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Abstract

Despite the effectiveness of combination antiretroviral treatment (cART) against HIV-1, evidence indicates that residual
infection persists in different cell types. Intensification of cART does not decrease the residual viral load or immune
activation. cART restricts the synthesis of infectious virus but does not curtail HIV-1 transcription and translation from either
the integrated or unintegrated viral genomes in infected cells. All treated patients with full viral suppression actually have
low-level viremia. More than 60% of treated individuals also develop minor HIV-1 –associated neurocognitive deficits
(HAND) due to residual virus and immune activation. Thus, new therapeutic agents are needed to curtail HIV-1 transcription
and residual virus. In this study, luteolin, a dietary supplement, profoundly reduced HIV-1 infection in reporter cells and
primary lymphocytes. HIV-1inhibition by luteolin was independent of viral entry, as shown by the fact that wild-type and
VSV–pseudotyped HIV-1 infections were similarly inhibited. Luteolin was unable to inhibit viral reverse transcription.
Luteolin had antiviral activity in a latent HIV-1 reactivation model and effectively ablated both clade-B- and -C -Tat-driven
LTR transactivation in reporter assays but had no effect on Tat expression and its sub-cellular localization. We conclude that
luteolin confers anti–HIV-1 activity at the Tat functional level. Given its biosafety profile and ability to cross the blood-brain
barrier, luteolin may serve as a base flavonoid to develop potent anti–HIV-1 derivatives to complement cART.
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Introduction

HIV-1 infection of the host cells proceeds with reverse

transcription, viral DNA integration into the host genome,

transcription, translation, proteolytic processing of viral proteins

and subsequent assembly into nascent viral particles [1]. To a

large extent, the introduction of combination antiretroviral

treatment (cART) has curtailed viral replication below the

detection limit (,50 copies/mL) and significantly reduced the

devastating impact of HIV-1 [2–5]. cART works by blocking

infection of susceptible new cells, while the decay rate of plasma

virus is determined by the life span of previously infected cells [6].

However, given the presence of intact HIV-1 reservoirs, including

quiescent CD4+ T lymphocytes, bone marrow and brain [7–8], as

well as the development of viral escape mutants and drug

resistance, viral replication goes unchecked by intensive therapy

[9–14]. All treated patients with full viral suppression actually have

low-level, steady-state viremia [10,15–16].

Given the long duration of treatment, virus develops drug

resistance at multiple steps resulting in treatment failure. The

HIV-1 transactivator of transcription (Tat) protein engages

positive transcription elongation factor b (pTEFb) complex (cycT1

and CDK9), increasing RNA pol II activity and driving viral

transcriptional elongation [17–19]. Tat activity is enhanced by

host factors such as Tat-associated histone acetylases (TAH),

p300/CBP, GCN5, and P/CAF, as well as P300/CBP and GCN5

acetylate Tat at Lys 50 and 51 [20–23]. P/CAF acetylates Lys 28

on Tat and increases its ability to recruit pTEFb complex [20–22].

Thus, Tat is an important therapeutic target, having the ability to

interrupt the viral life cycle. Coincidentally, no effective HIV-1

transcriptional inhibitor is yet available to complement cART.

Thus, the alternative to keeping the virus in an under-expressed

state until the infected cells have died is to inhibit HIV-1

transcription and subsequent viral protein synthesis, which

requires new inhibitors.

Flavones, a class of flavonoids containing a characteristic 2-

phenylchromene-4-one ring structure (Fig. 1a), are found in many

herbs. They have shown therapeutic value, including antiviral

and anti-inflammatory properties [24–27]. Luteolin (2-(3,4-

Dihydroxyphenyl)- 5,7-dihydroxy-4-chromenone), myricetin,

and quercetin, which are structurally related flavones (Fig. 1a),

act as anti-oxidants and free-radical scavengers, dramatically

reducing inflammatory responses [24–25,28–32]. Their anti-

oxidant property is related to the number and position of their

hydroxyl groups [33]. Luteolin occurs in parsley, artichoke leaves,

celery, peppers, olive oil, rosemary, lemons, peppermint, sage,

and thyme; it acts as an anti-oxidant and anti-viral agent and is

now being used in clinical trials for the inhibition of neuro-

inflammation [24,29]. Luteolin also has been found to have anti-

HIV-1 activity [31,34]. Although luteolin is a promoter of

carbohydrate metabolism and an immune system modulator, it

has been shown to have potent anti-inflammatory activity by

inhibiting nuclear factor kappa B (NF-kB) in macrophages and

other immune cells [35–36].
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In addition, luteolin was shown to be effective against SARS

coronavirus in a study using recombinant HIV-1 pseudotyped

with SARS CoV envelope [27]. Another study found HIV-1

protease inhibitor activity in cell-free assays, but this has not been

validated in infection studies. Moreover, the precise mechanism of

HIV-1 inhibition is unclear [34]. Flavonoids (quercetin, -myricetin

and luteolin) are structurally closely related; they are being used as

dietary supplements in the United States. They have also been

investigated for their anti-HIV-1 activity and its possible

mechanism of action. Although we found that these three

flavonoids are nontoxic and have anti-HIV-1 activity. Luteolin

was the most potent and inhibited HIV-1 infection by abrogating

Tat-mediated LTR activity.

Results and Discussion

Given the long-term persistence of intact HIV-1 reservoirs,

along with the development of viral escape mutants and drug

resistance, viral replication goes unchecked even by intensive

therapy [9–14,37]. Uninterrupted lifelong anti HIV-1 treatment

has resulted in longer survival but, with the persistence of residual

viral activity and immune activation [37], more than 60% of

cART-treated individuals develop minor cognitive disorders [38].

In addition, anti-HIV treatment leads to immune reconstitution

inflammatory syndrome (IRIS) in a substantial number of African

patients [39–40]. Above all, development of drug resistance by

HIV-1 is commonly encountered during long–term treatment.

Thus, a continuing search for new therapeutic agents to target

novel viral life cycle stages is needed.

The use of naturally occurring compounds such as a dietary

supplement having anti-HIV-1 and anti-oxidant properties

potentially provides an attractive therapy in combination with

cART. We have investigated the ability of flavonoid compounds

(Fig. 1A) to alter HIV-1 activity in screening assays using LTR-

luciferase (TZM-bl) reporter cells and primary lymphocytes as

infection models. TZM-bl cells are HeLa cells that stably express

CD4 and CXCR4 receptors. They contain an integrated copy of

the HIV-1 long terminal repeat (LTR) fused with luciferase and

beta galactosidase genes [41]. Expression of the indicator

luciferase gene is under the control of LTR via transactivator

Tat protein, which is synthesized by either the viral infection or the

plasmid expression vector. TZM-bl cells were treated for 30 min

with luteolin, quercetin, or myricetin at 5 mM and 10 mM

concentrations before HIV-1 infection. Forty-eight hours later,

the infected reporter cells were monitored for LTR activity using

luciferase reporter assay. Intriguingly, all of the flavonoid

compounds at 5 and 10 mM concentrations showed anti-HIV-1

activity, but luteolin was the most potent (Fig. 1B). HIV-1

inhibition by luteolin was specific, as vehicle control (DMSO) had

no effect on LTR activity. To rule out interference by toxicity, we

monitored cell viability after flavonoid treatments, using the

WST8 cell–viability assay [42] on TZM-bl cells. None of the

compounds showed any cellular cytotoxicity at 10 mM concentra-

tions (Fig. 1C). Although, luteolin showed slight toxicity in TZM-

Figure 1. Inhibition of HIV-1 by flavonoids. (A) Chemical structures of flavone and its derivative flavonoids. (B) HIV-1 infection in LTR-luciferase
TZM-bl reporter cells after 48 h treatment with luteolin (LN), myricetin (MN), or quercetin (QN), using DMSO as vehicle (Veh) or AZT (positive control).
Results were plotted as mean 6 SEM of duplicate readings normalized with cell control. (C) TZM-bl cell viability was assessed using WST-8 assay
(Dojindo) after treatment for 24 and 48 h with flavonoids (10 mM); in parallel, H2O2 was used as positive control. Results are shown as percent viability
relative to cell control (n = 3). **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0027915.g001
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bl reporter cells, it was found, on verification on Hela and Jurkat

cells (Fig. 2A) and lymphocytes, to be relatively nontoxic. The

toxicity of luteolin in TZM-bl cells could result from the presence

of multiple stable constructs in these cells. Moreover, earlier

studies on several cell systems have reported that luteolin in

concentrations up to 100 mM [43] had no adverse effects. Our

data suggest that the flavonoids actively inhibited HIV-1 activity,

possibly through malfunctioning of Tat activity. This could be due

to blockage at any step in the viral life cycle.

In further studies, we examined the anti-HIV-1 activity of luteolin

in greater detail. We tested different concentrations of luteolin (0–

40 mM) on cell viability in different cell models to find a workable

nontoxic concentration. Luteolin in concentrations between 5 and

10 mM, the upper limit for therapeutic agents used in screening

assays, had significant antiviral activity. Thus, we used luteolin at 5

and 10 mM for all experiments (Fig. 2). We confirmed the anti-HIV-

1 activity of luteolin in infection assays in lymphocytic cells and

primary human lymphocytes using either wild-type (NLENG1) or

VSV-pseudotyped HIV-1. In infection studies, we used HIV-1

NLENG1 containing GFP gene cloned between the envelope and

nef region [44,45]. Thus, we could monitor productive viral gene

expression not only by GFP expression, using fluorescence

microscopy, but by HIV-1 p24 capsid protein in the supernatants,

which was detected by ELISA [42,44].

Figure 2. Luteolin inhibited HIV-1 infection in Jurkat cells. A. Viability of TZM-bl, Hela, and Jurkat cells after treatment with different
concentrations of luteolin (0–40 mM) for 24–48 h as determined by WST8 -assay (n = 3). B–D. Jurkat cells were pretreated for 30 min with 5 mM or
10 mM luteolin (LN5 and LN10, respectively), vehicle (DMSO), or AZT (positive control) followed by HIV-1 infection for 2 h at 37uC. HIV-1 infection was
monitored by (C) GFP expression or (D) virus release in supernatants as determined by p24 ELISA on the 5th day post-infection. GFP quantification
was done by counting 10 random low-power fields and plotted as mean 6 SEM (n = 2).
doi:10.1371/journal.pone.0027915.g002
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Jurkat cells were pretreated with luteolin or vehicle (DMSO) for

30 min followed by HIV-1 infection, as reported earlier [42]. After

infection, luteolin treatments were maintained for 3–5 days, the

duration of the experiment. Luteolin treatment markedly reduced

the HIV-1 infection in Jurkat cells (Fig. 2B–D) in a dose-dependent

manner as shown by reductions in both the number of GFP-

positive cells and viral p24 release in the supernatants on the fifth

day after infection. To confirm these above findings and also rule

out the cell–specific inhibition of HIV-1, we infected TZM-bl cells

and obtained similar suppression of viral infection (Fig. 3A–D).

Although treatment with luteolin prior to HIV-1 infection had no

additional advantage on virus replication as compared with

overnight treatment after HIV-1 infection (Fig. 3C, D). Instead

better HIV-1 inhibition was seen with the latter, indicating that

luteolin may affect the later stages of the HIV-1 life cycle rather

than restricting the virus at the receptor, reverse transcription or

viral DNA integration steps.

To test this possibility, we did infection studies on primary

human lymphocytes using wild type virus and additionally VSV-

NLENG1 (HIV-1) was used to facilitate rapid and homogeneous

receptor-independent viral infection. Before these studies, we

confirmed that luteolin was non-toxic to primary cells (Fig. 4A).

We treated wild-type and VSV-HIV-1 infected lymphocytes with

5 and 10 mM of luteolin until follow-up and monitored for viral

infection by GFP expression and the release of p24 in culture

supernatants (Fig. 4B–D). Luteolin treatment alleviated HIV-1

infection (wild–type or VSV-HIV) as shown by a reduction in GFP

expression (Fig. 4B) and p24 levels in the supernatants following

virus release at 2, 4, and 6 days after infection (Fig. 4C, D). In

parallel, 5, 6- dichloro- 1-b -D-ribofuranosyl-1H-benzimidazole

(DRB), a transcriptional inhibitor (RNA pol II inhibitor) was used

as a positive control, while vehicle (DMSO) was used as a solvent

control. DRB suppresses HIV-1 transcription by inhibiting RNA

polymerase activity [46–47]. Interestingly, luteolin treatment of

HIV-1 infected lymphocytes also showed inhibition in cell

aggregation/syncytia similar to that produced by DRB and cell

control (Fig. 4B), suggesting that viral envelope (gp120) protein

expression on cell surfaces is impaired. Viral gp120 expression on

infected cells is required for syncytia formation or aggregation of

cells. In addition, luteolin did not affect the proliferation of

lymphocytes during viral inhibition studies.

Our results thus far indicated that the mechanism of luteolin-

mediated HIV-1 suppression is independent of viral entry

receptors. To corroborate the effect of luteolin on wild–type virus,

TZM-bl reporter cells were pretreated with luteolin or DMSO for

30 min, then infected with HIV-1 (p24 = 250 ng/ml). We assessed

the effect of luteolin on virus entry after 6 h of infection by the

accumulation of intracellular viral capsid (p24), which was

quantified by ELISA in HIV-1 —infected cell lysates. As a

positive control for entry inhibition, we pretreated TZM-bl cells

with a CXCR4 blocker, AMD 3100, before infecting them with

HIV-1. Luteolin (5–10 mM) pretreatment did not have a

significant effect on wild–type HIV-1 entry as compared to that

in untreated infected cultures (Fig. 5A). To rule out the possibility

of contamination from cell-membrane-bound virus particles in the

cell lysates, we tested p24 levels in HIV-1-infected cell superna-

tants (HIV-sup) at 6 h after infection and found barely detectable

levels (Fig. 5A).

The preceding results showed that luteolin inhibited HIV-1

infection independent of viral entry. We then investigated whether

luteolin had any effect on viral reverse transcription. After

infecting TZM-bl cells with HIV-1 for 2 h and treating them

with luteolin, we monitored the levels of reverse-transcribed

intracellular HIV-1 DNA at 6 h after infection, using real-time

PCR [48]. In this situation, unlike that when we used AZT, a

reverse transcriptase inhibitor (positive control), treating HIV-1

infected TZM-bl cells with luteolin did not significantly alter the

amount of reverse transcribed HIV-1 DNA (Fig. 5B). This

suggested that luteolin was unable to annihilate viral reverse

transcription.

We then investigated the effect of luteolin on viral integration,

first testing viral integration kinetics in VSV-pseudotyped HIV-1-

infected Jurkat cells from 0 to 24 h using semiquantitative Alu-

integration PCR, with GAPDH as an internal control [44]. The

minimum PCR amplification cycles were optimized to obtain the

amplification product in linear log phase. Densitometric analysis of

amplified PCR products showed that viral integration was rapid in

Jurkat cells, starting within just 4 h after infection (Fig. 5C). This is

consistent with earlier findings on VSV-HIV-1 [49]. However, our

results suggest that the peak integration levels are reached by 8–

10 h after infection, slightly longer than in an earlier study [49].

These differences could be due to use of different HIV-1 strain in

the above study.

To test the effect of luteolin on viral integration, we infected

Jurkat cells with VSV-pseudotyped HIV-1, then treated the cells

with either luteolin or vehicle at times ranging from 4 to 12 h.

After 24 h, viral infection was monitored by GFP expression and

viral integration, using Alu-LTR PCR as described (Fig. 5D, E). In

parallel, we used integrase-defective mutant HIV-1 (D64A) as a

control [50,51]. As compared to vehicle controls, luteolin-

mediated suppression of HIV-1 expression was evident irrespective

of the time after infection when treatment was initiated (4–12 h)

(Fig. 5D). The weak suppression in integration signal as compared

to that in untreated infected cells (Fig. 5E) was in contrast to a

previous report showing exclusive effect on viral integration [31].

Figure 3. Luteolin inhibited HIV-1 infection in TZM-bl reporter
cells. TZM-bl cells were pretreated for 30 min with 0, 5, and 10 mM
luteolin, then infected with HIV-1 for 2 h at 37uC. HIV infection was
monitored by (A) GFP expression or (B) virus released in supernatants
as determined by p24 ELISA on 3rd day post- infection (n = 3). C, D.
TZM-bl cells were pre- or post-treated with luteolin (10 mM) followed by
HIV-1 infection. (C) At 72 h post-infection, HIV-1 infection was
monitored by GFP expression. (D) Culture supernatants were analyzed
for the virus p24 antigen by ELISA. (n = 2).
doi:10.1371/journal.pone.0027915.g003
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Intriguingly, the suppression of HIV-1 infection in cells treated

with luteolin at 12 h post-infection suggests that luteolin has an

inhibitory effect on the HIV-1 life cycle mainly if not exclusively at

the postintegration stage.

Given that integration was already complete within 8–10 h

post-infection (Fig. 5C), we further explored the effect of luteolin

on post-integration steps of the HIV-1 life cycle. To investigate

HIV-1 replication independent of viral DNA integration, we

transfected TZM-bl cells with HIV-1 DNA expression vector.

After treating the cells with luteolin or vehicle control (DMSO),

we monitored viral gene expression using the LTR-luciferase

assay. In this system, Tat expression from HIV-1 DNA drives

LTR-luciferase expression, which was quantified luminometri-

cally. Luteolin treatment markedly inhibited HIV-1 gene

expression (or at least Tat expression) as compared to that in

control TZM-bl reporter cells (Fig. 6A). Given that HIV-1

plasmid DNA expression vector replicates independently of viral

DNA integration, it is evident that luteolin inhibited either Tat

expression or Tat function at the LTR level, but not HIV-1 DNA

integration.

To validate the HIV-1 plasmid DNA expression results, we did

infection studies in which VSV-pseudotyped HIV-1 wild-type

viruses or envelope-deficient HIV-1 viruses were used on TZM-bl

reporter cells. As compared to controls, luteolin-treated VSV-

HIV-1-infected reporter cells profoundly suppressed the Tat-

regulated luciferase signal similar to that in HIV-1 plasmid DNA

transfection (Fig. 6A), suggesting aborted viral replication. DMSO

controls also showed some suppression in luciferase signal in both

HIV-1 DNA transfected and VSV-virus infected TZM-bl cells.

One possibility is that DMSO affects luciferase expression either at

the mRNA level or via CMV promoter. However, we confirmed

our HIV-1 inhibition results on Magi cells (CD4/CCR5+ve HeLa

cells) using GFP and viral p24 as markers. We transfected these

cells with recombinant HIV-1 plasmid DNA vector expressing

GFP (NLENG1), then treated them with luteolin for 12–24 h. At

48 h after transfection, we monitored GFP expression and viral

p24 antigen in the supernatants, finding that luteolin treatment

suppressed both (Fig. 6B, C), which suggested inhibition at the

post-HIV-1 DNA integration step. We are convinced that small

inhibition in DMSO-treated VSV-HIV-1 infected cultures or

Figure 4. Luteolin inhibited HIV-1 infection in primary human lymphocytes. (A) Viability of primary human lymphocytes after treatment
with different concentrations of luteolin (0–40 mM) for 24–48 h as determined by MTT assay (n = 2). (B–D) Luteolin inhibited HIV-1 infection in
primary lymphocytes. Primary human lymphocytes were cultured in 12–well culture plates for 6 days in PHA (1%) and IL-2 (10 ng/ml), treated either
with luteolin (10 mM) or vehicle, then infected with VSV-HIV-1 or wild–type HIV-1. Viral infection was monitored 2, 4, and 6 days post infection. In
parallel, DRB (10 mM) was used as a positive control and DMSO as a vehicle control. (B) The reduction in syncytia formation is evident (white arrows)
in luteolin and DRB-treated cells. (C, D), p24 levels in supernatants were monitored by ELISA at (C) 2 days after VSV-HIV infection. (** p,0.01). (D) 4
and 6 days after wild–type HIV-1 infection of lymphocytes (*** p,0.001).
doi:10.1371/journal.pone.0027915.g004

Luteolin Inhibits HIV-1 Tat Function

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27915



HIV-1 DNA transfected reporter cells was made possible by the

effect on viral (VSV) endocytosis. However, we do not underes-

timate the true effect of luteolin, which was corroborated by

inhibition of wild-type infection, HIV-1 DNA-mediated LTR

transactivation, and post-integration viral state without any

inhibitory effect of DMSO. Antiviral activity of luteolin is clearly

shown in wild–type HIV-1 infection studies wherein DMSO did

not confer any antiviral activity. These results ruled out any

additive effect of DMSO with luteolin on HIV inhibition.

Thus far, luteolin-mediated suppression of the LTR-luciferase

activity has been demonstrated after HIV-1 plasmid DNA

transfection or HIV-1 infection, suggesting that luteolin may

confer anti-viral activity at the functional level of Tat-LTR

function, Tat expression and its sub-cellular localization or

downstream viral protease. To further examine luteolin-mediated

inhibition of HIV-1 at post–DNA integration stages, we did

experiments on latently HIV-1 infected THP89 cells, in which the

HIV-1 genome contains the GFP gene. THP89 cells contain HIV-

1 provirus in a latent state without any viral gene expression

including GFP [44]. On induction by TNF-a (NF-kB activation)

or Trichostatin A (histone deacetylase inhibitor), however, viral

reactivation is initiated; cells start expressing GFP and release the

virus extracellularly [32,45,48]. After THP89 cells had been

pretreated with luteolin or DMSO for 18 h, viral reactivation was

initiated using TNF-a (10 ng/ml). TNF-a- reactivated latent HIV-

1 infection was attenuated by treatment with luteolin (10 mM),

demonstrating reduction in GFP expression and released virus

(p24) in 24, 48, and 72–h induction periods (Fig. 7A–B). This

Figure 5. Luteolin inhibited HIV-1 independently of viral entry and reverse transcription steps. A. Effect of luteolin on viral entry. TZM-bl
cells (66105) in six well tissue culture plates were pretreated with luteolin (5 and 10 mM) or vehicle for 1 h, then infected with HIV-1 infection
(p24 = 250 ng/ml) for 2 h at 37uC. After infection, cells were briefly treated with 0.2% trypsin-EDTA and washed extensively to remove cell-membrane-
bound virus particles. Six h post-infection, cells were trypsinized and lysed. p24 levels were estimated in cell lysates after normalization of protein
concentrations (BCA method) and in HIV-1 infected culture supernatant (HIV-sup). The results are presented as the amount of p24 present per mg of
proteins in cell lysates. B. TZM-bl cells (66105) in six–well tissue culture plates were pretreated with luteolin (10 mM) or DMSO for 30 min, then
infected with HIV-1 NLENG1 (p24, 250 ng/ml) for 2 h. At 6 h after infection, cells were treated briefly with 0.2% trypsin and washed. Genomic DNA
was harvested from HIV-infected cells. 200 ng of total DNA was used as a template for quantification of viral DNA by real-time PCR using Tat primers
and normalized to GAPDH signals. In parallel, 500 ng HIV-1 proviral DNA (pHIV) was transfected as a positive control. C. Jurkat cells (76105) in six–well
culture plates were infected with VSV-HIV-1 (p24 = 250 ng/ml) for 2 h at 37uC, washed twice, and followed up for 24 h. Cells were harvested from 0 to
24 h after infection and viral integration was monitored by Alu-LTR-PCR. D–E. Jurkat cells were infected with VSV-HIV-1 and treated with luteolin
(10 mM) or DMSO at 4, 8, and 12 h after infection. The levels of viral infection were monitored by the amount of GFP expression in luteolin- and
vehicle-treated HIV-1 infected cells (D). Viral integration was analyzed 24 h post-infection by Alu-LTR PCR (E). VSV-HIV-1 was used as positive control;
HIV-1 NL4-3 mutant (D64A) defective in viral DNA integration function (DINT HIV) was used as negative control (n = 4).
doi:10.1371/journal.pone.0027915.g005
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indicates that luteolin has an effect on post-viral DNA integration

stages; that is viral transcription or translation or Tat functional

activity. When Tat functional activity is impaired in a TNF-a —

reactivated latent HIV-1 model, GFP expression, including viral

proteins that are dependent on Tat function, will eventually be

impaired, so that p24 activity is reduced in infected culture

supernatants.

Taken together, our multiple lines of evidences indicated that

luteolin confers its anti-HIV-1 activity by inhibiting HIV-1

transcription, translation, or post–translational processing (prote-

ase). However, given our finding that GFP expression was reduced

in both TNF-a reactivated latent HIV-1 infection and acute viral

infection; the data point toward transcriptional inhibition or

translation (Figs. 2, 3, 4, 5, 6, and 7), which was not expected from

crippled viral protease. GFP is cloned between env and nef genes

[44–45] and its expression is independent of viral protease activity,

but dependent on Tat for transcription. To validate the infection

data, we examined Tat function, using only Tat expression vectors

to rule out other viral proteins. To mimic HIV-1 expressed Tat,

we packaged lentiviral-vector- expressing Tat protein pseudotyped

with VSV envelope (VSV-Tat). We used VSV-Tat viral particles

for transduction of SVGA-LTR-GFP reporter cells expressing

EGFP under the control of HIV-1 LTR [52–53]. In parallel,

VSV-pseudotyped HIV-1 was used as a positive control. Luteolin

treatment following transduction with VSV-Tat virus particles led

to suppression of LTR-mediated GFP expression (Fig. 7C),

suggesting compromise in Tat function at either the protein

expression level or the LTR-transactivation level. We corroborat-

ed these results using TZM-bl reporter cells. Transfection of

pcDNA-Tat expression vector wherein Tat is under the control of

CMV promoter, followed by treatment with different concentra-

tions of luteolin (0–10 mM), resulted in dose-dependent suppres-

sion of LTR-luciferase expression, which did not occur in vehicle-

treated or untreated cultures (Fig. 8A).

We further investigated whether luteolin affects Tat expression

levels by transfecting TZM-bl cells with Tat expression vector

(pcDNA-Tat), and treating them with either luteolin or vehicle.

Luteolin treatment had no affect on Tat protein levels as analyzed

by Western blotting (Fig. 8B), indicating that LTR transactivation

(Fig. 8A, C) is restricted at the Tat functional level. In parallel, we

co-transfected Tat siRNA with Tat expression vector (pcDNA-

Tat) as a positive control, observing suppression in Tat expression,

but not in vehicle controls (Fig. 8B).

The variation in transcriptional activity of HIV-1 Tat protein

among HIV-1 subtypes has been predominately attributed to

sequence variability in its N-terminal activation domain (1–48

amino acids), especially the cysteine–rich region, which binds Zn2+

cation and engages cyclin T1 [54]. Tat from HIV-1 subtype-C and

E (prevalent in Asia and Africa) is reported to exhibit higher

transactivation and TAR RNA binding capacity than does HIV-1

subtype-B (prevalent in North America and Europe) [54–56].

Hence, we investigated whether luteolin-mediated suppression of

Tat-mediated LTR-transactivation can be extended to different

HIV-1 subtypes. On transfection of clade-B and C Tat expression

vectors (pcDNA-Tat vectors) abundant expression of Tat proteins

was found in TZM-bl cells (Fig. 8C, inset), with levels of LTR-

transactivation similar to those in compared to controls observed

in Western blots (Fig. 8C). In further experiments, luteolin

treatment profoundly inhibited LTR-mediated luciferase expres-

sion in both clade-B and -C Tat transfected cells (Fig. 8C). In

parallel, transcriptionally inactive Tat-47 mutant (D48–56) deleted

in nuclear localization signal was used as negative control,

demonstrating only basal luciferase activity in both Tat-47- and

empty vector (pcDNA)- transfected TZM-bl cells.

Given that Tat is a bona fide nuclear/nucleolar protein [52,57–

59], we investigated whether luteolin affects sub-localization and

thus cripples HIV-1 LTR-activity. We transfected HeLa cells

using Tat-HA vector and 6 h after transfection, then treated them

with luteolin or DMSO or left them untreated. At 24 h after

transfection, cells were immunostained for Tat, nucleophosmin

(nucleolar protein), and nuclei, then examined for Tat localization.

Tat sub-cellular (nuclear/nucleolar) localization was unaffected by

luteolin, as in DMSO- or mock- treated cells (Fig. 8D). This

indicates that viral transactivator protein function is impaired at

the LTR-functional level, including either Tat binding to TAR

RNA or cyclin T1/CDK9 or inhibition of critical factors,

including NF-kB, that are involved in HIV transcription (Fig. 9).

These observations confirm that luteolin confers its anti-HIV-1

activity at the Tat-LTR transactivation level (transcription step)

after the viral integration step. However, further investigations of

the action of luteolin are needed to decipher the detailed

mechanism of Tat-mediated LTR inhibition. Currently, we are

investigating the interactions of Tat with HIV-1 LTR and host

transcription factors, as well as post–translational modification on

Tat in the presence of luteolin. Several compounds, such as

Quinolines, as well as stilbene- and purine-derivatives have been

Figure 6. Luteolin inhibited HIV-1 gene expression indepen-
dently of viral DNA integration. A. TZM-bl reporter cells in 12 well
culture plates were transfected with HIV-1 plasmid DNA vector
expressing GFP, then treated with luteolin (10 mM) or DMSO (Veh). In
parallel, TZM-bl cells were infected with VSV-HIV NLENG1 or NLR+E2 for
2 h, then treated with luteolin (10 mM) or DMSO for the duration of
follow up. At 48 h post-transfection or infection, cells were lysed and
assayed for luciferase activity (n = 2). B–C. Two hours after Magi cells
were transfected with pHIV NLENG1 (150 ng), luteolin (10 mM) was
added to them. After 6 h, transfection medium was replaced with fresh
medium containing luteolin for 12 or 24 h. At 48 h post-transfection,
cells were monitored for GFP expression. Representative pictures are
shown (B). Cell supernatants were collected to measure p24 levels (Cs)
(n = 2). *** p,0.001, ### p,0.005.
doi:10.1371/journal.pone.0027915.g006
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reported to show anti-HIV activity, inhibiting Tat-TAR interac-

tions [60–64]. Other compounds, such as flavipiridol, rescovtine,

and 9-amino acridine, targeted CDK9, a component of pTEFb

complex [65–67]. Recently, a coumarin derivative has been shown

to potently inhibit HIV Tat function in nano–molar concentra-

tions by repressing p300 and PI3K/AKT [68]. This supports the

Figure 7. Luteolin inhibited reactivation of latent HIV-1 infection. (A, B) One million latently HIV-infected THP89 cells seeded per well in 12
well culture plates were pretreated overnight with luteolin (5 or 10 mM) or DMSO, then stimulated with TNF-a (10 ng/ml) and monitored by (A) GFP
expression and (B) virus production by p24 ELISA. Similarly, 10 mM luteolin treatments were given from 12 h to 72 h post -TNF-a stimulation. Virus
production was monitored by p24 ELISA. DRB (10 mM) was used in parallel as a positive control (n = 3). (C) Luteolin inhibited transactivation of
integrated HIV- LTR. SVGA-LTR-GFP reporter cells were transduced with VSV-Tat viral particles for 2 h, then treated with 10 mM luteolin or vehicle and,
after 24 h, monitored for GFP expression.
doi:10.1371/journal.pone.0027915.g007
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possibility that luteolin leads to the development of potent

derivatives to inhibit HIV in nano–molar concentrations.

Therefore, several other active derivatives of luteolin shown to

have more potent antioxidant and anti-inflammatory properties

need to be investigated for anti-HIV-1 activity. Intriguingly,

quercetin, a luteolin analogue, has been shown to repress

proinflammatory miRNA-155 in macrophages in –vivo [43], it

would be interesting to determine whether luteolin has the same

effect. One caveat is that luteolin may complement combination

anti-HIV therapy by preventing synthesis of viral proteins

available for protease steps. This would enhance the potency of

protease inhibitors, eventually leading to reduced virus assembly

and release.

In conclusion, our results on reporter cells and primary

lymphocytes indicate that luteolin cripples HIV-1 Tat function

and may be the critical component in anti-retroviral combination

therapy for HIV-1 infection. In addition, luteolin crosses the

blood-brain barrier and has been shown to confer neuroprotective

effects via inhibition of neuroinflammation [28,69–71]. However,

the concentrations of luteolin that we found to be inhibitory in our

study are in the upper therapeutic ranges. Further investigation is

needed to determine whether these concentrations are achieved in

vivo. Further investigations in–vivo and significance of luteolin

with anti-HIV drugs whether it can act in synergism with lower

concentrations, are the future goals. However, we have laid the

foundation for development of luteolin derivatives that, in

nanomolar ranges, may which could inhibit HIV-1. Currently,

we are investigating the ability of 500 flavonoid derivatives to

inhibit HIV in nano molar ranges.

Materials and Methods

Primary cells, cell lines, and reagents
Human peripheral blood mononuclear cells (PBMCs) were

separated from whole blood (New York blood bank) using

Histopaque (Sigma, St., MO), washed three times with phos-

Figure 8. Luteolin inhibited clade B and –C Tat–mediated LTR transactivation in TZM-bl reporter cells. (A) TZM-bl reporter cells were
transfected with Tat expression vector (pcDNA-Tat) and treated after 4 h with different concentrations of either luteolin (0–10 mM) or vehicle and
monitored for luciferase activity. (B) TZM-bl cells were transfected with pIRES2-EGFP-Tat-HA (400 ng) and, 24 h later, treated with 0-, 5- and 10- mM
luteolin. A Tat-specific siRNA cocktail of 3 siRNAs (300 nM) was co-transfected with Tat expression vector as a positive control. 48 h post-transfection,
cells were harvested for Western blot using anti-HA and anti-b actin antibody. (C) TZM-bl cells transfected with HIV-1 subtype-B or -C Tat expression
vectors (pcDNA-Tat) were treated with luteolin (10 mM) at 4 h after transfection. In parallel, mutant Tat-47 (D 47–56 aa) was used as a negative
control. LTR luciferase activity was assessed at 48 h after transfection. Protein levels expressed from Tat expression vectors were monitored by
Western blot with anti-HA and anti-b-actin antibody. *** p,0.001. (D) Effect of luteolin treatment on subcellular localization of Tat protein in HeLa
cells. Immunostaining showing subcellular localization of Tat protein in HeLa cells after treatment with luteolin (10 mM), DMSO as a vehicle control
(DMSO), or untreated (-). IgG was used as isotype antibody control (Isotype). Cells were immunostained for Tat (red), B23/nucleophosmin (green), and
nuclei (blue), images were captured at 206with a Nikon fluorescent microscope.
doi:10.1371/journal.pone.0027915.g008
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phate-buffered saline (PBS), and cultured in 10% FBS containing

RPMI as previously described [42]. TZM-bl (CD4/CXCR4/

CCR5+ve HeLa cells) and Jurkat cells were obtained through

AIDS Reagent and Reference Program, NIH. TZM-bl, SVGA-

LTR-GFP cells [52] were grown in DMEM while Jurkat cells were

grown in RPMI with 2 mM L-glutamine and RPMI (Gibco-BRL),

each supplemented with 10% FBS, 1% penicillin, streptomycin,

and amphotericin B (GibcoBRL). We obtained all chemical

reagents from Sigma (St. Louis, MO). Stocks for luteolin,

quercetin, and myricetin were prepared in dimethyl sulphoxide

(DMSO). All flavonoids used in the study were of more than 98%

purity. Rabbit polyclonal anti-HA antibodies were purchased from

Santa Cruz Biotechnology, mouse anti-B23 (nucleophosmin)

antibody from Abcam, Alexa 568 conjugated goat anti-rabbit

IgG, and Alexa 488 conjugated goat anti-mouse IgG from

Invitrogen. We purchased mouse monoclonal anti b-actin

antibody from Sigma.

Viral constructs and plasmids
We obtained HIV-1 NL 4-3.HSA.R+E2 [72], subtype C Tat

[73], and VSV-G expression plasmids [74] through the National

Institutes of Health (NIH) AIDS Reagent and Reference Program.

The use of HIV-1 NLENG1 has been described [44], as the use of

NL4-3 integrase mutant (D64A) [50]. Full-length subtype B Tat

(101 amino acids) was subcloned from pcDNA-Tat [53] into HIV-

1 derived lentiviral vector pLVX (Clontech) under CMV

promoter and packaged with a VSV envelope as described earlier

[48]. HA tag was inserted at the C-terminus of full-length subtype

B and subtype C Tat, along with EcoRI and XhoI restriction sites

by PCR amplification. Amplicon was cloned into pcDNA3.0

vector. Similarly, subtype B Tat with HA tag was subcloned into

bicistronic pIRES2-EGFP vector (Clontech). Functionally inactive

subtype B mutant was created by deletion of nuclear localization

signal (amino acids 47–56) and was cloned with HA tag in

pcDNA3.0 vector at EcoRI and XhoI sites. The inserts were

confirmed by double–strand DNA sequencing. The HIV-1 long

terminal repeat (LTR)-driven GFP construct was created by

replacing CMV promoter in the pEGFP-N1 vector (Clontech)

with LTR promoter at SalI and SmaI, then stably transfected into

SVGA cells [53].

Virus packaging, pseudotyping, and HIV-1 infection assay
HIV-1 full length DNAs or lentiviral vector pLVX expressing

Tat were packaged in 293T cells as described previously [42].

Briefly, we transfected 17 mg of HIV or lentiviral expression vector

DNA per 100 mm culture dish (BD Falcon) using Lipofectamine

2000 (Invitrogen). Similarly, we pseudotyped HIV-1 NLENG1 or

HIV-1 pNL4-3.HSA.R+.E2 proviral DNA (17 mg) with VSV-G

envelope using a 4.0 mg VSV-G construct. To pseudotype

lentiviral vector, cells were transfected with 10.0 mg pLVX-Tat

or pLVX with 3.0 mg pCMV-Tat, 8.0 mg pGag-Pol, 4.0 mg

pCMV-Rev, 2.5 mg pVpr, and 4.0 mg pVSV-G using Lipofecta-

mine 2000 [42]. The supernatants containing viral particles were

harvested 72 h after transfection and centrifuged at 300 g for

10 min to remove cellular debris. Further, viral stocks were treated

with 5 IU/ml of RNase-free DNase for 15 min at room

temperature and membrane–filtered. Stocks were filtered and

stored as 1.0 ml aliquots at 280uC. Viral titers were determined

by p24 ELISA (Zeptometrix, Buffalo, NY) or by transducing

SVGA-LTR-GFP reporter cells.

HIV-1 infection in either TZM-bl or Jurkat cells was done in

12-well tissue culture plates (Falcon) with HIV-1 NLENG1

(250 ng/ml p24 antigen) for 2 h at 37uC. After infection, cells

were washed twice with optiMEM and replaced with complete

medium containing 10% FBS. On the next day, medium was

replaced once to remove input-adsorbed virus particles released

during the 24-h period. We collected supernatants on the third

and fifth days after infection. p24 antigen was monitored in HIV-1

infected culture supernatants by quantitative ELISA (Zeptome-

trix). GFP expression was monitored and the images captured by a

digital camera in a fluorescent microscope (Nikon). Primary

human lymphocytes were cultured from PBMCs and stimulated

with 1% PHA and IL-2 (10 ng/ml) [42], then infected with wild–

type HIV (NLENY1) or VSV-HIV-1 for 2 h at 37uC, then

washed. Productive virus infection was monitored at 2, 4, and 6

days after infection by p24 ELISA.

Western blotting and immunofluorescence
TZM-bl cells were transfected with pIRES2-EGFP-Tat-HA

and, on the next day, treated them with luteolin or DMSO. Cells

were harvested 48 h after transfection and lysed in RIPA buffer

(Sigma) containing a protease inhibitor cocktail (Pierce); 30 mg of

total protein from each sample was then analyzed on 12% SDS-

PAGE. Protein bands were transferred to polyvinylidene difluoride

(PVDF) membranes (BioRad) [48]. We blocked the membranes

with blocking buffer (5% nonfat dry milk, 0.1% Tween 20 in PBS)

for 1 h at room temperature. Overnight, the membranes were

probed at 4uC with rabbit polyclonal antibody against HA peptide

(1:1000, Santa Cruz Biotechnology) and, as an internal control,

mouse monoclonal antibody against beta actin (1:3000 dilution,

Sigma). After three washes with 0.1% Tween 20 in PBS, the

membranes were incubated with anti-rabbit IgG secondary

antibody conjugated to horseradish peroxidase (1:3,000, BioRad)

in blocking buffer for 1 h at room temperature. We washed the

membranes three times with 0.1% Tween 20 in PBS and

developed them using a chemiluminescence detection kit ECL

(GE Healthcare). Tat levels were quantified by densitometric

analysis using Image J software (NIH). Normalization of samples

was done at two levels using equal protein concentrations for

loading followed by actin levels.

Figure 9. Proposed schematic representation of anti-HIV
activity of luteolin. After HIV-1 DNA integration into host genome,
viral genes are expressed under the control of the HIV-1 long terminal
repeat (LTR) as a promoter with the help of viral regulatory protein Tat,
which binds with TAR RNA element in the 59 end of LTR. Luteolin may
abrogate Tat-mediated LTR transactivation activity by interfering with
pTEF-b binding with LTR or abolish Tat binding; it also may prevent NF-
kB activation or inhibition of host factors involved in transcription or
inhibition of viral mRNA translation.
doi:10.1371/journal.pone.0027915.g009
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Immunofluorescence staining was done as described previously

[44]. HeLa cells seeded in slide flaskets (Nunc, Denmark) were

transfected with 500 ng of pcDNA-Tat-HA expression vector

using Lipofectamine 2000. At 24 h after transfection, cells were

fixed with 2% paraformaldehyde for 15 min at 25uC. The cells

were washed twice with PBS and permeabilized by Triton X-100

(0.2%; v/v) in PBS for 11 min. Slides were overlaid with primary

antibodies against HA (rabbit) and B23/nucleophosmin (mono-

clonal) as a nuclear maker, and each antibody diluted to 1:300.

Slides were kept overnight at 4uC. In parallel, IgG1 antibody was

used as an isotype antibody control. The slides were washed three

times with PBS and overlaid with alexa-568 conjugated goat-anti-

rabbit (1:500) and alexa-488 conjugated goat-anti-mouse (1:500),

then incubated at 25uC for 35 min. After two washings, nuclei

were stained using Hoechst (1 mg/ml) for 5 min. Slides were

mounted in fluoromount (Sigma), an aqueous gel mounting

medium. Slides were examined with Nikon E600 fluorescence

microscope and images acquired at 206magnification.

HIV-LTR reporter assay
We infected TZM-bl cells with HIV-1 (p24 = 250 ng/ml) or

transfected them with Tat expression vector using Lipofectamine

2000 (Invitrogen) [53] either in 96-well or 12-well plates, then

treated the cells with luteolin or vehicle control. The DNA

concentrations in transfection were normalized using empty

control vector (pcDNA). At 48 h after treatment, we lysed cells

using reporter lysis buffer (Promega), then put them through one

freezing-thawing cycle. 30 ml of cell lysates was used to monitor

luciferase activity in a 100-ml reaction using ready-glow firefly

luciferase substrate (Promega). We quantified the luminescence in

optilux black plates (Falcon) using a multi-mode microplate reader

(BioTek instruments), then calculated the percent of LTR

luciferase activity as relative luciferase units normalized to cell

control.

Real-time PCR and Alu-HIV-1 integration PCR
To detect viral DNA synthesis after reverse transcription in

HIV-1 infection studies, we did real-time PCR as described earlier

[48]. Briefly, we harvested DNA from the infected cells using

DNAzol (Invitrogen) [48]. The cells were removed by trypsiniza-

tion and washed twice with PBS, after which we added 1.0 ml

DNAzol to cell pellets. DNA was precipitated by adding 500 ml

ethanol, removed by spooling with a pipette tip, and washed once

with 70% ethanol. DNA was dissolved in 8 mM NaOH (pH 8.0)

and spectrophotometrically quantified. The amount of viral DNA

in the samples was quantified by real-time PCR [75] using Tat

gene-specific primers. The following primer sets were used:

Tat forward: 59-GAAGCATCCAGGAAGTCAGCC-39

Tat reverse: 59-ACAAACTTGGCAATGAAAGCAACAC-39

GAPDH forward: 59-CATCAGCAATGCCTCCTGCACC-39

GAPDH reverse: 59-GTGCTCAGTGTAGCCCAGGATG-39.

Briefly, 200 ng of genomic DNA was used in 30-ml PCR

reaction mix in triplicate with 10 pmol of each primer and 26sybr

green (SA Biosciences). The cycle program for amplification was

95uC/3 min followed by 45 cycles of 95uC/20 sec, 60uC/20 sec

and 72uC/20 sec. The reactions were run on a CFX96 real-time

PCR system (Bio-RAD). Data were collected and analyzed using

Bio-RAD CFX Manager Software v 1.1. Ct values were calculated

for each gene and normalized relative to GAPDH expression.

Results were presented as mean 6 SEM of two separate

experiments. Fold expression from untreated controls was

calculated by the 22DDCt method [75].

To examine HIV-1 DNA integration, semiquantitative nested

Alu-HIV-1 integration PCR was done as described previously

[44,76], but with slight modifications. The following primers were

used for the first round of amplification:

INT-1: 59- TGCTGGGATTACAGG GCGTGAG-39

INT-2: 59-TAGACCAGATC- TGAGCCTGGGA-39.

The primers for second round were;

INT-N1: 59-GGCTAACTAGGGAAC-CCACTG-39

INT-N9, 59-CTGCTAGAGATTTTCCACACTGAC-39.

We used 200 ng of genomic DNA as a template for

amplification with the first set of Alu-HIV-1 PCR primers in a

50-ml PCR mix. Amplification cycles were 96uC/3 min followed

by 16 cycles of 96uC/45 sec, 60uC/15 sec, and 72uC/50 sec. In

the nested step, 1.0 ml of the first PCR product was used as a

template in a 50-ml reaction volume in duplicate and was amplified

for 25 cycles using a similar PCR protocol as noted earlier. For all

sample sets, GAPDH was amplified as an internal control from

200 ng genomic DNA as a template using the cycle program as

96uC/3 min followed by 25 cycles of denaturation at 96uC/

45 sec, 57uC/15 sec, and 69uC/45 sec. The amplified PCR

products were separated and visualized on 2% agarose gel. For

quantification, densitometric analysis was done using image J

software (NIH); GAPDH was used for normalization. The percent

of integrated HIV-1 DNA was calculated relative to positive

control (24 h after infection with VSV-HIV-1) as given below:

% integrated HIV� 1 DNA~ DUTreatment=DUGAPDHð Þ½ =

DUControl=DUGAPDHð Þ� � 100, where DU~ densitometric units:

Cytotoxicity assay
TZM-bl or HeLa cells were seeded in 96-well plates at a density

of 2.56104. Jurkat cells were seeded at a density of 5.06104 per

well. We cultured the cells overnight and, next day, treated the

cells with luteolin or control in triplicate. After 24 or 48 h, we

measured the viability of cells after removing the culture medium

and adding 100 ml PBS containing 10 ml of cell counting kit-8

(CCK-8) reagent (Dojindo Molecular Technologies, MD). After

3 h of incubation at 37uC, we collected the supernatants and

measured the absorbance at 450 nm wavelength on a multi-mode

microplate reader (BioTek instruments, VT) [42]. The percent of

viability was calculated as (ODtest/ODcell control)6100. For human

PBMCs, MTT assay was done by adding 20 ml of MTT reagent

(Sigma) from 5 mg/ml stock prepared in PBS. The cells were

incubated with MTT reagent for 3 h, after which 100 ml of

isopropanol was added to dissolve formazan crystals. Absorbance

was monitored at 570 nm wavelength on a microplate reader

(BioTek instruments).

Statistics
The results were represented as mean 6 SEM for each bar

graph plotted using Sigma plot v8.0 with associated p values for

each treatment group compared to its controls. Statistical analysis

was done using Origin 6.1 software. The significance between two

groups was calculated using a two-tailed student’s t-test followed

by one-way analysis of variance. P,0.05 was considered to be

significant.
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