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LEARNING OBJECTIVES

After completing this course, the reader will be able to:

1. Describe defective immunological features that have been identified in dendritic cells in multiple myeloma and
explain how immunologic dendritic cell defects could reduce the clinical efficacy of dendritic cell-based vaccines.

2. Outline possible therapeutic strategies based on current knowledge of the bone marrow crosstalk between
myeloma cells and immature dendritic cells.

This article is available for continuing medical education credit at CME.TheOncologist.com.CMECME

ABSTRACT

The crosstalk of myeloma cells with accessory cells
drives the expansion of malignant plasma cell clones
and the hyperactivation of osteoclastogenesis that oc-
curs in multiple myeloma (MM). These reciprocal inter-
actions promote defective dendritic cell (DC) function in
terms of antigen processing, clearance of tumor cells,
and efficacy of the immune response. Thus, myeloma
cells exert immune suppression that explains, at least in
part, the failure of therapeutic approaches, including
DC vaccination. Impairment of DCs depends on high
bone marrow levels of cytokines and adhesion molecules

that affect both maturation and expression of costimu-
latory molecules by DCs. Moreover, DCs share with os-
teoclasts (OCs) a common ontogenetic derivation from
the monocyte lineage, and thus may undergo OC-like
transdifferentiation both in vitro and in vivo. Immature
DCs (iDCs) induce clonogenic growth of malignant
plasma cells while displaying OC-like features, includ-
ing the ability to resorb bone tissue once cultured with
myeloma cells. This OC-like transdifferentiation of
iDCs is dependent on the activation of both the receptor
activator of nuclear factor �B (RANK)–RANK ligand
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(RANK-L) and CD47–thrombospondin (TSP)-I axes,
although interleukin 17–producing T helper-17 clones
within the bone microenvironment may also take part in
this function. Therefore, iDCs allied with malignant

plasma cells contribute to MM osteoclastogenesis, al-
though other molecules released by tumor cells may in-
dependently contribute to the bone-resorbing
machinery. The Oncologist 2011;16:1040–1048

INTRODUCTION

The interplay of highly proliferative malignant plasma cells
with accessory cells in the marrow microenvironment is
typical of multiple myeloma (MM) and results in the for-
mation of lytic lesions of the bone, leading to progressive
skeletal devastation [1]. The crosstalk of myeloma cells
with osteoblasts, osteoclasts (OCs), stromal cells, and T
cells occurs either through cell-to-cell contact or by cyto-
kine, chemokine, adhesion molecule, and metalloprotease
overproduction [2]. These factors are usually enriched
within the myeloma marrow microenvironment and, fol-
lowing the engagement of specific receptors, trigger my-
eloma cells to strengthen proliferation, angiogenesis, and
osteoclastogenesis [3].

Recent studies highlight the role of effector cells of the
immune system in MM tumor progression [4], in that they
are susceptible to recruitment into the bone marrow (BM),
where they are normally committed to counterbalancing the
unrestrained growth of the neoplastic clone [5]. However,
the majority of these studies have demonstrated the impair-
ment of several immunological functions in MM and have
shown that malignant plasma cells are resistant to the con-
trol of immune cells [6]. The interaction of cytokines,
chemokines, and growth factors with cognate receptors
produces a vicious circle that is primarily responsible for
cancer progression as well as for the defective anti-MM im-
mune response [7].

In this context, dendritic cells (DCs) have been demon-
strated to be attracted by the tumor environment [8]. They
are professional antigen-presenting cells of myeloid origin
and are essential for the primary T-cell response via
crosspriming that allows the transfer of antigens from neo-
plastic cells and their presentation through major histocom-
patibility complex (MHC) class II molecules [9]. DC
function depends on both their ontogenetic origin and their
stage of maturation and is influenced by signals received
from tumor cells, the stromal matrix, and T cells [10]. Mat-
uration has profound effects on DC biology and includes
presentation of MHC molecules by the cell surface, in-
creased expression of costimulatory molecules such as
CD80 and CD86, changes in motility, and formation of den-
drites interacting with lymphocytes [11]. The efficient mat-
uration of DCs is also crucial for their inhibitory effect
against MM, but vaccination with patient-specific idiotype-

pulsed DCs failed to restrain clonal proliferation in this he-
matological disorder [12].

An emerging issue is the possibility that the immuno-
logical properties of DCs are impaired in MM. Recent stud-
ies have, indeed, demonstrated several defective
immunological properties in MM-derived DCs, including a
lack of CD80 and CD86 molecules, the defective antigen
presentation, and major marrow accumulation of both im-
mature DCs (iDCs) and inactivated DCs [13]. Furthermore,
other mechanisms lead to tumor escape and immune toler-
ance, and are apparently dependent on either the high re-
lease of interleukin (IL)-6, vascular endothelial growth
factor (VEGF), and M-CSF in myeloma milieu or myelo-
ma–stroma interactions that result in DC inability to pro-
cess and present antigens to T cells [14]. These findings
explain, at least in part, the potential role of myeloma cells
in defective DC function as well as the poor clinical results
obtained in trials using vaccination with idiotypes of the
monoclonal component [15].

Additional studies also suggest that DCs may poten-
tially switch toward a new program aimed to: (a) stimulate
the proliferation of myeloma cells, (b) activate osteoclasto-
genic machinery through direct transdifferentiation into
OC-like bone-resorbing cells, and (c) enhance the marrow
concentration of IL-17 by expanding T helper (Th)-17
clones [16, 17]. iDCs express several chemokine receptors
that promote their migration toward high gradients of rela-
tive ligands [18]. Enhanced marrow migration of DCs has
been demonstrated in MM patients, and a high number of
plasmacytoid DCs has been found close to myeloma cells in
bone erosive lacunae [19]. Their reciprocal crosstalk appar-
ently promotes the clonogenic proliferation of malignant
plasma cells through the activation of transmembrane acti-
vator and calcium modulator and cyclophilin ligand inter-
actor (TACI)–a proliferation-inducing ligand (APRIL)
signaling, whereas iDCs may concurrently undergo OC-
like transdifferentiation mostly supported by both receptor
activator of nuclear factor �B ligand (RANK-L) and CD47
molecules expressed by myeloma cells [20, 17]. Moreover,
it has been reported that marrow iDCs induce the expansion
of Th-17 clones leading to IL-17 overproduction, with a fi-
nal effect of enhancement of osteoclastogenesis by trigger-
ing the IL-17 receptor expressed by both OCs and myeloma
cells.
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Here, we review several events related to the role of
DCs in MM tumor progression.

MYELOMA BM MICROENVIRONMENT AND DCS

Functional activation of the BM microenvironment drives
the expansion of myeloma cells, whereas both neoangio-
genesis and defective immunological control by accessory
cells contribute to their clonal growth, resulting in tumor
progression. Marrow myeloma cell proliferation, however,
involves other players, because tumor interplay with stro-
mal cells is also a primary event leading to hyperactive os-
teoclastogenesis [21].

The BM microenvironment includes both nonhemato-
poietic and hematopoietic cells as well as an extracellular
compartment forming “the niche” within the mineralized
bone [22]. Here, quiescence, expansion, and survival as
well as migration of hematopoietic cells are consequences
of both cell-to-cell and cell–matrix contacts [23]. It has
been demonstrated that cell homeostasis within the niche is
defective in MM and that BM cells are affected by myeloma
cells in terms of immune suppression and upregulation of
bone-resorbing functions. On the other hand, myeloma
cells are stimulated within the BM by the paracrine and au-
tocrine overproduction of cytokines and growth factors that
influence their growth, survival, and migration [24]. Higher
levels of IL-6 in the marrow indeed promote the uncon-
trolled proliferation of myeloma cells, upregulate their drug
resistance–related genes, and trigger osteoclastogenesis
[25]. The transcriptional pathway stimulated by IL-6 is reg-
ulated via the Ras/Raf/mitogen-activated protein kinase
(MAPK)–extracellular signal-related kinase kinase/MAPK
cascade [26] that results in the activation of the Janus acti-
vated kinase (JAK) and signal transducer and activator of
transcription (STAT) proteins, as well as the overexpres-
sion of both Bcl-xL and Mcl-1 for the inhibition of apopto-
sis [27].

IL-6 also impairs the efficiency of antigenic presenta-
tion by DCs and prevents their differentiation from mono-
cytic precursors, thereby contributing to the immune
tolerance that characterizes MM [28]. In addition, IL-6 up-
regulation is consistent with the prevalence of iDCs, be-
cause the BM of IL-6 knockout mice is enriched in mature
DCs [14], whereas a peculiar accumulation of iDCs was
also demonstrated in the BM of patients with active MM
showing high levels of IL-6 [29]. Finally, IL-6 levels par-
allel the overexpression of stromal cell– derived factor
(SDF)-1 [30] and macrophage inhibitory protein 1� in the
MM microenvironment [31], which may foster iDC recruit-
ment.

However, the effective role of DCs in MM is still de-
bated. They are numerically greater in BM, although defec-

tive in terms of functions, including both antigenic
processing and antitumoral activity. On the contrary, these
cells apparently promote the clonogenic proliferation of
myeloma cells [20] and may transdifferentiate into OC-like
bone-resorbing cells [32]. This behavior is dependent on
their ontogenic derivation from the monocyte–macrophage
lineage, including sensitivity to elevated RANK-L concen-
trations as occur in the BM of myeloma patients [33].

It is conceivable, therefore, that DCs in concert with
other accessory cells deregulate BM homeostasis, thus
establishing an active alliance with malignant plasma in
driving their clonal expansion and perpetuating OC hy-
peractivation.

IMMUNOLOGICAL FEATURES OF DCS IN MM
DCs are critical for the initiation of the primary T-cell re-
sponse [34] and exert specific crosspriming that allows pro-
cessing of tumor antigens, their presentation to T cells
through MHC class II molecules, and generation of CD8�

cytotoxic T cells [11]. The effectiveness of the DC-medi-
ated immune response depends on their maturation and the
expression of costimulatory molecules [35]. Although
iDCs are able to migrate to the tumor bed and capture tu-
mor-derived antigens for presentation to specific T cells,
the immune response is frequently inhibited in cancer [36].
In fact, tumors frequently escape immunological surveil-
lance of DCs as a consequence of the suppression of many
functions of the immune system [37].

The role of iDCs in MM is controversial with respect to
their function and capability of controlling the proliferative
extent of malignant plasma cells [38]. Studies have, indeed,
failed to demonstrate a major accumulation of DCs within
the BM of MM patients, compared with monoclonal gam-
mopathy of uncertain significance (MGUS) patients [39],
whereas they have described impaired responsiveness to
CD40 as a mechanism for escape of myeloma cells from
DC control [13]. Therefore, it is conceivable that a func-
tional, rather than numerical, defect in DCs is prevalent
in MM.

In order to define this question, other studies have
pointed to the immunological properties of the monoclonal
component as effective stimuli priming an efficient im-
mune response by iDCs [40]. Therefore, adjuvant immuno-
therapy using antigen-loaded DCs has been suggested as an
attractive strategy for the treatment of relapsed or resistant
MM patients [41, 42]. Preliminary DC-based vaccination
strategies used HLA-derived antigens expressed by MM
cells. However, this approach was unsuccessful in relation
to both HLA restriction [43] and the patient-specific anti-
gen profile. To overcome these limitations, specific idio-
typic determinants of the immunoglobulin variable region
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were used as private antigens of myelomas [44], and vacci-
nation with idiotype-pulsed DCs produced a specific cyto-
toxic T lymphocyte response, but this treatment achieved a
poor clinical response and did not result in longer overall
survival [45]. Other approaches used myeloma–DC fused
cells that exerted an efficient antitumor effect in vitro with
no potential application in vivo [46]. Therefore, the major
points for understanding the failure of immunotherapy in
MM include: (a) an intrinsic defect in the host immune sys-
tem, (b) an alteration in the T-cell, B-cell, macrophage, and
natural-killer cell repertoire, (c) BM overexpression of im-
munosuppressive cytokines such as tumor growth factor-�
and IL-10, and (d) impaired in vivo crosspriming by T cells
[47–52].

DEFECTIVE ANTIMYELOMA ACTIVITY OF DCS

Malignant plasma cells show a high proliferation extent and
expand within the BM as an effect of their reciprocal inter-
actions with T cells and iDCs that are attracted in response
to chemotactic gradients. This interplay may account for
the deregulation of the cytokine network that induces de-
fective expression of costimulatory receptors by immune
cells and alteration of the T-cell repertoire, thus enabling
tumor cells to escape immunological control and resulting
in impaired antitumor DC-mediated T-cell activity [53].

Overproduction of IL-10, IL-6, M-CSF, and VEGF oc-
curs in myeloma BM and these interleukins prevent DC dif-
ferentiation, maturation, and function, both in vitro and in
vivo [47]. In particular, high marrow levels of IL-6 in my-
eloma cells accelerate DC differentiation and maturation
[14], because this cytokine inhibits the growth of colony-
forming unit-DCs from CD34 precursors, redirecting the
differentiation of hematopoietic progenitors toward the
monocyte–macrophage lineage [54]. However, treatment
with anti–IL-6 antibody does not restore the functional ac-
tivity of marrow DCs in MM, suggesting a potential influ-
ence of other inhibitory factors released by myeloma cells
within the BM [55].

Notwithstanding the number of studies concerning tu-
mor-derived factors that affect DC differentiation, little is
known about the molecular mechanisms responsible for
their dysfunction in cancer. The JAK tyrosines and STAT
proteins are crucial for DC maturation and are directly in-
volved in the proliferation, survival, and resistance to apo-
ptosis of cancer cells [56]. A higher transcription rate of
JAKs is induced by cytokines and growth factors released
within the myeloma BM, primarily including IL-6 [57]. In
this regard, it was demonstrated that treatment of DCs with
IL-6 abrogates lipopolysaccharide-mediated maturation of
DCs through the activation of STAT-3 [58], whereas other
factors produced by the myeloma cells enhance both phos-

phorylation of JAK-2 and activation of STAT-3 in iDCs,
preventing their normal maturation. Thus, iDCs in the pres-
ence of appropriate stimulators may be reprogrammed to a
new transdifferentiative fate [59].

Other studies hypothesize that iDCs directly accelerate
the growth of myeloma cells [20] because they control the
differentiation and survival of normal B lymphocytes and
plasma cells [60]. Cocultures of DCs with autologous my-
eloma cells prime the formation of myeloma colonies in a
fashion similar to that of cocultures with either lymphoma
[41] or breast cancer [61] cells, and the TACI–APRIL in-
teraction seems to be pivotal for the proliferation of my-
eloma cells. Thus, this molecular axis interferes with the
antiapoptotic pathways regulated by both Bcl-2 and Bcl-6
molecules in malignant plasma cells [20].

It is conceivable, therefore, that impaired DC function
in MM depends on the performance of malignant plasma
cells that, through receptor triggers or by soluble factors,
abrogate the innate immunological fate of iDCs and create a
functional alliance with these cells aimed at progression of
the disease rather than its control.

MYELOMA BONE DISEASE AND DCS

Skeletal devastation is a hallmark of MM, and the malig-
nant plasma cell clone in BM leads to progressive resorp-
tion of the surrounding matrix with formation of lytic
lesions. The pathogenetic mechanisms underlying my-
eloma bone disease (MBD) are undefined, although my-
eloma cells are believed to play a major osteoclastogenic
role through the recruitment, differentiation, and activation
of OC precursors within the BM [62]. This event is, at least
in part, mediated by stromal cells that are structural compo-
nents of the marrow niches housing myeloma cells. As a
consequence of this chronic interaction, both populations
produce several osteoclastogenic factors, including
RANK-L and IL-6 [63]. Thus, marrow myeloma cells
prime OCs toward resorptive functions by secreting soluble
factors.

Bone-resorbing OCs originate from monocyte/macro-
phage precursors whose terminal differentiation is also reg-
ulated by both RANK-L and M-CSF. Once differentiated,
precursor cells fuse into tartrate-resistant acid phosphatase
(TRAcP)� and cathepsin-k (CK)� multinucleated cells. At
the site of active bone resorption, OCs form a specialized
ruffled border, following the organization of the actin ring
operated by �V�3-integrin–mediated matrix recognition.
On attachment to bone, matrix-derived signals polarize in-
tracellular secretory vescicles that deliver H�ATPase to
plasma membrane and release proteolytic enzymes into the
resorptive lacunae. In this context, ATPase deteriorates the
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inorganic components of the bone, whereas the organic ma-
trix is digested by CK.

OC hyperactivity is a prominent feature of MBD that
occurs as result of the recruitment of OC precursors in re-
sponse to multiple interactions with malignant plasma cells.
This cell-to-cell interplay enhances cytokine concentra-
tions within the marrow milieu and the sensitivity of OCs to
many functional ligands, although a major osteoclastogenic
effort is exerted by marrow RANK-L and M-CSF [63]. The
exposure of OC precursors to high concentrations of these
cytokines in the marrow niche induces their differentiation
into bone-resorbing cells. The role of RANK-L was clearly
demonstrated in RANK-L–deficient mice [64], which de-
velop severe osteopetrosis as a consequence of defective
OC function. These mice show impaired expression of tran-
scriptional factors such as MAPK, phosphoinositide 3-ki-
nase, and nuclear factor �B, whose activation is a matter of
priority for the nuclear translocation of nuclear factor of ac-
tivated T cells, cytoplasmic 1 and their functional bone-
resorbing activity.

Besides the major regulation by RANK-L, other func-
tional receptors are expressed by bone-resorbing cells and
recent evidence has emphasized interactions between the
BM stroma and the immune system as a hallmark for the
development of MBD [65]. The immune system plays a
major role in osteoclastogenesis, in particular through acti-
vated T cells that secrete appropriate cytokines. However,
DCs have also been emphasized as potential inducers of
bone erosion in inflammatory and neoplastic diseases [66].
DCs are derived from the same myeloid precursor as OCs
and the differentiation of both cell types is controlled by
RANK-L [32]. Also, DCs show high plasticity depending
on local factors and stimuli during their maturation [67],
and although they are terminally differentiated cells, they
may switch into regulatory cells or transdifferentiate into
either endothelial cells or OCs in the presence of specific
cytokines [32]. Their functional transdifferentiation occurs
both in vitro and in vivo because their immature subset ac-
tively participates in bone erosion in inflammatory dis-
eases, thus exerting typical functions of OCs in terms of
shape, cytoskeleton rearrangement, and erosive capability
[32].

DCs also promote hyperactive osteoclastogenesis in
MBD [19, 17] because their number is higher within the
erosive lacunae. In addition, they may undergo OC-like
transdifferentiation following stimulation by the RANK–
RANK-L or TSP-I–CD47 pathways. Thus, hyperactive
osteoclastogenesis in MM results from multiple players that
show a similar propensity for bone resorption and an ability
to activate major osteoclastogenic pathways (Fig. 1).

We investigated the role of iDCs in patients with MBD

focusing on both their chemotactic features in response to
stimulation of marrow myeloma cells and their ability to
transdifferentiate into OC-like cells [68]. Ten patients with
MM and four with MGUS were analyzed, showing that
iDCs from those with MBD are recruited within BM in re-
sponse to gradients of chemokines promoted by highly pro-
liferating myeloma cells. In this context, CXC chemokine
receptor 4 (CXCR4) and CC chemokine receptor 7 (CCR7)
apparently play major roles in the migratory behavior of
iDCs, in that they were overexpressed in both peripheral
blood and BM (Fig. 2A). Moreover, these iDCs showed
high migration properties in vitro in response to the CXCR4
ligand, that is, SDF-1. In addition, tight contact of iDCs
with myeloma cells through cocultures apparently induced
their OC-like transdifferentiation that is mostly mediated
by the interaction of RANK with the RANK-L molecules
highly expressed by malignant plasma cells. This contact
could probably assign iDCs to a new osteoclastogenic pro-
gram within the myeloma erosive lacunae in line with their
morphology, giving them the capacity to rearrange the cy-
toskeleton with the formation of the ruffled border of F-ac-
tin and the expression of proteolytic enzymes of the bone
matrix such as TRAcP, ATPase, and CK. iDCs have indeed
been demonstrated to promote extensive erosion of experi-
mental substrates (Fig. 2B). These features are not observed
in cocultures including plasma cells from MGUS patients
with autologous iDCs. Thus, OC-like iDCs may represent
an additional population located within the myeloma niche
that contributes to MBD.

Other mechanisms involving DCs, however, participate
in the skeletal devastation of MM and include the expansion
of T-cell clones polarized toward a Th-17 phenotype [16].
Both DCs and high amounts of IL-6 and interferons in the
BM promote the expansion of Th-17 clones [69]. The role
of Th-17–polarizing cytokines has been studied in T cells in
terms of activation of critical transcription factors such as
STAT-3, although these cytokines have been shown to re-
inforce Th-17 induction via DC activation [70]. The
predominant Th-17 polarization in the myeloma microen-
vironment is concordant with the high amounts of marrow
IL-17 found in MM patients, compared with MGUS pa-
tients, whereas its potential role in osteoclastogenesis is re-
lated to the capability of IL-17 to modulate the RANK-L–
dependent pathway [71]. The myeloma tumor bed is greatly
infiltrated by DCs, which recruit T cells by CC chemokine
ligand 20 upregulation [72]. Moreover, the capability of
DCs to promote Th-17 polarization is enhanced by the up-
take of apoptotic tumor cells that infiltrate the myeloma
niche. Lastly, several pathogens have been postulated as
functional inducers of DC-mediated Th-17 polarization, al-
though at present they remain to be identified [73]. It is con-
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ceivable, therefore, that Th-17 cells are additional players
that affect the worsening of bone disease in MM.

FUTURE DIRECTIONS TO TREAT MBD
MBD influences mortality and morbidity in MM patients,
although current treatment with bisphosphonates delays the
skeletal devastation. Based on recent findings highlighting
the marrow crosstalk of myeloma cells with iDCs, future ther-
apeutic strategies might be devoted to: (a) preventing their cel-
lular contact to restrain OC differentiation of myeloid
precursors, or (b) directly inhibiting the resorptive functions
exerted by both OCs and OC-like cells. In this context, the
TACI–APRIL axis is critical for myeloma–iDC interplay, and
clinical studies have shown that the neutralization of APRIL
by the fusion protein atacicept abrogates the growth of my-
eloma cells [74]. A similar effect was also produced in vitro by
anti-TACI monoclonal antibody (mAb) [19]. Thus, it should

be interesting to verify their efficacy in myeloma-induced
OC-like differentiation of iDCs. Other antimyeloma strategies
include blocking iDC transdifferentiation to OCs by deno-
sumab, the anti–RANK-L mAb used to restrain accelerated
OC differentiation in MM [75]. Furthermore, other strategies
disabling the resorptive ability of OC-like iDCs include CK
inhibitors [76] and tyrosine kinase Src blocking downstream
of the RANK receptor [77].

The application of these targeted therapies in preclinical
settings should theoretically be successful for future treat-
ments of skeletal colonization in MM.

CONCLUSIONS

The aim of this review was to emphasize the defective func-
tion of DCs as a mechanism for myeloma cell escape. In
fact, the inability of different compartments of the immune
system to adequately respond against tumor cells may be

Figure 1. Pathophysiology of DC function within the myeloma marrow microenvironment. The fate of DCs is dependent on
gradients of cytokines within MM bone marrow. They undergo functional maturation from macrophage/monocyte precursors
under the influence of both IL-4 and GM-CSF. This enables a population of mature DCs to process and present antigens to T cells.
However, it is conceivable that mature DCs may drive, within the tumor site, the expansion of a Th-17 clone leading to IL-17
overproduction that enhances osteoclastogenesis. On the other hand, DCs may undergo osteoclast-like transdifferentiation as an
effect of the increased levels of both soluble and membrane-bound RANK-L produced by stromal cells, osteoblasts, and malignant
plasma cells within the marrow microenvironment. This may result in the expansion of an immature subset of DCs that is recruited
by malignant plasma cells and participates in bone resorption. Recruited immature DCs enhance the clonogenic growth of my-
eloma cells by cell-to-cell molecular contacts involving the TACI–APRIL pathway.

Abbreviations: APRIL, a proliferation-inducing ligand; CCR7, CC chemokine receptor 7; CXCR4, CXC chemokine receptor
4; DC, dendritic cell; IL, interleukin; MHC, major histocompatibility complex; MIP-1�, microphage inhibitory protein 1�; MM,
multiple myeloma; RANK, receptor activator of nuclear factor �B; RANK-L, RANK ligand; SDF-1, stromal cell–derived factor
1; Th-17, T helper-17; TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor; TCR, T-cell
receptor; TGF-�, transforming growth factor �; TRAcP, tartrate-resistant acid phosphatase.
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ascribed to a functional defect in DCs that appear as faithful
allies of malignant plasma cells. A better understanding of
the molecular interactions between DCs and myeloma cells
will provide new insights into the pathogenetic mechanisms
promoting plasma cell proliferation as well as the acceler-
ation of osteoclastogenic derangements. However, it is
noteworthy that myeloma clone spread within the marrow
also interacts with stromal cells, osteoblasts, OCs, and he-
matopoietic precursors, resulting in enhanced production of

osteoclastogenic soluble factors. However, targeting DCs
may be a future therapeutic strategy to control myeloma
proliferation and restrain progression of skeletal disease.
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