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LEARNING OBJECTIVES

After completing this course, the reader will be able to:

1. List currently identified candidate genes involved in phase I metabolism that are potential pharmacogenetic
markers in anticancer therapy.

2. Describe the general effect on standard treatment of allelic variants of the candidate genes and the implications for
individualized treatment.

This article is available for continuing medical education credit at CME.TheOncologist.com.CMECME

ABSTRACT

Equivalent drug doses in anticancer chemotherapy may
lead to wide interpatient variability in drug response re-
flected by differences in treatment response or in sever-
ity of adverse drug reactions. Differences in the
pharmacokinetic (PK) and pharmacodynamic (PD) be-

havior of a drug contribute to variation in treatment
outcome among patients. An important factor responsi-
ble for this variability is genetic polymorphism in genes
that are involved in PK/PD processes, including drug
transporters, phase I and II metabolizing enzymes, and
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drug targets, and other genes that interfere with drug
response. In order to achieve personalized pharmaco-
therapy, drug dosing and treatment selection based on
genotype might help to increase treatment efficacy
while reducing unnecessary toxicity.

We present a series of four reviews about pharmaco-
genetic variability in anticancer drug treatment. This is
the second review in the series and is focused on genetic

variability in genes encoding drug transporters (ABCB1
and ABCG2) and phase I drug-metabolizing enzymes
(CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6,
CYP3A4, CYP3A5, DPYD, CDA and BLMH) and their
associations with anticancer drug treatment outcome.
Based on the literature reviewed, opportunities for pa-
tient-tailored anticancer therapy are presented. The On-
cologist 2011;16:820–834

INTRODUCTION TO THE SERIES

We present a series of four reviews about pharmacogenetic
variability in anticancer phase I and II drug metabolism,
drug transport, and pharmacodynamic drug effects. The
first review focused on the molecular biological back-
ground and methodologies and technologies in pharmaco-
genetic research. This second part in the series deals with
pharmacogenetic variability in drug transport and antican-
cer phase I drug metabolism, and emphasizes opportunities
for patient-tailored pharmacotherapy based on the current
knowledge in the field of pharmacogenetics in oncology.
The level of evidence of the reviewed studies was graded
according to the levels reported in Table 1.

DRUG TRANSPORT BY ATP-BINDING

CASSETTE TRANSPORTERS

The ATP-binding cassette (ABC) transporters are a family
of transmembrane proteins that use ATP-derived energy to
actively transport a variety of substrates across cell mem-
branes. Thereby, they are heavily involved in the absorption
and disposition of many clinically used drugs, including an-
ticancer drugs. Based on the sequence homology of ABC
transporters, seven subfamilies (ABCA to ABCG) are dis-
tinguished, two of which—ABCB1 (P-glycoprotein [P-

gp]) and ABCG2 (breast cancer resistance protein
[BCRP])—are discussed.

P-gp (ABCB1)
P-gp (ABCB1) is expressed in the intestine, liver, kidney,
brain, and placenta, with highly varying expression levels
among individuals [1–3]. The substrate affinity of P-gp is
broad, and many anticancer drugs are transported by P-gp,
including etoposide, teniposide, doxorubicin, vinblastine,
vincristine, daunorubicin, irinotecan, paclitaxel, and do-
cetaxel [4].

The gene encoding P-gp is ABCB1, which contains var-
ious functional polymorphisms that range in allele fre-
quency among various ethnicities [4 – 8]. A widely
investigated single nucleotide polymorphism (SNP) in
ABCB1 is 3435C�T (Ile1145Ile; ABCB1*6), which is in
strong linkage disequilibrium with another silent SNP,
1236C�T (Gly412Gly; ABCB1*8) and the triallelic variant
2677G�T/A (Ala893Ser/Thr) [7, 9]. The combination of
these three SNPs (i.e., haplotype) is also designated as
P-gp*2 [7]. There is debate about the functional effect of
3435C�T. Some studies reported that this SNP affects
mRNA stability and results in lower mRNA expression and
thereby lower protein levels [5, 10–12], whereas others re-
ported higher expression levels and enhanced activity of
P-gp [7, 13, 14].

With regard to ABCB1 polymorphism and irinotecan
treatment outcome, the homozygous P-gp*2 variant haplo-
type was shown to be associated with lower renal clearance
of irinotecan and its active metabolite SN-38 [8] and
showed a lower area under the plasma concentration–time
curve (AUC) of SN-38 glucuronide in 2677TT/3435TT in-
dividuals than in wild-type patients [15]. Furthermore,
3435TT was significantly associated with grade 3 diarrhea
in 107 patients with non-small cell lung cancer (NSCLC)
given irinotecan and cisplatin [15].

Besides irinotecan, taxanes are also substrates for P-gp.
In 62 patients with NSCLC treated with docetaxel and cis-
platin, 3435TT allele carriers also more frequently (33%)
experienced grade �2 diarrhea than heterozygous (4%) and
wild-type (11%) patients [16]. The pharmacogenetic anal-

Table 1. Levels of evidence

Level of
evidence Type of evidence

1 Evidence obtained from meta-analyses or
randomized controlled trials

2 Evidence obtained from nonrandomized
controlled trials

3 Evidence from cohort or case–control
studies

4 Evidence from descriptive studies or case
reports

5 Opinions of respected authorities based on
clinical experience, descriptive studies, or
reports of expert committees

Adapted from http://www.cancer.gov.
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ysis from the Scottish Randomised Trial in Ovarian Cancer
1 (SCOTROC1) trial, however, did not demonstrate a rela-
tionship between genetic polymorphism in ABCB1 and tox-
icity or treatment outcome in 914 patients with ovarian
cancer who had received either docetaxel or paclitaxel com-
bined with carboplatin [17].

Polymorphism in ABCB1 has also been investigated in
patients with acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). In the treatment of child-
hood ALL according to Berlin-Frankfurt-Münster proto-
cols, a matched case– control study in white patients
showed a lower rate of central nervous system relapse for
3435C�T variant allele carriers than for wild-type patients
[18]. Similarly, in 405 white AML patients receiving eto-
poside, mitoxantrone, or daunorubicin, a significantly
shorter overall survival duration and higher probability of
relapse were observed in 3435C�T wild-type patients than
in hetero- or homozygous patients [14]. In contrast, a
smaller study in Asian patients with AML reported a higher
response rate and 3-year event-free survival rate for patients
with the wild-type genotype [19].

In conclusion, polymorphisms in ABCB1 have been
shown to possibly affect treatment outcome with chemo-
therapy, especially irinotecan. However, some of the ob-
served associations with clinical outcome for other
anticancer drugs were not always consistent. This might re-
sult from differences in ethnicity, population size, and type
of treatment regimen in the various populations that have
been studied. For this reason, genetic polymorphism in
ABCB1 is currently not suitable yet for patient-tailored an-
ticancer therapy. The study results obtained, however,
should encourage the conduction of additional pharmaco-
genetic studies. Given the highly polymorphic character of
ABCB1 in differing among ethnicities, a haplotype analysis
that includes additional genetic variants in ABCB1 besides
the above-mentioned SNPs might help to better predict
treatment outcome with P-gp (anticancer) drug substrates.

BCRP (ABCG2)
One of the most important ABC transporters of the ABCG
family is ABCG2, also known as BCRP. ABCG2 is highly
expressed in the gastrointestinal tract, liver, kidney, brain,
heart, and placenta [20]. Anticancer drugs that are known
substrates for ABCG2 include, among others, mitoxan-
trone, methotrexate, SN-38, topotecan, imatinib, and ge-
fitinib, but as for P-gp, substrate affinity of ABCG2 is very
broad and it transports many other drugs as well [21].

Multiple polymorphisms in ABCG2 have been identi-
fied that may modulate the functional activity of ABCG2
[22–24]. Particularly relevant SNPs in ABCG2 appear to be
421C�A (Gln141Lys) and the nonsense SNP 376C�T

(Gln126stop). Until now, the nonsense SNP 376C�T has
only been identified in Japanese individuals [25–27]. The
allele frequency of 421C�A is also higher in Japanese than
in white subjects (30% versus 10%). 421C�A has been re-
ported to affect the translation efficiency of ABCG2 and to
result in lower ABCG2 (placental) protein expression [25,
26]. Indeed, additional in vitro research showed greater
drug accumulation and less drug resistance for patients with
the 421C�A polymorphism [27–29]. However, in white
[30] and Asian [31] patients treated with irinotecan,
421C�A did not significantly affect the pharmacokinetics
of irinotecan or its metabolites, although one of two ho-
mozygous mutated allele carriers showed extensive accu-
mulation of SN-38 and SN-38 glucuronide [30].

The clinical effect of 421C�A has also been investi-
gated in patients treated with the tyrosine kinase inhibitors
imatinib and gefitinib. One study in 82 patients with gastro-
intestinal tumors treated with imatinib showed no signifi-
cant pharmacokinetic effect [32], whereas another study in
67 patients did show a 22% lower clearance of imatinib in
421C�A heterozygous patients [33]. Likewise, in ge-
fitinib-treated patients, 421C�A was associated with a
higher accumulation of gefitinib [34] and with grade 1 or 2
diarrhea [35]. However, in that study, the majority of
heterozygous patients did not develop any diarrhea, and the
single homozygous patient had no noticeable toxicity.
Moreover, this association was not confirmed in a similar,
but Asian, study population [36].

Overall, despite preclinical evidence that 421C�A
functionally impairs ABCG2 activity, a significant associa-
tion with toxicity was only observed in white patients
treated with gefitinib. With other anticancer drugs, the clin-
ical relevance of 421C�A in ABCG2 appears to be thus far

Figure 1. Phase I and phase II drug metabolism. Phase I drug-
metabolizing enzymes mediate drug oxidation, reduction, or
hydrolysis reactions, by which drugs may be activated or inac-
tivated. This may be followed by phase II reactions to further
increase solubility and thereby facilitate excretion from the
body. Preceding phase I reactions are not a prerequisite.
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of limited importance. Additional trials among various geo-
graphic populations are awaited to evaluate the exact clin-
ical relevance of polymorphisms and haplotypes of
ABCG2, especially in patients treated with gefitinib.

PHASE I ANTICANCER DRUG METABOLISM

Phase I drug-metabolizing enzymes mediate drug oxida-
tion, reduction, and hydrolysis reactions, by which drugs
may be activated or inactivated (Fig. 1). In addition, phase I
metabolism generally increases the polarity of a drug, and
thereby facilitates excretion from the body. Phase I reac-
tions may be followed by phase II reactions to further in-
crease solubility; however, preceding phase I reactions are
not a prerequisite. Typical phase II reactions are glucuroni-
dation, acetylation, S-methylation, and glutathione- or
sulfo-conjugation of drugs. Genetic polymorphism in phase
I metabolism may modulate the pharmacokinetics and dis-
position of drugs and thereby affect the toxicity and effi-
cacy of treatment, and is discussed in the following
sections.

Oxidizing Phase I Metabolizing Enzymes
The cytochrome P450 (CYP450) system is involved in ox-
idation reactions. The CYP450 genes particularly involved
in anticancer therapy are CYP2B6, CYP2C8, CYP2C9,
CYP2C19, CYP2D6, CYP3A4, and CYP3A5.

CYP2B6
Cyclophosphamide and ifosfamide undergo extensive me-
tabolism by CYP450. CYP2A6, CYP2B6, CYP2C8,
CYP2C9, CYP2C19, and CYP3A4 are involved in the ac-
tivation as well as inactivation of cyclophosphamide and if-
osfamide (Fig. 2). CYP2B6 activates cyclophosphamide to

4-hydroxycyclophosphamide, whereas CYP2B6 inacti-
vates the CYP3A4-derived hydroxylated active form of if-
osfamide, 4-hydroxy-ifosfamide [37, 38]. In addition,
thiotepa is a minor substrate for, but acts also as an inhibitor
of, CYP2B6 [39, 40].

Multiple functional polymorphisms in CYP2B6 exist
[41– 45]. A commonly occurring genetic variant is
CYP2B6*6, which is compromised of two SNPs, 516G�T
(Q172H) and 785A�G (K262R). In vitro investigations on
the functional effect of CYP2B6*6 showed inconsistent
findings—on the one hand greater enzyme activities were
reported [46, 47], but on the other hand, lower enzyme ac-
tivities was reported as well [41, 48, 49]. This inconsistency
in study results is possibly an effect of other (still unknown)
mutations linked to these SNPs, creating various haplo-
types with different enzyme activities.

The relationship between CYP2B6*6 and the pharma-
cokinetics of cyclophosphamide was investigated in several
studies. Greater CYP2B6-mediated activation of cyclo-
phosphamide to 4-hydroxycyclophosphamide for 516G�T
variant allele carriers has been observed [50, 51], as well as
a higher clearance and shorter half-life of cyclophosph-
amide for CYP2B6*6 homozygous mutant patients than for
wild-type patients [52]. These findings, however, could not
be confirmed by others in a cohort of 124 patients with solid
tumors [53]. Despite the fact that a few studies reported a
significant pharmacokinetic effect of cyclophosphamide by
CYP2B6*6, no significant associations with adverse events
[54, 55], disease-free survival or overall survival [56] were
observed in cancer patients treated with cyclophosphamide
combination chemotherapy. Therefore, the clinical rele-
vance of CYP2B6*6 appears to be limited in cyclophosph-
amide treatment. However, because cyclophosphamide is a

Figure 2. Biotransformation of cyclophosphamide. The biotransformation of cyclophosphamide involves multiple drug-
metabolizing enzymes that are subject to genetic polymorphism, which in turn may affect the disposition of cyclophosphamide and
its metabolites. However, because of the fact that its metabolism is regulated by several phase I and phase II enzymes, a genetic
defect in a single gene might go unnoticed because other metabolic enzymes may serve as escape metabolic routes.

823Deenen, Cats, Beijnen et al.

www.TheOncologist.com



substrate for several subfamilies of the CYP450 system
(Fig. 2), an effect of a genetic defect in a single gene might
go unnoticed because other metabolic enzymes may serve
as escape metabolic routes. A combined analysis that would
include multiple genes involved in the pharmacological
pathway could possibly help to clarify the broad range in
drug response for compounds that are substrates for multi-
ple metabolizing enzymes.

CYP2C8
CYP2C8 is an important inactivating enzyme of the taxane
paclitaxel [57]. Several polymorphisms have been identi-
fied, such as CYP2C8*2 (805A�T, Ile269Phe), CYP2C8*3
(416G�A, Arg139Lys and 1196A�G, Lys399Arg), and
CYP2C8*4 (792C�G, Ile264Met) [58–60].

Although in vitro results showed a lower metabolism of
paclitaxel by up to 15% for CYP2C8*3 [59, 60] carriers, no
effect of CYP2C8 genetic polymorphism on the clearance
of unbound paclitaxel was observed in patients treated with
paclitaxel [61, 62]. Moreover, a study in 914 patients re-
ceiving either docetaxel or paclitaxel combined with carbo-
platin showed that CYP2C8 polymorphisms were not
associated with toxicity or efficacy of treatment [17].

In conclusion, polymorphisms in CYP2C8 have thus far
not been demonstrated to affect paclitaxel treatment out-
come and are therefore not yet suitable for patient-tailored
therapy with paclitaxel.

CYP2C9
CYP2C9 metabolizes, among others, the anticancer agents
cyclophosphamide, etoposide, ifosfamide, and tamoxifen,
and the experimental anticancer drug indisulam (E7070).
CYP2C9 harbors many allelic variants, of which at least
two SNPs, CYP2C9*2 (430C�T, Arg144Cys) and
CYP2C9*3 (1075A�C, Ile359Leu), are known to decrease
CYP2C9 enzyme activity [63–65]. Despite these signifi-
cant in vitro observations, four recent studies in patients
with cancer did not demonstrate a significant effect of
CYP2C9 polymorphism on the pharmacokinetics of cyclo-
phosphamide [51, 53, 66] or tamoxifen [67]. In addition, no
relationship between CYP2C9 genotype and survival was
observed in patients with breast cancer treated with tamox-
ifen [68, 69]. However, a study in 67 patients treated with
the experimental anticancer drug indisulam revealed a
lower elimination rate of 27% and a significantly higher
risk for severe neutropenia in heterozygous CYP2C9*3 car-
riers [70].

To conclude, allelic variants of CYP2C9 do not ap-
pear to affect treatment outcome with cyclophosphamide
or tamoxifen, but possibly do affect indisulam treatment
outcome. This suggests that a substrate-specific pharma-

cogenetic effect might be present. Further studies are
awaited to draw definite conclusions.

CYP2C19
Besides cyclophosphamide, ifosfamide, and tamoxifen,
thalidomide is also a substrate for CYP2C19 and is acti-
vated by CYP2C19-mediated hydroxylation [71]. There are
two SNPs in CYP2C19 that lead to the poor metabolizer
phenotype. These are 681G�A (CYP2C19*2), which re-
sults in a splicing defect, and 636G�A (CYP2C19*3),
which introduces a premature stop codon. Both allelic vari-
ants have no residual activity left, and approximately 99%
of the CYP2C19 poor metabolizer phenotype is explained
by these two SNPs [72]. Thus far, only one study investi-
gated CYP2C19 polymorphism in relationship to response
to treatment with thalidomide. In 92 patients with multiple
myeloma treated with thalidomide, extensive metabolizers
experienced a significantly higher response rate (63%) than
CYP2C19*2-induced poor metabolizers (33%) [73]. Fur-
ther studies are awaited.

With regard to cyclophosphamide and CYP2C19 activ-
ity, poor metabolizers are theoretically expected to have a
poor response and low toxicity probability upon therapy
with cyclophosphamide, because its CYP2C19-mediated
activation is eliminated. Indeed, one study in 60 white can-
cer patients showed a CYP2C19*2-dependent lower clear-
ance of cyclophosphamide at doses �1,000 mg/m2 [66];
however, no effect on the pharmacokinetics of cyclophos-
phamide for CYP2C19*2 and CYP2C19*3 was observed in
two larger trials conducted in Japanese [52] and European
[53] patients, and no relationship with clinical outcome was
reported [54].

In summary, CYP2C19*2 and CYP2C19*3 result in a
CYP2C19 poor metabolizer phenotype. Their clinical rele-
vance appears limited in cyclophosphamide treatment, but
not in thalidomide treatment. Additional investigation is re-
quired before definitive conclusions can be drawn.

CYP2D6
The enzyme CYP2D6 is particularly important in the treat-
ment of breast cancer patients with tamoxifen. CYP2D6 oxi-
dizes tamoxifen to 4-hydroxytamoxifen, the antiestrogen
potency of which is 50 times higher than that of tamoxifen it-
self [74]. Furthermore, the conversion of N-desmethyltamox-
ifen to endoxifen is primarily mediated by CYP2D6. The
potency of endoxifen is also higher than that of tamoxifen, and
comparable with the binding affinity and suppression of estra-
diol-stimulated cell proliferation of 4-hydroxy-tamoxifen
[75]. Thus, theoretically, CYP2D6 poor metabolizers are ex-
pected to benefit less from therapy with tamoxifen because of
a lower rate of formation of the active substrate.
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CYP2D6 is highly polymorphic. Multiple allelic vari-
ants have been described, of which, some result in lower, or
even absent, enzyme activity [76]. Furthermore, copy num-
ber variants of CYP2D6 exist with either two, three, four,
five, or 13 gene copies, which consequently lead to the ul-
trarapid metabolizer phenotype. The most abundant and
functionally important SNPs are CYP2D6*4 (1846G�A),
resulting in a splicing defect, CYP2D6*5, characterized by
complete CYP2D6 gene deletion, CYP2D6*6 (1707delT),
resulting in a frameshift at amino acid 118, and
CYP2D6*10 (100C�T), which markedly reduces enzyme
activity [77–80].

A few studies in patients with breast cancer treated with
tamoxifen showed that plasma levels of endoxifen are
lower in CYP2D6 poor metabolizers than in extensive me-
tabolizers. Besides genetic variants, potent inhibitors of
CYP2D6, such as paroxetine or fluoxetine, also led to lower
levels of endoxifen [67, 81, 82]. Moreover, several retro-
spective clinical trials demonstrated a shorter time to recur-
rence or shorter survival time for women with the poor
metabolizer phenotype [68, 83– 89]; however, this could
not be confirmed in other retrospective studies [90 –93].
Prospective evaluations are currently lacking. Plausible ex-
planations for inconsistent findings among the various stud-
ies are, among other things, the retrospective study design;
incomplete CYP2D6 genotyping; a lack of stratification for
coadministration of no, weak, or strong CYP2D6 inhibi-
tors; the inability to account for drug compliance; and dif-
ferences in patient selection, duration of treatment, and
dose of tamoxifen. In addition, some studies analyzed tu-
mor DNA whereas others used germline DNA. Notwith-
standing, the concordance rate between tumor and germline
DNA for CYP2D6 appears to be 100% [88, 89].

In conclusion, poor metabolizers as a result of genetic
defects appear to benefit less from treatment with tamox-
ifen, though inconsistent findings have been reported.
Treatment with tamoxifen is also negatively affected by si-
multaneous use of potent CYP2D6 inhibitors. Well-defined
prospective trials are needed, with complete CYP2D6 geno-
typing, that are supported by pharmacokinetic analyses.
These trials should additionally differentiate the strengths
of coadministered inhibitors of CYP2D6 for tamoxifen
[94], to establish the exact role of CYP2D6 polymorphism
in tamoxifen treatment.

CYP3A4 and CYP3A5
The CYP3A subfamily is highly expressed in the liver and
small intestine, and metabolizes �50% of clinically used
drugs, including several anticancer drugs such as etoposide,
teniposide, docetaxel, paclitaxel, irinotecan, toremifene,
vinblastine, vincristine, vinorelbine, cyclophosphamide, if-

osfamide, thiotepa, gefitinib, and erlotinib [95–97]. En-
zyme activity of CYP3A ranges widely among subjects,
and besides genetic polymorphism, its activity is largely af-
fected by nongenetic factors such as age, endogenous hor-
mone levels, transcription factor activity, health status, and
environmental stimuli [98, 99].

To date, approximately 40 allelic variants have been de-
scribed for CYP3A4, of which some reduce its activity, such
as CYP3A4*6, CYP3A4*8, and CYP3A4*17 [100]. In addi-
tion, a common SNP, �392A�G (CYP3A4*1B, CYP3A4-
V), appears to influence CYP3A4 expression as a result of
altered nuclear protein binding affinity to the polymorphic
element [101]. In CYP3A5, the main SNP of interest is
6986G�A (CYP3A5*3), which leads to a splicing defect
that results in severely lower enzyme activity. Most white
people are homozygous for this genetic defect and conse-
quently live with a CYP3A5 deficiency [102, 103].

Docetaxel is metabolized by CYP3A4 and CYP3A5 up
to 93% [104]. Therefore, variability in CYP3A enzyme ac-
tivity is hypothesized to affect the metabolism of docetaxel
and hence its toxicity and possibly efficacy.

Although two studies showed a higher clearance of do-
cetaxel for the CYP3A4*1B variant allele in patients treated
with docetaxel [105, 106], this was not observed by others
[107]. For paclitaxel, a taxane as well, no associations were
observed with CYP3A genotype and treatment outcome
[17, 61, 108].

In treatment with cyclophosphamide-based chemother-
apy, controversial results have been reported with regard to
CYP3A4*1B and treatment outcome. Two studies reported
a shorter (disease-free) survival time for variant allele car-
riers [56, 109], whereas this could not be confirmed by oth-
ers [53, 54].

With regard to other anticancer drugs, in one study in 42
patients with advanced NSCLC treated with irinotecan and
carboplatin, CYP3A4*1B was not associated with toxicity
[110]; however, a nonsignificant association with skin rash
grade �2 for CYP3A4*1B and CYP3A5*3 was observed in
a prospective study in 80 cancer patients receiving erlotinib
monotherapy [111].

Obviously, further research is warranted. It can be con-
cluded though that genetic variability in CYP3A alone is in-
sufficient to explain its widely ranging enzyme activity
[112]. Possibly, CYP3A4 phenotypic approaches, although
often more costly, might serve as better predictors of treat-
ment outcome.

Additional Oxidizing Phase I
Metabolizing Enzymes
Other typical phase I oxidation enzymes are monoamine
oxidase (MAO), cyclooxygenase (COX), alcohol dehydro-
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genase (ADH), and aldehyde dehydrogenase (ALDH). The
enzymes MAO and COX are not involved in the biotrans-
formation of anticancer drugs, but there is an increasing in-
terest in COX inhibitors in the prevention and treatment of
cancer [113–115]. In addition, polymorphisms in ADH
have been associated with a higher risk for developing can-
cer, especially in high alcohol consumers [116, 117].

ALDH oxidizes acetaldehyde (a metabolite of alcohol)
and also oxidizes cyclophosphamide and ifosfamide. A
study in 124 white patients treated with high-dose chemo-
therapy showed that two polymorphisms in ALDH
(ALDH1A1*2 and ALDH3A1*2) did not affect the pharma-
cokinetics of cyclophosphamide; however, a significantly
higher risk for liver toxicity and hemorrhagic cystitis was
observed [53, 54]. Notwithstanding, this association was
not observed in Asian patients [55]. Besides differences in
ethnicity, this discrepancy might also be a result of differ-
ences in patient selection or treatment regimen, and there-
fore additional studies are warranted before definitive
conclusions can be drawn.

Reducing, Hydrolyzing, and Deaminating Phase I
Metabolizing Enzymes
Dihydropyrimidine dehydrogenase (DPD) is a phase I re-
duction enzyme and a key detoxification enzyme of fluo-
ropyrimidines. Other inactivating enzymes of anticancer
drugs are cytidine deaminase (CDA) for gemcitabine and

cytarabine and bleomycin hydrolase (BLMH) for bleo-
mycin.

DPD
The primary step in the 5-fluorouracil (5-FU) degradation
pathway is mediated by DPD [118, 119]. Furthermore,
DPD also inactivates the 5-FU oral prodrugs capecitabine
and tegafur. About 3%–5% of the population has a (partial)
DPD deficiency, which increases the risk for 5-FU–induced
severe toxicity in these individuals [120]. Currently, �50
polymorphisms in DPYD, the gene encoding DPD, have
been identified [121]. The most predominant polymor-
phism associated with DPD deficiency is IVS14�1G�A
(DPYD*2A). This SNP results in complete skipping of exon
14 during pre-mRNA splicing, and consequently creates a
truncated protein that has no residual activity left (Fig. 3)
[122–124]. Another polymorphism in DPYD that nega-
tively affects DPD enzyme activity, mainly by interfering
with cofactor binding, is 2846A�T (Asp949Val) [125–
127].

Table 2 provides an overview of various clinical studies
that investigated the effect of DPYD*2A and 2846A�T on
treatment outcome with fluoropyrimidines. Multiple case
reports have been described, reporting on patients with se-
vere, even lethal, toxicity following 5-FU–based chemo-
therapy who proved to be polymorphic for DPYD*2A [123,
128–136]. In addition, others showed that DPYD*2A was

Figure 3. Functional effect of DPYD*2A (IVS14�1G�A). The polymorphism DPYD IVS14�1G�A is a single nucleotide
polymorphism that is located at the first position of intron 14. This polymorphism results in complete skipping of exon 14 during
the process of pre-mRNA splicing, which thereby creates a truncated protein with absent dihydropyrimidine dehydrogenase
activity.
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present in approximately 25% of patients presenting with
severe toxicity following treatment with fluoropyrimidines
[135, 137]. Moreover, several retro- and prospective popu-
lation trials consisting of hundreds of patients per trial
showed that, on average, �70% of all patients polymorphic
for DPYD*2A developed severe, including lethal, toxicity
following treatment with 5-FU or capecitabine [120, 138–
143].

Similarly, the polymorphism 2846A�T in DPYD is
also associated with severe toxicity to fluoropyrimidines, as
demonstrated by multiple cohort studies [120, 138, 141,
142]. Though DPYD 2846A�T is slightly less predictive of
severe toxicity than DPYD*2A, the majority of patients
polymorphic for 2846A�T still develop severe toxicity fol-
lowing 5-FU–based treatment. Moreover, the simultaneous
presence of both variant alleles (DPYD*2A and 2846A�T)
in an individual, a rarely (�1 in 1,000 patients) occurring
phenomenon, however, was shown to be lethal in multiple
cases shortly after the start of fluoropyrimidine treatment
[120, 129].

In conclusion, these data demonstrate the clinical sig-
nificance of DPYD*2A and 2846A�T in fluoropyrimidine
treatment, suggesting prospective screening prior to the

start of therapy to avoid severe toxicity in patients with the
variant genotype. Possibly, initial fluoropyrimidine dose
reductions of 50% in DPYD*2A and 25% in 2846A�T
heterozygous patients followed by further dose titration
upon clinical tolerability could be a safe and effective strat-
egy [142] that needs to be assessed in additional, prospec-
tive clinical trials.

CDA
The enzyme CDA inactivates gemcitabine to 2�,2�-difluo-
rodeoxyuridine and inactivates cytarabine as well. Two
nonsynonymous SNPs in CDA, 79A�C (Lys27Gln) and
208G�A (Ala70Thr) were shown to reduce CDA enzyme
activity [144–147]. The 208G�A SNP, however, is likely
to occur only in Japanese and Korean subjects, and has not
yet been detected in African, white, and Chinese Americans
[148]. A few studies evaluated the predictive value of these
SNPs in gemcitabine treatment (Table 3). A study in 256
Japanese patients treated with gemcitabine-based chemo-
therapy showed a higher AUC and maximum concentration
of gemcitabine in patients heterozygous polymorphic for
208G�A. In addition, 208G�A was associated with grade
�3 neutropenia in patients who were coadministered 5-FU

Table 2. Clinical pharmacogenetics of dihydropyrimidine dehydrogenase (DPYD)

Gene Location SNP variant
Amino acid
change Effect on protein

Allele frequency
in whites (n of
patients)

Type of cancer/
affected drug

Relation with
toxicity

Relation
with
efficacy

Patient
cohort

Level of
evidencea Reference

DPYD Intron 14 IVS14�1G�A
(DPYD*2A)

Deletion of 55
amino acids

Exon 14 skipping;
truncated,
nonfunctional
protein [122, 159]

1.1% (487) Advanced
carcinomas/
5-FU

60% of HET grade 3
or 4 toxicity (2 HET
without severe
toxicity received
initially reduced
5-FU doses)

NA Prospective 2 [138]

1% (683) CRC, GI, UP,
breast/5-FU

46% of HET grade 3
or 4 toxicity

NA Prospective 2 [141]

0.6% (252) CRC/5-FU 2 of 3 HET grade 3
or 4 toxicity, third
patient safe on a
50% dose reduction
in cycle 2

NA Prospective 2 [120]

0.5% (105) Breast/
capecitabine

Single HET
deceased

NA Prospective 2 [140]

0.6% (568) CRC/
capecitabine

71% of HET grade 3
or 4 diarrhea, 100%
grade 3 or 4 overall
toxicity

No
association

Retrospective 3 [142]

0.5% (851); 14%
in toxicity grade
3 or 4 cohort
(n � 25)

White controls
and cancer
patient cohort
with severe
toxicity upon
5-FU treatment

24% of the 25
patients with severe
toxicity attributable
to DPYD*2A

NA Retrospective 3 [137]

- Various types of
cancer/5-FU or
capecitabine

Severe toxicity
associated with
DPYD*2A

NA Case reports 4 [123,
128–136]

DPYD Exon 22 2846A�T Asp949Val Reduced enzyme
activity[160]

1% (487) Advanced
carcinomas/5-FU

60% of HET grade 3
or 4 toxicity

NA Prospective 2 [138]

0.4% (656) CRC, GI, UP,
breast/5-FU

60% of HET grade 3
or 4 toxicity

NA Prospective 2 [141]

1.6% (252) CRC/5-FU 75% of HET grade 3
or 4 toxicity

NA Prospective 2 [120]

aAdapted from http://www.cancer.gov. See also Table 1.
Abbreviations: 5-FU, 5-fluorouracil; CRC, colorectal cancer; GI, gastrointestinal; HET, heterozygous mutant patients; NA,
not analyzed; SNP, single nucleotide polymorphism; UP, unknown primary.
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and a platinum analog [149]. Furthermore, homozygosity
for this SNP in Japanese patients has been associated with
severe toxicity to gemcitabine [150, 151].

For 79A�C, one case report of a patient with lethal tox-
icity following treatment with gemcitabine was described,
who proved to be heterozygous polymorphic for 79A�C
but wild-type for 208G�A. Additional phenotyping in that
patient showed a 75% lower CDA enzyme activity than in
nontoxic controls [152]. However, it appears unlikely that
79A�C alone caused CDA deficiency in that patient be-
cause no effect on the pharmacokinetics of gemcitabine for
79A�C has been observed in Japanese [149] and white
[153] patients. Moreover, a study in 65 chemotherapy-
naïve NSCLC patients treated with gemcitabine and cispla-
tin showed that wild-type 79A�C patients more frequently
experienced grade �3 neutropenia and thrombocytopenia
and had a longer time to progression and overall survival
time as well [146].

In summary, inconsistent findings have been reported
for 79A�C in CDA, showing positive and negative asso-
ciations with clinical outcome with gemcitabine. This
might be partly a result of differences in patient selec-
tion, treatment regimen, and ethnicity, but as yet unde-
tected polymorphisms might also possibly play a role.
However, for CDA 208G�A, clear associations with se-
vere toxicity from gemcitabine have been shown in Jap-
anese patients. Caution and possibly initial dose
reductions of gemcitabine for at least homozygous

208G�A carriers appear indicated. CDA 208G�A has
the potential to become a predictive marker in gemcit-
abine treatment in Japanese patients, and this requires
additional studies for independent confirmation.

BLMH
BLMH is the primary enzyme in the inactivation of bleomy-
cin. The enzymatic activity of BLMH is, among other things,
regulated by its C-terminal region [154–156]. A SNP that is
located in this C-terminal region, 1450A�G, was shown in
vitro to affect bleomycin-induced chromatid breaks per cell
[157]. Moreover, a retrospective study in patients with testic-
ular germ cell cancer treated with bleomycin showed shorter
progression-free and overall survival times for homozygous
1450A�G variant allele carriers [158]. To determine whether
this SNP is of clinical relevance, further (pre-)clinical studies
on the functional effect of BLMH 1450A�G and on its effect
on the clinical pharmacokinetics, toxicity, and efficacy of
bleomycin are required.

CONCLUSION: IMPLICATIONS FOR CLINICAL

PRACTICE—OPPORTUNITIES FOR PATIENT-
TAILORED ANTICANCER THERAPY

Based on the literature reviewed, genetic polymorphisms in at
least four candidate genes involved in phase I metabolism
could potentially serve as pharmacogenetic markers in anti-
cancer therapy to enable more safe, and possibly more effec-
tive, anticancer pharmacotherapy. These are DPYD*2A and

Table 3. Clinical pharmacogenetics of cytidine deaminase (CDA) and bleomycin hydrolase (BLMH)

Gene Location
SNP
variant

Amino
acid
change Effect on protein

Allele
frequency in
whites (n of
patients)

Type of cancer/
affected drug

Relation with
toxicity

Relation with
efficacy

Patient
cohort

Level of
evidencea Reference

CDA Exon 1 79A�C Lys27Gln Reduced enzyme
activity [144,
145]

36% (65) NSCLC/
gemcitabine

WT associated
with grade 3 or 4
neutropenia and
thrombocytopenia

WT longer
TTP and OS

Prospective 2 [146]

– Metastatic
vesical cancer/
gemcitabine

Heterozygous
carrier severe
toxicity leading to
death

– Case report 4 [152]

CDA Exon 2 208G�A Ala70Thr Reduced enzyme
activity [147,
149]

3.7% (256) Carcinoma/
gemcitabine

Variant allele
higher risk for
grade 3 or 4
neutropenia with
combination
chemotherapy

NA Prospective 2 [149]

– Pancreas
carcinoma/
gemcitabine

Severe toxicity in
HOM

– Case report 4 [150]

– Pancreas
carcinoma/
gemcitabine

Severe toxicity in
HOM

Retrospective 4 [151]

BLMH Exon 11 1450A�G Ile443Val Might influence
enzyme activity
[154]

32% (304) Testicular germ
cell cancer/
bleomycin

NA HOM shorter
OS and PFS

Retrospective 3 [158]

aAdapted from http://www.cancer.gov. See also Table 1.
Abbreviations: HOM, homozygous mutant patients; NA, not analyzed; NSCLC, non-small cell lung cancer; OS, overall
survival; PFS, progression-free survival; SNP, single nucleotide polymorphism; TTP, time to progression; WT, wild-type
patients.
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2846A�T in DPYD in fluoropyrimidine treatment, CYP2D6
polymorphism in breast cancer patients receiving tamoxifen,
CDA 208G�A (which, however, appears to only occur in
Asians) in gemcitabine treatment, and possibly 1450A�G in
BLMH in patients treated with bleomycin (Table 4).

As determined in several studies, DPYD*2A and
2846A�T in DPYD consistently showed significant rela-
tionships with severe, possibly lethal, toxicity following
treatment with standard-dose fluoropyrimidines, with a
level of evidence of 2. Initial dose reductions �50% in
DPYD*2A and �25% in 2846A�T heterozygous polymor-
phic patients, both followed by further dose titration upon
clinical tolerability, are recommended.

Despite some inconsistent findings, genetic polymor-
phism in CYP2D6 appears to negatively affect survival in
the treatment of breast cancer with tamoxifen, because of a
lower rate of formation of active metabolites of tamoxifen
in CYP2D6 poor metabolizers. Whether this genetic sub-
group of patients should be given higher doses of tamoxifen
or another type of treatment, such as, for example, aroma-
tase inhibitors, is currently unknown. Additional, prospec-
tive studies, preferentially supported by pharmacokinetic
analyses, will help to address these important questions.

With gemcitabine treatment, CDA 208G�A homozy-
gous patients, in particular, but also CDA 208G�A
heterozygous patients, appear to be predisposed for severe
gemcitabine toxicity. If this finding can be independently
confirmed by additional, prospective studies, the question
arises of whether or not severe gemcitabine toxicity is pre-
ventable by initial dose reductions in at least CDA 208G�A

homozygous variant allele carriers without negatively af-
fecting treatment response.

For bleomycin, a single retrospective study in patients
with testicular germ cell cancer treated with bleomycin-
based chemotherapy reported that patients homozygous
polymorphic for 1450A�G in BLMH experienced shorter
overall and progression-free survival times (level of evi-
dence, 3). Prospective studies should evaluate whether
these findings can be confirmed. If so, the question evolves
of whether or not this genetically defined subgroup of pa-
tients would benefit more from another type of chemother-
apeutic regimen that does not include bleomycin.

Overall, genetic polymorphism in candidate genes in-
volved in phase I metabolism has been shown to poten-
tially affect the pharmacokinetics of anticancer drugs,
and the toxicity and efficacy of treatment. A few selected
candidate polymorphisms are, or at least have the poten-
tial to become, predictive markers for anticancer treat-
ment outcome. These results should encourage the
continuation of pharmacogenetic research in anticancer
therapy, in an effort to implement personalized medicine
in daily clinical practice.
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