27859



detected by each platform was found by the NimbleGen 4.2 M

CNV (619 1000GP GS CNVs, 385 42 M GS CNVs) followed in

order from most GS CNVs detected to least by the NimbleGen

2.1 M CNV, 36720 K CNV, Agilent 26400 K CNV, Agilent

161 M High Resolution, NimbleGen 4.2 M WG, Illumina

Omni1Quad, NimbleGen 2.1 M WG, Agilent 161 M CGH,

Affymetrix SNP 6.0, NimbleGen 36720 K WG and Agilent

26400 K CGH+SNP (10 1000GP GS CNVs, 16 42 M GS

CNVs) platforms. This order is largely preserved regardless of the

gold standard used.

For CNVs greater than 10 kb, 10–71 1000GP GS CNVs and

11–88 42 M GS CNVs were detected. The largest numbers of

1000GP GS and 42 M GS CNVs .10 kb in size were detected by

the NimbleGen 4.2 M CNV and the Agilent 26400 K CNV

arrays respectively while the smallest numbers were detected by

the Agilent 26400 K CGH+SNP array. In addition to the larger

CNVs, most of the platforms detected much smaller CNVs albeit

with reduced sensitivity. The NimbleGen 4.2 M CNV array

detected the largest numbers of GS CNVs ,10 kb in size (548

1000GP GS CNVs and 322 42 M GS CNVs). The smallest GS

CNVs are detected by the NimbleGen CNV focused designs

followed by the Agilent 26400 K CNV and the NimbleGen

4.2 M WG designs, the Illumina OmniQuad, the Agilent 161 M

designs and the Affymetrix SNP 6.0, the NimbleGen 2.1 M WG

array, the NimbelGen 36730 K WG array and finally the Agilent

26400 K CGH+SNP array. The platforms with the highest probe

densities in known CNV regions are the ones that detect the

largest numbers of GS CNVs and also the smallest GS CNVs. At

the extremes, the NimbleGen CNV focused arrays can detect GS

CNVs ,100 bp, whereas the smallest GS CNV detected by the

Agilent CGH+SNP array is on the order of 10 kb.

For each platform, the sizes of the platform calls were generally

similar to those of the overlapping GS CNVs. These results

indicate that when a CNV is detected, its breakpoints are

reasonably accurate.

Sensitivities of the Different Platforms
The average sensitivity to each gold standard was calculated

for each platform (Figure 4). Sensitivities ranged from 0.01

(Agilent 26400 K CGH+SNP) to 0.64 (NimbleGen 4.2 M

CNV). The platform CNVs that overlapped detectable GS

CNVs by 50% reciprocally were counted as true positives

(Figure 5a). Since the overlap criteria do not necessarily imply a

one-to-one overlap between a platform CNV and a GS CNV,

the overlapping CNVs were counted with respect to the GS

CNVs. The NimbleGen 4.2 M CNV array clearly stands out

with the highest sensitivity followed by the NimbleGen 2.1 M

CNV and 36720 K CNV arrays while the Affymetrix SNP 6.0,

NimbleGen 36720 K WG and the Agilent SNP+CGH arrays

have the lowest sensitivities regardless of the GS used. The

NimbleGen 4.2 M and 2.1 M WG designs, the Agilent 161 M

and 26400 K CNV designs, and the Illumina Omni1Quad all

have comparable sensitivities with some platforms performing

slightly better than others depending on the GS used. Raw

sensitivities for all the platforms were very low (Figure S1). In the

process of generating a maximally unbiased report of sensitivity,

we noted that a large subset of GS CNVs (.80% of 1000GP GS

and ,40% of 42MGS) were not detectable by any platform

(Figure 5b). We therefore defined detectable sets of GS CNVs to

be the subsets of GS CNVs detected by at least one platform. We

used these detectable GS CNV sets to report corrected

sensitivities here. Most GS CNVs are detected by relatively few

platforms and only two CNVs from each gold standard are found

in all 14 platform CNV lists (the two GS CNVs are detected as

one single platform CNV). We further assessed the platform

distribution of the GS CNVs detected only by one platform

(Figure 5c). The CNV focused platforms detect .80% of these

platform-specific 1000GP GS CNVs. The NimbleGen 4.2 M

CNV, Agilent 26400 K CNV and Illumina Omni1Quad arrays

detect the majority of the platform-specific 42 M GS CNVs

(.20% each).

Figure 4. Array sensitivities to detecting Gold Standard CNVs. Depicted are the average corrected platform sensitivities based on two
technical replicates for each platform, except the Affymetrix SNP 6.0. Corrected sensitivities were calculated using only those Gold Standard CNVs
that were detectable by at least one platform. Blue bars show sensitivity to the detectable 1000GP GS and pink bars show sensitivity to the detectable
42 M GS.
doi:10.1371/journal.pone.0027859.g004

Comparative Analysis of CNV Detection Arrays
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Platform Distribution of Detectable Gold Standard CNVs
We analyzed in detail the number of platforms that can identify

each detectable GS CNV as a function of size using our overlap

criteria (Figure 6). In general, as shown in the figure the larger

events are detected by more platforms. Events detected by 8 or

more platforms are often .2.5 kb in size. However, there are still

many large GS CNVs that are missed by most platforms; 50% of

detectable 1000GP GS CNVs and 44% of detectable 42 M GS

CNVs greater than 50 kb are found by only 4 or fewer platforms

(for the 1000GP GS the majority of these were found by they

NimbleGen 2.1 designs and the 36720 K WG array; for the 42 M

GS the majority of these were found by Agilent CNV array). The

smaller CNVs are detected by only a few platforms. 98% of

detectable 1000GP GS CNVs and 89% of detectable 42 M GS

CNVs less than 2 kb are found by four or fewer platforms.

Interestingly, several (275 1000GP GS and 12 42 M GS) GS

CNVs less than 500 bp are detectable by commercial arrays. In

summary, there are many CNVs both large and small that are

detected by only a limited number of platforms.

All Platforms Detect Many Non-Gold Standard CNVs
Across all platforms, large percentages (70–96% for 1000GP GS

and 52–93% for 42 M GS) of platform calls are not in the gold

standards sets (Figure S2). At the extremes, 52% of the Illumina

Omni1Quad CNVs did not overlap with the 42 M GS whereas

96% of the Agilent 26400 K CGH+SNP CNVs did not overlap

with the 1000GP GS by our criteria. These platform calls may fall

into several categories; some may be false positives, some may be

undetectable by sequencing based CNV methods, some may be

true but not included in the gold standards for various reasons

including inability to validate using PCR or custom aCGH or due

to the very strict requirements for inclusion into the 42 M GS.

More CNVs are Detected Using a Single Genome Control
versus a Pooled Control

We expect to call at least twice as many CNVs from an aCGH

experiment using a single individual genome as a control versus a

pool of genomes. This is because the call set from the aCGH

experiment against a single control comprises both test (NA12878)

and control (NA10851) CNVs without any way of differentiating

from which genome an individual CNV signal originated.

However, in an aCGH experiment using a pool of genomes as a

control, the signals of many rare CNVs that are present in

individual genomes of the control pool are expected to be too weak

to be detected. Thus, the call set from such an experiment is likely

only to contain CNVs from the test genome (NA12878). This

trend was observed for the NimbleGen 2.1 M whole genome and

CNV focused arrays. For the NimbleGen 2.1 M whole genome

array, approximately three times as many calls were made when

the NA 10851 DNA was used as a control (490 average CNVs)

relative to the pooled reference (166 average CNVs). For the

NimbleGen 2.1 M CNV focused array ,3.6 times as many CNVs

were called using the single control (1960 average CNVs) relative

to the pool (543 average CNVs) (Table 1). Thus, more CNVs can

Figure 5. Array detectable Gold Standard CNVs. (a) Venn diagram showing overlap of CNV calls from a single platform (NimbleGen 2.1 M CNV)
with the detectable 1000 Genomes Gold Standard. (b) The percentage of Gold Standard CNVs that were detected by at least one technical replicate
of each platform is shown for all platforms (including twelve different platforms and two conditions for the NimbleGen 2.1 M arrays). Blue bars
indicated percentage of 1000GP GS CNVs and pink bars indicate percentage of 42 M GS CNVs. (c) Platform distribution of all Gold Standard CNVs that
are detected by only one platform.
doi:10.1371/journal.pone.0027859.g005
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be identified using a single individual genome as the control in an

aCGH experiment as opposed to using a pool of genomes as the

control.

As expected, more CNVs from experiments using a single

control overlapped with both GS CNV sets than those from

experiments using a pooled control. For a given platform, the size

distributions and resolutions of the validated calls are comparable

regardless of the control used (Figure 3c–e). In addition, we

calculated higher sensitivities to both gold standards for experi-

ments using a single individual as a control than for those using a

pooled control (bars 3–6 of Figure 4 and Figure S1). The sensitivity

of the NimbleGen 2.1 M whole genome array was twice as high

when a single genome was used as a control compared to when a

pool of genomes was used. The sensitivity of the NimbleGen

2.1 M CNV focused array was 5–7 times higher when a single

genome was used as a control than when a pool of genomes was

used. These results indicate that aCGH experiments using an

individual sequenced control sample may provide a valuable

means for maximal CNV detection.

Discussion

CNVs form an important class of human genetic variants.

Understanding their functional impacts requires accurate, com-

prehensive and efficient genome-wide mapping [1]. This study

evaluated the abilities of the current generation of array-based

CNV detection platforms to detect known CNVs genome-wide.

There are fundamental differences between CGH, CGH+SNP

and SNP only platforms. These include differences in methodol-

ogies (single versus dual channel experiments and scanning signal

acquisition) and in physical attributes of the arrays (probe type and

oligomer length) [15]. For example, SNP and combination array

CNV calls are based on single channel experiments where the

control and test DNA samples are hybridized to different arrays

leading to less reliable log2 ratios of the signal intensity of test DNA

to control DNA than for aCGH. However, SNP arrays also

combine SNP genotype data (the proportion of minor alleles to

total alleles at a locus) to complement log2 ratio data for CNV

calling. aCGH platforms rely exclusively on log2 ratios for CNV

calling. Because of such differences we have tried to assess only the

practical utilities of the various platforms for CNV calling.

Consequently, we have compared only the final lists of CNV calls

from each platform for a particular genome (NA12878) based on

the experimental and data analysis protocols recommended by

each array manufacturer. In our comparison we assume that all

platforms contain probes that are optimized to be maximally

informative at their specific loci. This assumption allows

interpretation of our results based on probe distributions and

probe numbers regardless of probe type (CGH or SNP). We note

that many different algorithms are available for extracting CNV

data from all of the platforms reviewed here. Algorithm and

parameter effects can result in highly variable CNV call sets from

the same raw array data. Such algorithm effects are reviewed

elsewhere [26] and are beyond the scope of this manuscript.

Therefore we have chosen to assess only the practical utilities of

these platforms which we believe include the use of the best

manufacturer recommended algorithms and parameters, as these

are the most likely analyses that will be carried out by users.

Most array platforms attempt to balance unbiased whole

genome novel CNV discovery and focused genotyping in known

CNV regions under the restraint of fixed probe numbers by

employing intelligent probe distributions. For SNP arrays

(Affymetrix and Illumina), probe distributions are restricted by

the non-uniform availability of informative SNPs throughout the

genome [9]. It is especially difficult to find informative SNPs to

sample repetitive regions, where many CNVs occur [14,15]. In

contrast, for CGH arrays, probes can be selected with a more even

genome-wide distribution in general, and with higher density in

certain regions as desired. Sometimes, aCGH probes can be

designed to unique stretches of sequence in repetitive regions even

in the absence of SNPs. Consequently most SNP arrays are now

complemented by additional CGH probes [9]. We found that

probe distribution greatly affects the performance of a platform.

By all metrics including total number of platform calls, size

range of calls, resolution of calls and platform sensitivity, the

NimbleGen and Agilent CNV focused arrays were the top

Figure 6. Number of array platforms detecting each Gold Standard CNV by size. Each data point represents the number of platforms that
detect a certain Gold Standard CNV by at least one technical replicate using our overlap criteria versus the size of the Gold Standard CNV. Only
detectable Gold Standard CNVs are shown. Blue points correspond to 1000GP GS CNVs and pink points correspond to 42 M GS CNVs.
doi:10.1371/journal.pone.0027859.g006
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performers. Notably, for both NimbleGen and Agilent arrays, the

CNV focused designs had more than four times as many total calls

and sensitivities that were at least two times higher compared to

the corresponding unbiased designs with the same numbers of

probes. Additionally, these arrays (along with the Illumina

Omni1Quad array) detected the largest size range of CNV events

from ,500 bp-1 Mbp. Furthermore, the NimbleGen 36720 K

CNV and Agilent 26400 K CNV designs consistently performed

better than arrays with even more probes such as the NimbleGen

4.2 M WG, 2.1 M WG, Agilent 161 M designs, Illumina

Omni1Quad and the Affymetrix SNP 6.0. Additionally when

comparing the Agilent 161 M gene focused CGH array against

the evenly tiled High Resolution array we see that probe

distribution affects the performance of the arrays whereby the

evenly tiled array outperforms the gene-centric design albeit by

only small margin. We conclude that probe distribution appears to

be the dominant factor affecting array performance in this study.

CNV focused designs outperform more evenly tiled designs that in

turn outperform gene-focused designs in detecting CNVs genome-

wide.

It is expected that arrays containing more probes will detect

larger numbers of CNVs genome-wide and call breakpoints that

are generally closer to the true endpoints CNVs than arrays with

fewer probes. This is because CNVs can only be detected in

genomic regions for which probes exist. When comparing arrays

with similar probe distributions (whole genome or CNV focused),

we do find the expected trend of arrays with more probes

performing better than those with fewer; the NimbleGen 4.2 M

whole genome and CNV designs perform better than the

corresponding 2.1 M designs which perform better than the

36720 K designs which perform better than the corresponding

Agilent 26400 K designs. However, the total number of probes

does not appear to be a sufficient predictor of CNV detection

ability. Rather, for the current generation of arrays, probe

selection seems to be the most important factor in optimizing

CNV detection.

It is expected that a paucity of probes in certain regions will lead

to the inability of an array to make robust CNV calls in those

regions. We suspect that this is the primary reason why such large

fractions of the GS CNV sets are not detected by any of the

platforms (,80% of the 1000GP GS CNVs and ,40% of the

42 M GS CNVs are not detected). There is a large percentage of

CNVs in the 1000GP GS (22% Alus, 1% LINEs) that are too

repetitive to be tiled by aCGH probes or to contain informative

SNPs, and will consequently not be detected by any of the tested

platforms. No Alu in the 1000GP GS was detectable by any array

platform. The 42 M GS does not contain any SINE or LINE

repeats. Furthermore, 75% of CNVs in the 1000GP GS and 18%

CNVs in the 42 M GS are less than one 1 kb in size. We do not

expect most platforms to detect CNVs ,1 kb in size even in

unique sequence. This is because most of the array platforms do

not contain enough probes to provide the required probe density

to detect such small events genome-wide. The CNV focused arrays

sometimes contain the required probe density for detecting certain

small CNVs without compromising backbone probe density.

These platforms also detect the largest subsets of the GS CNVs

that are detected by a single platform only, for the same reason.

Thus, while the numerical values are specific to this study the

trends of array performance reported here are as expected.

Our performance metrics do not take into account the

additional genome-wide SNP data provided by several of these

platforms (Agilent GCH+SNP, Illumina, Affymetrix). It will

depend on a given study design to determine whether additional

SNP information is worth the seemingly reduced sensitivity of

CNV detection by these platforms. The recent availability of

platforms such as the Illumina Omni2.5 M array with 2.5 million

SNP and CGH probes may increase the ability of these platforms

to detect both CNVs and SNPs. However, optimized analyses for

detecting CNVs from these arrays are not yet available, and thus

they were excluded from this study. Ultimately, as whole genome

sequencing costs continue to drop and analysis methods for

extracting CNV (and Structural Variation in general), SNP and

mobile element insertion data become more developed, the utility

of arrays will be replaced by the availability of the entire spectrum

of genomic variation at base pair resolution [12]. In the near

future however, because of both cost considerations and the

orthogonal information provided relative to sequencing, array

methods are likely to continue to be used for large-scale CNV

studies in biological and medical research, validation of sequenc-

ing-based CNV data [3] and for routine clinical diagnostics [21].

In this study we specifically analyzed known CNVs in a

European sample relative to European controls. This undoubtedly

led to biases in CNV detection especially since some of the arrays

(NimbleGen and Agilent CNV focused arrays, Illumina Omni1-

Quad and Affymetrix SNP 6.0 arrays) were designed to detect

CNVs found in the 1000 Genomes Project pilot trios. These trios

include the Caucasian trio of which NA12878 is the daughter and

a Yoruban trio [3,12]. Thus, the results obtained may differ when

analyzing different combinations of ethnicities.

All the platforms called large numbers of non-GS CNVs. While

some of these observations are certainly false positives, it is unlikely

that ,80% of all calls on any single array are false. More

plausibly, many of these array-detected non-GS CNVs may be

true CNVs that do not occur in the gold standards for several

reasons. Both gold standards were assembled using extremely strict

requirements. The 1000GP GS comprised only experimentally

validated calls. However, validation by PCR and aCGH was

attempted only on a subset of the total calls [3]. Additionally, the

1000GP calls were made using three different analyses; Read

Depth, Paired-end and Split Read analysis. Each of these methods

has specific limitations. Read depth will not call CNVs that occur

in highly repetitive elements (SINEs and LINEs). Split read and

Paired-end analyses produce less confident calls using the short

reads (36 bp) of the 1000 Genomes pilot data as these are less

likely to map uniquely to the reference genome. Therefore we

expect and observe little overlap of the calls from these three

methods as noted by the 1000 Genome Project [3]. However, the

CNVs used in our Gold Standard are only those that were found

by at least two out of three computational methods and

experimentally validated; it is likely that many real CNVs exist

but were detected by one method only, not validated or entirely

missed. For inclusion into the 42 M GS, CNVs were required to

contain at least 10 probes in sequence [8]. However, there may be

many CNVs containing less than 10 probes. We conclude that

there may be many true platform calls that do not occur in the

gold standards due to the stringent inclusion criteria. Another

reason why such large numbers of platform calls did not overlap

with GS CNVs could be due to the overlap criterion that was used.

We required 50% reciprocal overlap to count two CNV calls as

the same. However, the breakpoints of CNVs obtained from

array-based methods can be up to several kb from the true

breakpoints. Hence there may be true events called by the

platforms that are not counted as valid in our analyses because the

overlap may be less than 50%.

Lastly, we addressed the important issue as to whether a single

genome is a more informative control than a pool of genomes for

aCGH. An aCGH experiment using a single genome control will

miss all the CNVs with respect to the reference that are exactly the
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same in the test and control samples. This issue can be resolved by

using a single control that is well characterized for CNVs by some

orthogonal method. The rationale for using a pool of individual

genomes as the control is to eliminate this loss due to the

expectation that at most loci, the copy number of most of genomes

of the pool will be the same as that of the reference. Thus, the

effects of rare CNVs in individual genomes of the pool are diluted.

However, for polymorphic loci in which a significant subset of the

genomes of the pool contain the same CNV as the test sample, that

CNV may not be called in the test sample as the signal would be

dampened. For cancer samples or other heterogeneous tissue, this

problem can be exacerbated against a normal control as the

heterogeneity of the tissue leads to an even more dampened signal.

We found that using a single individual genome as a control

provided more CNV calls and higher sensitivities than using a pool

of genomes as a control.

In conclusion we have shown that under the recommended

manufacturers’ experimental and analytical conditions, there is

enormous variability in performance of the current generation of

widely used commercial CNV detection arrays. The arrays best

able to detect known CNVs in a well characterized European

sample are those that contain dense probe tiling in known CNV

regions while not compromising the backbone tiling density of the

rest of the genome.

Methods

Sample Selection
All individual samples analyzed in this study were chosen from

the 1000 Genomes Project [12] and previously from the

International HapMap Project [22]. The test sample, NA12878,

was chosen because of extensive prior genomic characterization

including ,426 sequence coverage in the 1000 Genomes Project

and ultra-high resolution array Comparative Genome Hybridiza-

tion [8]. NA12878 is a Utah resident of European Ancestry (CEU)

and is the daughter in one of the two trios sequenced at high

coverage in the 1000 Genomes Pilot Project. The control sample

NA10851 was also chosen from extensive genomic characteriza-

tion including its use as the control in ultra-high resolution aCGH

and as a 1000 Genomes Project low coverage sample [8,12].

NA10851 is a male of European Ancestry from Utah (CEU).

NA12891, the father of NA12878, was used as the control for the

Agilent CGH+SNP 26400 K array. Genomic DNA for these

samples was obtained from the Coriell Institute for Medical

Research. An additional control, a pool of 7 females (Promega,

Cat # G1521) was chosen because it is a commercially available,

reproducible pool of individual genomes.

Gold Standard CNV sets for NA12878
Two complementary Gold Standard sets of CNVs found in the

genome of NA12878 were used in this study. These are the 1000

Genomes Project Gold Standard and the Roche NimbleGen 42

million aCGH Gold Standard described below.

1000 Genomes Project Gold Standard (1000GP GS). The

1000 Genomes Project Gold Standard is the set of validated CNVs

found in the genome of NA12878 by the 1000 Genomes Project

[3,12] during the recently completed pilot phase of the effort. The

set consists of sequence-based NA12878 CNV calls (using the

inner confidence interval coordinates) from the July 2010 data

release that were validated by aCGH (NimbleGen or Agilent

custom arrays) or PCR. Deletion data and duplication data were

obtained from:

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/release/

2010_07/trio/sv/

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/release/

2010_07/low_coverage/sv/

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_

data_sets/companion_papers/mapping_structural_variation/.

Only those calls that were made in the genome of NA12878 and

contained the word ‘validated’ at least once in the validation

column were included. The set was further pruned by removing all

calls where the start coordinate was larger than the end

coordinate. In addition, NA10851 CNVs occurring in this set

were removed so as not to confound the findings. NA10851 CNVs

were called using CNVnator [17] from the low coverage 1000

Genomes sequence data. The final set consists of 3997 unique

CNVs. The 1000 Genomes Project utilized a variety of methods

including Read Depth, Split Read and Paired-end mapping to call

high quality, base pair resolution CNVs from next generation

sequencing data on NA12878. The CNV calls from this sequence

data are thought to be the most accurate set of calls for this sample

to date [3].

Roche NimbleGen 42 million aCGH Gold Standard (42 M

GS). The Roche NimbleGen 42 million aCGH Gold Standard

is the set of published CNVs found in NA12878 using NA10851 as

a control on a set of 20 Roche NimbleGen arrays each containing

,2.1 million long-oligo probes (50–75 bp) tiling the non-repetitive

portion of the genome (median spacing ,56 bp). The parameters

were set to detect CNVs greater than 500 bp [8]. The total set

consists of 756 unique CNVs. The resolution of this aCGH

experiment exceeds that of the platforms being compared in this

paper, and hence the calls from this data are likely to be more

accurate in size and breakpoint resolution than those from the

platforms being compared here. Thus, this set was used as a Gold

Standard. In order to call CNVs from this data, strict criteria were

used including a minimum of 10 consecutive probes to call an

event. A subset of calls was validated by qPCR and by aCGH on a

custom designed Agilent CNV genotyping array based on the

initial CNV call set [8].

Generation of Platform CNV sets for NA12878
NA12878 CNV call sets from twelve different array-based

platforms from four different manufacturers were compiled using

raw data obtained from either the manufacturer or a service

provider followed by data processing using the manufacturers’

recommended software and parameters. The platforms used were

the NimbleGen 4.2 M, 2.1 M and 36720 K whole genome and

CNV focused designs, Agilent 161 M CGH and High Resolution

designs and 26400 K CNV focused and CGH+SNP designs,

Illumina Human Omni1Quad and Affymetrix SNP 6.0 arrays

(summarized in Table 1). Details of how the individual call sets

were compiled are described below.

Roche NimbleGen NA12878 CNV call sets. Raw data from

aCGH experiments performed on six different platforms were

obtained from Roche NimbleGen, Inc. (Madison, WI 53719,

USA). The platforms used were the NimbleGen 4.2 M, 2.1 M and

the 36720 K whole genome and CNV focused arrays. All

experiments used NA12878 DNA as the test sample and

NA10851 DNA as the control sample. In addition, aCGH

experiments were performed by us using the manufacturer’s

protocol with NA12878 DNA as the test sample and a pool of

female genomic DNA as the control on the 2.1 M whole genome

and CNV focused designs. In brief, NA12878 DNA was labeled

with cy3 and the control pool DNA was labeled with cy5. Equal

amounts of the test and control DNA were hybridized to the arrays

for 72 hours. The arrays were washed and scanned in an ozone

free environment using a Roche MS200 scanner. Images were

analyzed using NimbleScan 2.6 software (Roche NimbleGen, Inc.,
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Madison, WI 53719, USA). Two technical replicates of all

experiments were performed. In order to obtain final CNV call

sets from raw data for each experiment, segtable files were

generated using NimbleScan 2.6 with default settings (min

segment difference = 0.2, min number of probes per

segment = 2). Segments with 20.25,Log R,0.25 were

removed. For the 4.2 M and 2.1 M designs, segments with ,5

probes per segment were also removed. The 4.2 M designs are

based on HG19 coordinates. These CNV coordinates were

converted to HG18 using the UCSC LiftOver tool [31]. The

coordinates of 425/435 and 465/474 CNV calls from two

technical replicates of the WG array and 1926/1956 and 1883/

1912 CNV calls from two technical replicates of the CNV array

were successfully converted. The remaining CNV coordinates

comprised the final call sets for these arrays.
Agilent NA12878 CNV call sets. Raw data from aCGH

experiments carried out on the Agilent 161 M CGH and High

Resolution designs and 26400 K CNV focused design using

NA12878 DNA as the test and NA10851 DNA as the control were

obtained from service providers. Raw data from hybridizations

and scannings of the Agilent 26400 K CGH+SNP array using

NA12878 DNA as the test and NA12891 DNA as the control were

obtained from Agilent Technologies (Santa Clara CA 95051,

United States). Final CNV call sets were obtained by generating

Interval Based Reports in the Agilent Genomic Workbench 6.5

software package (Agilent Technologies, Santa Clara CA 95051,

United States) using default settings. Chromosomal coordinates for

the resulting CNV calls are based on HG19 (except for the 161 M

CGH design). The CNV coordinates were converted to HG18

using the UCSC LiftOver tool [31]. The coordinates of 1566/

1615 and 1604/1651 CNV calls from two technical replicates of

the 161 M High Resolution array were successfully converted.

The coordinates of 1055/1094 and 1002/1045 CNV calls from

two technical replicates of the CNV focused 26400 K array were

successfully converted. The coordinates of 120/124 and 126/129

CNV calls from two technical replicates of the CGH+SNP

26400 K array were successfully converted. The remaining CNVs

comprised the final call sets for these platforms. Technical

replicates for all 26400 K designs are from the same field of

separate arrays.
Illumina NA12878 CNV call sets. Raw data for two

technical replicates of NA12878 DNA hybridized to the Illumina

Human Omni1Quad as per the manufacturer’s protocol were

obtained from a service provider. The data were analyzed using

Genome Studio 2010.2 software (Illumina, Inc., San Diego, CA

92121 USA) in which SNP clustering and genotyping were

performed, B allele frequencies (the proportion of minor (‘B’)

alleles to total (‘A’ and ‘B’) alleles at a locus) were calculated and

log2 ratios were extracted. CNV analysis was carried out using the

CNVpartition 2.4.4 algorithm within Genome Studio using

default parameters (Confidence Threshold = 35). The obtained

CNV lists comprised coordinates based on HG19. These

coordinates were converted to HG18 using the UCSC LiftOver

tool [31]. The coordinates of 251/259 and 267/277 calls from the

two technical replicates were successfully converted and comprised

the final lists of NA12878 CNVs from this platform.

Affymetrix NA12878 CNV call set. The set of CNVs found

in the genome of NA12878 by the Affymetrix SNP 6.0 array was

obtained from the supplement of published data [9]. No further

processing was done on this set before including it in the

comparative analyses.

Supporting Information

Figure S1 Array sensitivities to detecting Gold Standard
CNVs. Depicted are the average raw platform sensitivities based

on two technical replicates for each platform, except the

Affymetrix SNP 6.0. Blue bars show sensitivity to the 1000GP

GS and pink bars show sensitivity to the 42 M GS.

(TIF)

Figure S2 Non-Gold Standard Platform CNV discovery
rate. Depicted are the proportions of individual Platform CNV

call sets that do not meet the 50% reciprocal overlapping criteria

with Gold Standard CNVs. Calculations are based on two

technical replicates for each platform except the Affymetrix SNP

6.0. Blue bars show values with respect to the 1000GP GS and

pink bars show values with respect to the 42 M GS.

(TIF)

Table S1 Platform Specific Raw Data. This table contains

the following information for each replicate of all microarray

platforms; total number of CNV calls, total GS overlapping

CNVs, sensitivity calculations (raw and corrected) and false

discovery rate calculations.

(XLS)
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13. Schuster-Böckler B, Conrad D, Bateman A (2010) Dosage sensitivity shapes the

evolution of copy-number varied regions. PLoS One 5: e9474.
14. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, et al. (2007) Paired-

end mapping reveals extensive structural variation in the human genome.
Science 318: 420–426.

15. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and

genotyping. Nat Rev Genet 12: 363–376.
16. Abyzov A, Gerstein M (2011) AGE: defining breakpoints of genomic structural

variants at single-nucleotide resolution, through optimal alignments with gap
excision. Bioinformatics 27: 595–603.

17. Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: An approach to
discover, genotype, and characterize typical and atypical CNVs from family and

population genome sequencing. Genome Res.

18. Medvedev P, Stanciu M, Brudno M (2009) Computational methods for
discovering structural variation with next-generation sequencing. Nat Methods

6: S13–20.
19. Jarick I, Vogel CI, Scherag S, Schäfer H, Hebebrand J, et al. (2011) Novel
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