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Abstract

Though recently they have fallen into some disrepute, genome-wide association studies (GWAS) have been formulated and
applied to understanding essential hypertension. The principal goal here is to use data gathered in a GWAS to gauge the
extent to which SNPs and their interactions with other features can be combined to predict mean arterial blood pressure
(MAP) in 3138 pre-menopausal and naturally post-menopausal white women. More precisely, we quantify the extent to
which data as described permit prediction of MAP beyond what is possible from traditional risk factors such as blood
cholesterol levels and glucose levels. Of course, these traditional risk factors are genetic, though typically not explicitly so. In
all, there were 44 such risk factors/clinical variables measured and 377,790 single nucleotide polymorphisms (SNPs)
genotyped. Data for women we studied are from first visit measurements taken as part of the Atherosclerotic Risk in
Communities (ARIC) study. We begin by assessing non-SNP features in their abilities to predict MAP, employing a novel
regression technique with two stages, first the discovery of main effects and next discovery of their interactions. The long
list of SNPs genotyped is reduced to a manageable list for combining with non-SNP features in prediction. We adapted
Efron’s local false discovery rate to produce this reduced list. Selected non-SNP and SNP features and their interactions are
used to predict MAP using adaptive linear regression. We quantify quality of prediction by an estimated coefficient of
determination (R2). We compare the accuracy of prediction with and without information from SNPs.
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Introduction

Persistent idiopathic elevated blood pressure (BP), or essential

hypertension (HTN), is quantitatively the major risk factor for

untoward cardiovascular outcomes, with wide-ranging prevalence

of 29% in the U.S. Although pathogenic pathways that lead to

HTN remain poorly understood, much of the risk of HTN is

believed to be genetic. Therefore, genetic investigations may lead

to our improved understanding of traits related to HTN and

ultimately to identifying new molecular targets for drug therapy.

Genome-wide association studies (GWAS) are the most recent

form of such efforts and have been employed to interrogate the

genetic architecture of other complex diseases as well as essential

HTN [1]. The number of susceptibility variants that can be

identified definitively by GWAS is limited although they can be

used to gain insights into disease pathways [2,3,4]. Since for

genetically complex disease its heritability caused by mutation

away from wildtype in any single SNP seems quite small,

contributions of these susceptibility SNPs, if any, to prediction of

complex traits of interest is limited. Indeed, as we show in this

article, at least for mean arterial BP, SNPs do not add much and

sometimes diminish, predictive information available from other

clinical features.

From a clinical point of view, we are interested in how much

new information the genome-wide SNPs provide in prediction of a

BP trait in addition to what is achievable from traditional risk

factors, such as blood cholesterol level and glucose level. To this

end, population-based cohort studies that include rich data on

non-SNP clinical biomarkers, if combined with whole-genome

SNP data, could complement case-control studies such as GWAS

in a clinically relevant fashion. This approach shifts the focus of

studies from finding genes that are causally associated with disease

status (which can be understood as multiple hypothesis testing with

very stringent type I error rate imposed in order to avoid false

positives due to the vast number of hypotheses) toward assessing

predictive power for the unobserved phenotype of interest, which

can be modeled by regression with many predictors.

In this article we quantify the impact on mean arterial blood

pressure (MAP), an obvious quantitative phenotype, of more

common genetic variation above and beyond that of other
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conventional risk factors (non-SNP clinical features), in the cohort

of first-visit Atherosclerosis Risk in Communities (ARIC) women.

ARIC was a prospective study, conducted in four U.S. com-

munities, supported by the U.S. National Heart, Lung and Blood

Institute (NHLBI). What makes the ARIC cohort an ideal study

sample is that there were many measurements gathered in clinic,

not least blood pressure measured according to the ARIC protocol

[5]. We chose MAP for the quantitative phenotype of interest.

MAP is one of the four major blood pressure components; systolic

(SBP) and diastolic blood pressure (DBP), pulse pressure, and

MAP. Each has been shown to be associated with cardiovascular

risk, all the better if used in combination [6]. MAP is the average

pressure in the arterial system and was chosen here rather than

SBP or DBP because it represents a physiological (rather than

traditional) component of blood pressure, corresponding to the

product of cardiac output and peripheral resistance minus central

venous pressure [6]. MAP is highly correlated with SBP and DBP

(squared correlation coefficients r2 of 0.81 and 0.84 in our study

sample, consistent with what has been described by others [7]).

Although the usefulness of MAP as an independent cardiovascular

risk factor beyond SBP and DBP is debated, we would expect very

similar results if SBP or DBP were used in our analysis. MAP can

be estimated by a convex combination of systolic (SBP) and dia-

stolic blood pressure (DBP): 2/3 DBP+1/3 SBP, a simplification

that we take as our definition. Also, MAP as opposed to hyper-

tensive status can be measured, or at least approximated, non-

invasively without the biases related to clinically diagnosed cases

and controls, allowing for subtle phenotypic variability among

individuals. Potential genetic determinants of brachial SBP and

DBP were evaluated in several prior studies [8,9,10,11], but

separate consideration of MAP has not been investigated fully.

We consider the synergistic impacts of SNPs and other features

with initial hypothesis that variation in MAP can be explained

largely by non-SNP features together with SNPs, and the sy-

nergistic effects of their union. To begin, we assess the ability of

non-SNP features to predict MAP for white female subjects.

Predictive analysis of SNPs on MAP is conducted with a novel

regression technique that has two stages: (a) ‘‘main effects’’ and

‘‘interactions’’ are discovered for non-SNP features by applying

classification and regression trees (CART) combined with the

bootstrap for which the sampling units are individual subjects; this

selection of non-SNP features and their interactions enables

assessment of accuracy in predicting MAP; (b) the enormous list of

SNPs genotyped is pared down to a manageable list for the

purpose of combining with non-SNP features in prediction; to that

end, we adapt the local false discovery rate (locfdr) framework [12],

[13] in order to find main effects of SNPs as they bear upon

prediction; we employ then the selected non-SNP and SNP

features to predict MAP using adaptive linear regression. The

crucial rationale here is that a SNP is unlikely to have a synergistic

effect if it shows no individual predictive power. The predictive

power of SNPs and subsequently their synergistic effects are

quantified by an estimated coefficient of determination (R2). This

number is compared with R2 estimated from stage (a) in order to

quantify improvement in prediction due to SNPs. We validate the

entire procedure by 10-fold cross-validation.

As stated, the purpose of the proposed predictive modeling is to

assess whether knowledge of genetic variants can improve the

accuracy of prediction, as measured by R2 of MAP above and

beyond that obtained with conventional risk factors. Note that this is

a slightly different goal from that of typical association studies in the

sense that the selected SNPs need not meet stringent levels of

significance for multiple hypothesis testing. Rather, this addresses

the question of which variants are most predictive of MAP, as highly

associated SNPs are not always good predictors of the phenotype

[14]. Hence, cross-validated discovery of the relationship between

genome-wide SNPs and the phenotype of interest is relevant. For

this, model selection approaches are required to find the set of SNPs

that best predicts the phenotype [15]. Model selection is handled by

incorporating the adaptive regression framework.

Methods

All individuals provided written informed consent, including

consent for genetic studies; this research was approved by The

Office of Human Subjects Research Institutional Review Boards of

Johns Hopkins University, Committee JHM-IRB 2 on December 2,

2010. In addition, the research proposed in the ARIC study

including research done for this ancillary study has been carried out

according to guidelines expressed in the Helsinki Declaration.

Study samples
All research was completed with written informed consent and

the data were analyzed anonymously. All clinical investigation was

conducted according to the principles expressed in the Declaration

of Helsinki.

Among the 8861 individuals, all of whom are self-reported

whites, genotyped among the 15,792 ARIC individuals, we se-

lected 3138 females who were premenopausal or naturally post-

menopausal at the first visit. We concentrate on women rather

than men because the genetics of what drives blood pressure is

different in men than women. We focus on pre-menopausal and

naturally post-menopausal women because we do not want

medical interventions to interfere with the joint relationship of

predictors and outcome. For each individual, we used 377,790

unimputed SNPs on the autosomal chromosomes. As non-SNP

clinical features, we used 44 variables that include morphological

and biomarker measurements. The 44 clinical features were

chosen subjectively because it was thought that they would be most

predictive among available ARIC features. Readers can see what

features were available from ARIC (http://www.cscc.unc.edu/

aric/). The full list and the characteristics of these variables for the

sample of subjects included in our analyses are presented in Table

S1. In particular, age at the first visit took values from 44 to 66,

with mean 54.84. Each feature had missing values for at most 2%

of people. We imputed missing values in these non-SNP features

using CART trained on the known values as responses and the

other features as predictors, following [16].

The mean and standard deviation of observed (and treatment

corrected; often in computations of blood pressure, there is an

adjustment that consists of adding 10 mmHg to SBP and 5 mmHg

to DBP for those on anti-hypertensive medication(s) [15]) SBP in

our sample were 117.6 (120.2) and 17.82 (19.41); for DBP they

were 69.76 (71.06) and 9.688 (10.29). The proportion of indi-

viduals taking anti-hypertensive medication was 26.0%.

Model
We employed an additive model in which the phenotype of

interest (MAP) is a linear function of particular non-SNP features,

their interactions, additive genetic effects of SNPs, and the

interactions among the SNPs and the non-SNP features. The

additive model can be written

y~m1zZuzf (Z)vz
X

i~1,...,m

Liaizg(Z,L)bze ð1Þ

where y is a vector of length n representing MAP; 1 is a vector of n

ones; Z is a data matrix for the main effects of the non-SNP

Features as They Predispose to Complex Disease
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features; f(Z) is a data matrix for the interactions among the non-

SNP features; Li is a column vector of length n having entries 0, 1,

or 2 representing the number of minor alleles at the i-th SNP; and

g(Z,L) is a data matrix for the interactions among the SNPs and

the non-SNP features, with L = [L1, …, Lm]. m is the overall mean

of MAP; u is a vector of non-SNP main effects; v is a vector of non-

SNP interaction effects; ai is the main effect of i-th SNP; b is a

vector of interactions among the SNPs and the non-SNP features;

e is a vector of residuals.

It bears mention that this paper is about variable selection and

thus is in the spirit of data mining. Note that model (1) is

conditional on data matrix Z, not to speak of being conditional

also on available SNPs: m is a one-dimensional constant; n, the a’s,

and b are (finite dimensional but typically not one-dimensional)

constants. It is fundamental that analyses given in this paper are all

conditional on values of these parameters and data matrices. The

source of randomness in our paper is relevant to bootstrapping

discussed in the next section. Apart from the error e, it arises from

the joint empirical distribution of Z and L. This approach is in

contrast with the prevailing ‘‘components of variance’’ approach

to understanding genetic data [17], which is conditional on a

model having been selected. Its most important part is inference

on the additive random effects of the genetic component in a

preselected model. Randomness is unconditional with respect to

these effects, such as ‘‘percent variance explained.’’ Whatever

percent this is must be taken to be in this context, but not in our

framework. Issues of conditional versus unconditional bases to

inference are pervasive in the statistical literature, perhaps

especially in the analysis of variance and in regression. In short,

variable selection for predictive modeling and estimation of a

component of variance for a given model are simply not the same

thing.

When model selection is the issue, as it is here, Gaussian

assumptions on relevant criteria and their implications for the

distribution of MSE do not apply. Therefore one way to judge

‘‘significance’’ is from some sort of internal validation of an entire

process. The question is one of validation, not of subjective choice

of predictive features or combinations of them. The remainder of

Methods deals with this issue.

Estimation of non-SNP effects
We used CART to select main effects and interactions among

the 44 non-SNP features. The use of CART as an interaction

selector has been advocated widely [18], although it is also well

known that CART fits have large variability. To cope with

potential instability, we applied the bootstrap. We sampled

individuals with replacement 300 times independently. In other

words, the bootstrap sampling unit is an individual. While it may

be that the 3138 samples include family members, this matter was

not considered in our validation because we have no information.

However, it is far from obvious even if we had family structures

that we would want to use them in our problem of variable

selection. One can argue that randomly selected individuals in the

population ‘‘out there’’ come with family structures. These

structures are represented fairly among the ARIC data. If so,

then taking account of family structures is done automatically by

what we have done in our approach where the goal is selection of

features.

For each bootstrap sample, we fit CART using the default

pruning method. For each of the 300 trees, we chose main effects

along every path from the root to the leaf node by picking a feature

if it was ever the feature on which a split was made. For each path,

we chose two- and three-factor interactions as adjacent nodes, i.e.,

parent-child pairs and grandparent-parent-grandchild triples.

With this approach, for each interaction term the corresponding

main effects are also chosen. Among the chosen main effects and

the interaction terms, we selected those that occurred more than a

certain percentage of the maximum 300 occurrences (we tried 1%,

5%, 10%, and 20%).

Trees have been used previously, albeit in ways different from

their use here, in order to find and quantify particular interactions of

amino acids at various sites of genomes. See, for example, [19], [20].

Still, features come in groups that are close to collinear. If a pair

of frequent features does not occur simultaneously in a single

bootstrap run of CART, they may compete due to collinearity (cf.

surrogate splits; see [21], pp. 140–142). In order to find groups of

competing features, we performed hierarchical clustering based on

the co-occurrence matrix D [22] such that

Dij~#ij=(#iz#j{#ij)

where #ij is the total number of simultaneous occurrences of

features i and j, #i and #j are there respective number of

individual occurrences. For each cluster C, we selected a centroid

feature using a minimax criterion

centroid(C)~arg mini[C maxj[C Dij

(This centroid feature was chosen from among an already existing

list of features.) Using co-occurrence clustering, we obtained final

non-SNP features about 40% fewer than those obtained before

applying this method.

We applied the LASSO adaptive regression in order to assess the

overall predictive power, possibly eliminating features with low

predictive value. Note that CART is not used to directly fit MAP; it

is the LASSO that is fit using the features selected by boostrapped

CART and the co-occurrence matrix-based clustering. We cross-

validated the entire procedure of CART, the bootstrap, the co-

occurrence method, and the LASSO in order to estimate the

coefficient of determination (R2), defined as the squared correlation

coefficient between the predicted responses and the actual

responses. In this way, we validate the adaptive algorithm and its

predictive power, but not a single model with fixed predictors.

Estimation of main effects of SNPs
In order to assess the marginal effect of SNPs, so in addition to the

predictive contribution of the non-SNP features, we computed the

nominal P-value of each SNP for the model (1) with m = 1, b= 0 (i.e.,

no gene-gene or gene-environment interactions), and the covariates

set to the non-SNP features chosen by bootstrapped CART and the

co-occurrence clustering. SNPs that have low local false discovery

rates [12], [13], a ‘‘local’’ empirical Bayes version of false discovery

rates [23], were selected as candidate predictors in model (1), with

b= 0. More precisely, we applied the step-up procedure for local

false discovery rates [24] in order to bound marginal false discovery

rates (mFDR). We tried the bounds 0.2 and 0.5. We validated the

increase in predictive power due to the inclusion of the SNP features

in the LASSO regression using the same cross-validation sets as

those used for validating non-SNP features.

Estimation of interaction effects among SNPs and non-
SNP features

We explored the full model (1) by repeating the procedure of

Section 2.3, but with the chosen SNPs added to the CART

interaction selector. We validated the increase in predictive power

of this approach using the same cross-validation sets as those used

for validating non-SNP features.

Features as They Predispose to Complex Disease
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Results

Non-SNP features alone can achieve a moderate
predictive power

The adaptive prediction algorithm chose 14 to 30 non-SNP

features (see Table 1), and achieved cross-validated R2 of 24% to

27% for medication-adjusted [25] MAP and mFDR cutoff 0.2

(Table 2, ‘‘non-SNP’’). For unadjusted MAP its predictive

performance was lower (up to 14.6%, same mFDR cutoff; see

Table 2) and the number of chosen non-SNP features ranged from

21 and 44 (Table S2). These features are typical risk factors for

HTN and their interactions.

Because prediction is better for adjusted MAP than for unadjusted

MAP, plausibly a search for features predictive of MAP would yield

Table 1. Non-SNP features (above the horizontal line) and interactions (below the horizontal line) chosen by our adaptive
prediction algorithm.

Code feature cutoff fraction of occurrence

0.01 0.05 0.1 0.2

avg coef
CV
count avg coef

CV
count avg coef

CV
count avg coef

CV
count

ANTA07A Waist girth (cm) 2.97E202 2 2.53E202 4 2.88E202 5 1.63E202 7

APASIU01 Apolipoprotein A1 (mg/L) NA NA 2.53E204 4 2.17E204 1 NA NA

APBSIU01 Apolipoprotein B (mg/L) 3.37E205 3 8.38E205 2 NA NA NA NA

BMI01 Body mass index (kg/m2) 3.23E202 2 1.69E202 2 2.74E202 1 6.15E202 1

CENTERID.B Field center 23.51E201 5 27.11E201 7 22.35E201 2 NA NA

CENTERID.D Field center 21.95E+00 10 22.18E+00 10 21.74E+00 8 21.31E+00 1

CHOLMD02.1 Meds that secondarily lower
cholesterol

8.14E+00 10 8.45E+00 10 8.20E+00 10 7.54E+00 10

CIGT01.2 Cigarette smoking status (% never) 6.01E201 6 8.89E201 7 4.49E201 4 6.28E201 1

CIGT01.3 Cigarette smoking status (% never) 9.73E201 10 1.26E+00 9 8.92E201 6 8.96E201 2

CIGTYR01 Cigarette years of smoking 26.29E204 9 27.00E204 8 25.54E204 6 NA NA

ETHANL03 Usual ethanol intake (g/week) 5.60E203 6 6.21E203 4 2.28E203 3 NA NA

INSSIU01 Insulin (pmol/L) 7.81E204 2 6.11E204 4 3.49E204 4 NA NA

TCHSIU01 Total cholesterol (mmol/L) 5.84E201 1 5.88E201 2 5.80E201 5 5.31E201 10

TRGSIU01 Total triglycerides (mmol/L) 3.58E201 5 3.82E201 9 3.11E201 9 1.34E201 4

V1AGE01 Age at first visit 1.01E201 9 1.31E201 10 1.24E201 10 1.03E201 3

WSTHPR01 Waist-to-hip ratio 1.73E+00 3 1.94E+00 2 4.54E+00 2 5.61E+00 2

ANTA07A:TCHSIU01 8.10E203 5 7.32E203 4 8.17E203 1 NA NA

BMI01:TCHSIU01 3.13E202 2 2.29E202 1 NA NA NA NA

BMI01:TRGSIU01 1.12E202 1 NA NA NA NA NA NA

CHOLMD021:
ANTA07A

NA NA NA NA NA NA 7.32E203 3

CHOLMD021:ANT
A07A:TCHSIU01

1.05E203 4 NA NA 1.04E203 1 NA NA

ERHA21:ANTA07A 7.04E204 10 8.83E204 10 7.56E204 9 1.09E203 4

ERHA21:APBSIU01 4.69E206 1 1.10E205 1 NA NA NA NA

ERHA21:BMI01 2.38E203 8 2.39E203 10 3.17E203 10 4.24E203 9

ERHA21:BMI01:
V1AGE01

7.31E205 1 NA NA NA NA NA NA

ERHA21:CENTERIDB 23.66E203 2 NA NA NA NA NA NA

ERHA21:CIGT013 NA NA NA NA 1.33E203 1 NA NA

ERHA21:INSSIU01 5.44E205 1 NA NA 4.75E205 1 3.09E205 1

ERHA21:TCHSIU01 5.37E203 4 5.86E203 6 9.13E203 4 NA NA

ERHA21:TRGSIU01 4.71E203 4 2.57E203 3 6.12E203 1 NA NA

ERHA21:V1AGE01 9.25E204 5 1.50E203 1 1.25E204 1 NA NA

ERHA21:WSTHPR01 5.09E202 1 NA NA NA NA NA NA

INSSIU01:CIGT012 3.32E203 2 3.42E203 1 NA NA NA NA

INSSIU01:TCHSIU01 NA NA 9.67E204 1 NA NA NA NA

For each cutoff fraction of occurrence in the bootstrapped CART, average coefficient and the number of times the corresponding feature is selected over the 10-fold
cross validation is presented. Results are shown for medication-adjusted mean arterial blood pressure.
doi:10.1371/journal.pone.0027891.t001
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more of them if the outcome was adjusted. Thus, plausibly, a search

for features using adjusted MAP is generous approach to finding

them. If a feature is not discovered when MAP is adjusted, it may

have particularly limited predictive value.

Inclusion of genome-wide SNPs as main effects did not
significantly increase predictive power

Main effects of the SNPs that were chosen using the local false

discovery rate machinery did not significantly improve R2 either for

medication-adjusted MAP or for unadjusted MAP (Table 2,

‘‘main’’). Note that the standard errors given in Table 2 are likely

to be underestimates due to correlation among the cross-validation

sets. For adjusted MAP, the 10-fold cross-validation (same vali-

dation set for each fold as used in the previous subsection) of the

prediction algorithm selected 49, 39, 48, and 49 SNPs in union,

respectively for non-SNP cutoffs 1%, 5%, 10%, and 20%, with 18 of

them common. For unadjusted MAP, the numbers were 48, 40, 48,

and 68, among which 23 SNPs were shared. Between adjusted MAP

and unadjusted MAP, there were 31, 22, 25, and 33 common SNPs

for each of the cutoffs. No SNPs known previously to be, or thought

to be, associated with SBP, DBP, and hypertension were found (see

Table S3 for list of SNPs for adjusted MAP).

Interaction effects due to SNPs may have been
subsumed by the non-SNP features

Starting over the CART interaction selector, with the chosen

SNPs added, also did not significantly improve R2 (Table 2, ‘‘non-

SNP first’’, ‘‘mFDR = 0.2’’, ‘‘inter’’). At first glance, this ‘‘interac-

tion’’ approach that includes gene-gene and gene-environment

interactions seems slightly better than the ‘‘main effects only’’

approach of the previous subsection. In fact, the full procedure

hardly found any SNPs: only two (rs1989858 and rs2316757, both

in chromosome 17) appeared in the union of two 10-fold cross-

validation experiments for adjusted and unadjusted MAP.

Inclusion of more SNPs may diminish the quality of
prediction

We raised the SNP selection cutoff (mFDR) from 0.2 to 0.5, to

allow more SNPs into the adaptive regression. For adjusted MAP,

inclusion of them as main effects resulted in 625, 642, 597, and 697

SNPs in union over the 10-fold cross-validation, respectively for

non-SNP cutoffs 1%, 5%, 10%, and 20%, where 268 of those were

common. (For unadjusted MAP, the numbers were 715, 671, 624,

and 795, among which 331 were SNPs that were common to the 10

folds.) Contrary to one popular view, that use of more markers leads

to improvement of predictive performance, we observed that R2 was

reduced, especially when the chosen SNPs were used as main effects

(Table 2, ‘‘non-SNP first’’, ‘‘mFDR = 0.5’’).

SNPs alone achieved low predictive power
For comparison, we examined the predictive power of the

algorithm when SNPs were selected first and then the non-SNP

features were added (See Methods). This ‘‘SNPs first’’ approach

Table 2. Coefficient of determination (R2) estimated using 10-fold cross validation of our adaptive prediction algorithm.

Method mFDR cutoff BP SNP effects cutoff fraction of occurrence

0.01 0.05 0.1 0.2

Non-SNP first 0.2 adjusted non-SNP 0.270 (0.014) 0.271 (0.014) 0.261 (0.015) 0.244 (0.015)

main 20.007 (0.003) 20.009 (0.004) 20.003 (0.003) 20.005 (0.002)

inter 0.001 (0.002) 20.003 (0.004) 0.004 (0.003) 0.001 (0.002)

unadjusted non-SNP 0.146 (0.011) 0.141 (0.011) 0.143 (0.011) 0.130 (0.012)

main 20.002 (0.002) 0.004 (0.003) 0.002 (0.002) 0.000 (0.003)

inter 20.001 (0.003) 0.004 (0.003) 20.007 (0.003) 20.012 (0.005)

0.5 adjusted non-SNP 0.273 (0.014) 0.270 (0.014) 0.260 (0.015) 0.244 (0.014)

main 0.220 (0.020) 0.230 (0.019) 0.232 (0.015) 0.194 (0.012)

inter 0.248 (0.013) 0.250 (0.013) 0.238 (0.014) 0.227 (0.012)

unadjusted non-SNP 0.170 (0.011) 0.170 (0.011) 0.171 (0.011) 0.151 (0.013)

main 0.128 (0.010) 0.133 (0.011) 0.128 (0.013) 0.110 (0.012)

inter 0.170 (0.011) 0.171 (0.011) 0.172 (0.011) 0.147 (0.014)

SNP first 0.2 adjusted SNP only 0.133 (0.010) 0.132 (0.010) 0.133 (0.010) 0.134 (0.010)

non-SNP main 0.268 (0.013) 0.264 (0.012) 0.264 (0.012) 0.260 (0.013)

non-SNP inter 0.271 (0.014) 0.268 (0.014) 0.261 (0.016) 0.249 (0.014)

Non-SNP first+
candidate SNPs

0.2 adjusted non-SNP 0.270 (0.014) 0.271 (0.014) 0.261 (0.015) 0.244 (0.015)

SNP main 0.263 (0.014) 0.264 (0.014) 0.259 (0.016) 0.241 (0.016)

SNP inter 0.269 (0.014) 0.269 (0.014) 0.261 (0.015) 0.248 (0.015)

‘‘Non-SNP first’’: the non-SNP features were first selected and the main effects of SNPs were chosen at the marginal false discovery rate cutoff of 0.2 and 0.5.
‘‘SNP first’’: the main effects of SNPs were first selected at the marginal false discovery rate cutoff of 0.2 and non-SNP effects were later included.
‘‘candidate SNPs’’: the non-SNP features were first selected and the 26 candidate SNPs were included together with the main effects of SNPs that were chosen at the
marginal false discovery rate cutoff of 0.2.
For the column ‘‘BP’’, ‘‘adjusted’’ is for results for medication-adjusted mean arterial blood pressure, and ‘‘unadjusted’’ for unadjusted blood pressure for each cutoff
fraction of occurrence in the bootstrapped CART.
For each method and mFDR cutoff, the first row presents the baseline R2; ‘‘main’’ and ‘‘inter’’ refers to the increase or decrease in R2 from ‘‘non-SNP.’’ Standard errors of
the individual R2 for each of the ten folds are presented within parentheses.
doi:10.1371/journal.pone.0027891.t002
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resulted in about 13% of R2, compared to up to 27% of ‘‘other

features first’’ approach under the same condition, although adding

‘‘other features’’ recovered the predictive power of approximately

26% (Table 2, ‘‘SNP first’’). SNPs on their own seem not to have

as much predictive power as other features. With both features

present, the order which feature comes first does not matter.

Candidate SNPs study
Since our unimputed SNPs did not contain SNPs whose

association with blood pressure traits is believed to be known, we

forced models to include these SNPs and quantified their impact

on predicting MAP. We used 26 SNP that are the union of the top

10 loci for each of SBP, DBP, and hypertension traits found in

Table 4 of [8]. However, this also did not improve predictive

power (Table 2, ‘‘candidate SNP’’). Among the 104 SNPs selected

in union, 9 were from the candidate SNPs (see Table 3).

Discussion

Our results indicate that the inclusion of genome-wide

association in addition to carefully chosen non-SNP clinical

information did not result in a significant increase in the predictive

power for mean arterial blood pressure. In other words, non-SNP

features do as well as those with SNPs added, when the

interactions among the former are exploited using the CART

interaction selector. Furthermore, the more information from non-

SNP features that is used, the less information SNPs add. Rather

surprisingly, information from SNPs may diminish the quality of

prediction. This is contrary to what has been reported from other

genome-wide predictive studies [26] on type 1 diabetes (T1D), but

is understandable given the noise inherent in the genome-wide

data, and that T1D is relatively easy to predict. The little

predictive value of genome-wide SNP data has been reported

broadly [27], [28]. These studies are for predicting disease status,

i.e., classification analysis, using SNPs only, while our study aims

to predict a quantitative phenotype and intentionally included

clinical non-SNP information, much of which is genetic. Our

observations seem to support the conjecture [29]:

‘‘… from a theoretical perspective, it can be argued that also

a large number of genes will unlikely have substantial added

predictive value over traditional risk factors if these variants

predispose the risk factors.

‘‘… Genetic variants may improve disease prediction

beyond traditional risk factors when they are involved in

unknown pathways or intermediate factors. New yet

unknown pathways may be more likely for some diseases

than for others.’’

Table 3. List of candidate SNPs used for the analysis presented in the last set of Table 2.

SNP_rs_ID Chr physical_start Gene Symbol SBP association DBP association HTN association algorithm select?

rs12046278 1 10722163 Y Y

rs13401889 2 190618803 Y

rs7571613 2 190513906 LOC653447 Y

rs13423988 2 68764769

rs17806132 2 190416531 PMS1 Y Y Y

rs305489 3 11986162 Y Y

rs7640747 3 37571808 ITGA9 Y

rs448378 3 170583592 MDS1 Y Y

rs9815354 3 41887654 ULK4 Y

rs899364 8 11366953 Y Y

rs2736376 8 11155174 Y

rs7016759 8 49574968 Y

rs1910252 8 49569914 Y

rs11775334 8 10109029 MSRA Y Y

rs1004467 10 104584496 CYP17A1 Y

rs11014166 10 18748803 CACNB2 Y Y Y

rs381815 11 16858843 PLEKHA7 Y

rs11024074 11 16873794 PLEKHA7 Y

rs11612893 12 129290571 Y

rs2681472 12 88533089 ATP2B1 Y Y

rs2681492 12 88537219 ATP2B1 Y Y

rs2384550 12 113837113 Y

rs278126 12 118620099 CIT Y

rs3184504 12 110368990 LNK Y Y Y

rs6495122 15 72912697 Y

rs16982520 20 57192114 Y

In columns 5–7, the entry ‘‘Y’’ indicated that the corresponding SNP’s association with the corresponding BP trait was previously identified. The last column shows
which of these SNPs were selected in our adaptive prediction algorithm.
doi:10.1371/journal.pone.0027891.t003
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It appears that blood pressure traits, especially MAP, are phe-

notypes for which traditional risk factors confound the pathways.

This is contrary to T1D, where it is believed that a genetic region

with large effects (MHC) exists. Of course, it should be stressed that

these results are limited to the genotyped SNPs. Perhaps including

other SNPs (some causal, possibly yet to be discovered) may be more

informative.

That ‘‘SNPs first’’ approach was not as good as ‘‘other features

first’’ may hint at the amount of information shared by the SNPs

and the non-SNP features (within the aforementioned limit).

Admittedly much of the information in non-SNP clinical features

is genetic. That adding the non-SNP features recovered the

predictive power of the ‘‘other features first’’ approach may be an

indication that virtually no new genetic information, or at least

predictive utility, can be obtained from the markers considered in

the study. As a quantitative trait, ,13% of R2 for ‘‘SNPs first’’

(and ,26% for ‘‘other features first’’) is relatively low compared to

the similar figure of merits as low as 33% for mean cellular

hemoglobin (MCH) for the predictive analysis of heterogeneous

stock mice from eight inbred strains [15]. However, the estimated

heritability of MCH in the mice population, the lowest in the study

of [15], is 55%, whereas the heritability of MAP has been

estimated to be roughly 33% in another population [30].

Obviously, the ARIC population is much more heterogeneous

than nearly all laboratory mouse populations. This distinction may

not have been emphasized sufficiently in the literature. For this

reason, the main effects of SNPs found by the adaptive prediction

analysis may not be very reliable.

We realize that there may be a degree of bias associated with our

results. First, all of the genetic variants were chosen from the ARIC

dataset and so are likely to fit the prediction set, also chosen from the

same dataset, better than they might in independent samples. We

consider this to be of minor concern since our focus is on the added

predictive ability of genome-wide predictors, which turns out to be

insignificant. Second, although our model is unconditionally highly

non-linear in the data because it involves a choosing of features

based on their appearances in a succession of cross-validation trees,

our model is more restrictive in comparison with more general

models such as generalized additive models (GAMs). Such an

approach may reduce biases at the expense of added variability in

the chosen model. Another possibility may be to divide MAP into

intervals (e.g., low, medium, and high) much like the prediction of

disease status discussed earlier. However, a major point of our paper

is that we are trying to predict actual MAP, and the medical basis for

such division is of question. Third, for a quantitative trait such as

MAP, an adaptive spline model, which is by design smoother than

CART, could be a more efficient alternative than a tree. The

adaptive spline model could also suggest interactions in the first

stage. We carried out an additional experiment in which CART is

replaced by Multivariate Adaptive Regression Splines (MARS; see

Chapter 10 of [31]) for the medication-adjusted MAP with non-

SNP cutoffs 1% and 5%. For consistency, MARS was used as an

interaction selector and the LASSO was fit in the same fashion as

explained in the Method section. With non-SNP features only, we

had cross-validated R2 of 18.37% (standard deviation 3.58%) for

cutoff 1%; 18.29% (3.56%) for cutoff 5%. With SNPs (mFDR = 0.2)

added as main effects the improvement in R2 was 20.45% (0.82%);

with interaction, it was 20.38% (s.d. 1.1%). This result is similar to

that of CART in that the contribution of the SNPs in predictive

power was not significant. Note that MARS was only used as an

interaction selector. If it subsumed the LASSO component, then

MARS may have performed better than CART subsuming the

LASSO, but it is unlikely that the overall predictive power be

significantly higher than the best value achieved by the combined

CART and LASSO approach.

We acknowledge that our predictive analysis is limited to the

first-visit characteristics, and is therefore a cross-sectional study.

For a predictive analysis to have a clinical utility, it would be

desirable that the features can capture both averages and

longitudinal changes of blood pressure. However, this entails an

additional challenge. Since our study population is mature already

at the first visit (45–66), we think that our cross-sectional analysis

demonstrates reasonably the role of SNPs and other features in a

clinically meaningful fashion.

Finally, we also acknowledge that the R2 measure used to

quantify the predictive ability of our algorithm is a population

value. Particular individuals at high risk may not be identified

using our method.
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Isolated diastolic hypertension, pulse pressure, and mean arterial pressure as

predictors of mortality during a follow-up of up to 32 years. Journal of

Hypertension 20: 399–404.

Features as They Predispose to Complex Disease

PLoS ONE | www.plosone.org 7 November 2011 | Volume 6 | Issue 11 | e27891



8. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, et al. (2009) Genome-

wide association study of blood pressure and hypertension. Nat Genet 41:
677–687.

9. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive

review of genetic association studies. Genetics in Medicine: Official Journal of
the American College of Medical Genetics 4: 45–61.

10. Koivukoski L, Fisher SA, Kanninen T, Lewis CM, von Wowern F, et al. (2004)
Meta-analysis of genome-wide scans for hypertension and blood pressure in

Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3.

Hum Mol Genet 13: 2325–2332.
11. Chang Y, Liu X, Kim J, Ikeda M, Layton M, et al. (2007) Multiple Genes for

Essential-Hypertension Susceptibility on Chromosome 1q. The American
Journal of Human Genetics 80: 253–264.

12. Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes Analysis of a
Microarray Experiment. Journal of the American Statistical Association 96:

1151–1160.

13. Efron B (2010) Large-Scale Inference: Empirical Bayes Methods for Estimation,
Testing, and Prediction. Cambridge University Press.

14. Jakobsdottir J, Gorin MB, Conley YP, Ferrell RE, Weeks DE (2009)
Interpretation of Genetic Association Studies: Markers with Replicated Highly

Significant Odds Ratios May Be Poor Classifiers. PLoS Genetics 5: e1000337,

Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2629574/. Ac-
cessed 2011 Nov 7.

15. Lee SH, van der Werf JHJ, Hayes BJ, Goddard ME, Visscher PM (2008)
Predicting Unobserved Phenotypes for Complex Traits from Whole-Genome

SNP Data. PLoS Genetics 4: e1000231. Available: http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2565502/. Accessed 2011 Nov 7.

16. Huang J, Lin A, Narasimhan B, Quertermous T, Hsiung CA, et al. (2004) Tree-

structured supervised learning and the genetics of hypertension. Proceedings of
the National Academy of Sciences of the United States of America 101:

10529–10534.
17. de Andrade M, Amos CI, Thiel TJ (1999) Methods to estimate genetic

components of variance for quantitative traits in family studies. Genetic

Epidemiology 17: 64–76.
18. Morgan JN, Sonquist JA (1963) Problems in the Analysis of Survey Data, and a

Proposal. Journal of the American Statistical Association 58: 415–434.

19. Chen X, Liu C-T, Zhang M, Zhang H (2007) A forest-based approach to

identifying gene and gene gene interactions. Proceedings of the National
Academy of Sciences of the United States of America 104: 19199–19203.

20. Wang M, Zhang M, Chen X, Zhang H (2009) Detecting Genes and Gene-gene

Interactions for Age-related Macular Degeneration with a Forest-based
Approach. Statistics in biopharmaceutical research 1: 424–430.

21. Breiman L, Friedman JH, Olshen RA, Stone C (1984) Classification and
regression trees. Cole, Pacific GroveCalifornia, , USA: Chapman & Hall/CRC.

22. Park MY, Hastie T (2008) Penalized logistic regression for detecting gene

interactions. Biostat 9: 30–50.
23. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B (Methodological) 57: 289–300.

24. Sun W, Cai TT (2007) Oracle and adaptive compound decision rules for false
discovery rate control. Journal of the American Statistical Association 102:

901–912.

25. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR (2005) Adjusting for treatment
effects in studies of quantitative traits: antihypertensive therapy and systolic

blood pressure. Statistics in Medicine 24: 2911–2935.
26. Wei Z, Wang K, Qu H-Q, Zhang H, Bradfield J, et al. (2009) From Disease

Association to Risk Assessment: An Optimistic View from Genome-Wide

Association Studies on Type 1 Diabetes. PLoS Genetics 5: e1000678. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748686/. Accessed 2011

Nov 7.
27. Evans DM, Visscher PM, Wray NR (2009) Harnessing the information

contained within genome-wide association studies to improve individual
prediction of complex disease risk. Hum Mol Genet 18: 3525–3531.

28. Pandey JP (2010) Candidate Gene Approach’s Missing Link. Science 329: 1148.

29. Janssens ACJW, van Duijn CM (2008) Genome-based prediction of common
diseases: advances and prospects. Hum Mol Genet 17: R166–R173.

30. Mitchell GF, DeStefano AL, Larson MG, Benjamin EJ, Chen M-H, et al. (2005)
Heritability and a genome-wide linkage scan for arterial stiffness, wave

reflection, and mean arterial pressure: the Framingham Heart Study.

Circulation 112: 194–199.
31. Zhang H, Singer BH (2010) Recursive partitioning and applications Springer

Verlag.

Features as They Predispose to Complex Disease

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e27891


