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A large body of evidence in humans suggests that recognition
memory can be supported by both recollection and familiarity.
Recollection-based recognition is characterized by the retrieval of
contextual information about the episode in which an item was
previously encountered, whereas familiarity-based recognition is
characterized instead by knowledge only that the item had been
encountered previously in the absence of any context. To date, it is
unknownwhether monkeys rely on similar mnemonic processes to
perform recognition memory tasks. Here, we present evidence
from the analysis of receiver operating characteristics, suggesting
that visual recognition memory in rhesus monkeys also can be
supported by two separate processes and that these processes
have features considered to be characteristic of recollection and
familiarity. Thus, the present study provides converging evidence
across species for a dual process model of recognition memory
and opens up the possibility of studying the neural mechanisms
of recognition memory in nonhuman primates on tasks that are
highly similar to the ones used in humans.

In humans, dual process models of recognition memory, al-
though different in detail, share the core idea that both rec-

ollection and familiarity contribute to this mnemonic function
(1–5). Recollection is characterized by the retrieval of contextual
information about the episode in which an item was encoun-
tered, whereas familiarity lacks this context, relying solely on
knowledge of prior occurrence. The possibility that nonhuman
animals also use separable memory processes to solve recogni-
tion memory tasks has begun to be experimentally addressed (6–
8), an important shift, inasmuch as an understanding of how the
brain gives rise to different memory functions in various species
is critical for relating molecular and cellular findings in animals
to behavioral and neuroimaging research conducted in humans.
Recollection and familiarity are commonly viewed as retrieval

processes that support potentially independent routes of cogni-
tive access to stored information. This distinction has been
operationalized based on the analysis of receiver operating char-
acteristics (ROCs) (5). ROCs in recognition memory relate the
proportion of correctly recognized repeated or old items (hit
rate) to the proportion of incorrectly recognized novel distracters
(false alarm rate) as a function of response criterion (bias to
respond “old”). In a typical recognition memory test aimed at
characterizing ROCs, subjects would encounter a list of pre-
viously studied items intermixed with new items and be asked to
rate how confidently they recognize each item on an arbitrary
scale [e.g., ranging from one (sure that it is new) to six (sure that
it is old), with two to five reflecting less confident judgments].
These confidence ratings represent different decision criteria,
and an ROC curve is produced by plotting the hit rate against the
corresponding false alarm rate as a function of decision criterion.
Recognition memory ROCs in humans are typically curvilin-

ear and asymmetrical to the negative diagonal (9–11) (Fig. 1).
Some investigators have proposed that the asymmetry in the
ROC curve arises from a single signal detection process in which
the variance of the old-item distribution is greater than the
variance of the new-item distribution (12). This proposal is re-
ferred to here as the unequal variance signal detection (UVSD)

model. Others have suggested that the ROC asymmetry arises
from two underlying processes (5): familiarity, thought to reflect
a continuum of item memory strength that is well-described
by an equal variance signal detection model, and recollection,
thought to reflect a threshold process. When an item is recog-
nized based on familiarity, the memory strength of this item is
judged relative to a particular decision criterion. However, when
associated information is available, an item can also be recog-
nized based on recollection. The process of recollection can be
thought of as a recall process that succeeds for some items but
completely fails for others (i.e., the memory falls below thresh-
old). This alternative suggestion is here referred to as the dual
process (DP) model. These two models make contrasting pre-
dictions regarding the shape of the z-transformed ROC curves
(zROC). Specifically, the DP model predicts that the zROC is
characterized by a slight U shape, whereas the UVSD model
predicts that the zROC is well-described by a linear function with
a slope smaller than one (Fig. 1).
Previous studies in monkeys have treated recognition memory

as a unitary phenomenon in that they have been agnostic to the
possibility that different processes may underlie this mnemonic
ability. To test whether ROCs in monkeys are qualitatively
comparable with what is typically observed in humans and also,
whether evidence can be found for two qualitatively different
processes supporting recognition memory in monkeys, we trained
four male rhesus monkeys (Macaca mulatta) on a visual running-
recognition task with trial-unique, complex images (Fig. 2A).
Monkeys were required to pull a lever on their left with their left
hand if the image had been shown before (old image) and pull
a lever on their right with their right hand if the image was being
shown for the first time (new image). For every correct response,
the monkey obtained a juice reward. Old and new images were of
equal probability. The number of stimuli intervening between
the first presentation of a particular stimulus and its later repe-
tition was variable. Critically, ROCs were obtained by manipu-
lating the monkeys’ bias to respond “old” or “new” by varying the
relative amount of juice dispensed for correct old and correct new
responses across five discrete levels (Fig. 2B).

Results
Performance. Fig. 3 shows the ROCs (Fig. 3, Left) and zROCs
(Fig. 3, Right) for all four monkeys. Performance was assessed for
each monkey and each delay separately by calculating the area
under each ROC curve (AUC). The results are shown in Fig. 3.

ROC Curvilinearity. We asked whether recognition memory ROCs
in monkeys are curvilinear, which is typically the case in human
experiments. According to the DP model described above, both
R and F (R denoting the model parameter for recollection and
F denoting the model parameter for familiarity) contribute to
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recognition memory (Methods). Specifically, recognition of an
item is said to be based on R if a threshold is exceeded, with R
corresponding to the probability of old items exceeding that
threshold. If old items are not recognized based on R, recogni-
tion is said to be based on F, estimated as d′, with the memory
strength contributed by F reflecting the distance between the
new and old item distributions in units of SD. The contribution
of F to recognition performance will lead to a curvilinear ROC.
Nested F-tests indicated that all 12 empirical ROCs (four mon-
keys with three intervals each) were fit significantly better by
a DP model using both R and d′ as parameters than by a model
using R alone, suggesting that a signal detection F process con-
tributed to performance (details in Fig. 3).

ROC Asymmetry. Recognition memory ROCs in human experi-
ments are typically asymmetrical to the negative diagonal (Fig.
1). The UVSD model accounts for this asymmetry by assuming
that the variance of the old item distribution is greater than the
variance of the new item distribution. By contrast, the DP model
accounts for this asymmetry by assuming that a threshold R
process contributes to recognition memory. Using a least squares
approach to fit the UVSD model to the empirical ROCs, we
found that the variance ratio (VR) of the old vs. new item dis-
tributions was significantly greater than one (VR = 1.43, SD =
0.3, t11 = 4.98, P < 0.001), suggesting that, as in humans, rec-
ognition memory ROCs in rhesus monkeys are asymmetrical to
the negative diagonal. Using a least squares approach to fit the
DP model to the empirical ROCs, we found that, as a pop-
ulation, parameter estimates for R were significantly greater than
zero (R = 0.39, SD = 0.27, t11 = 4.97, P < 0.001), corroborating
the finding obtained by applying the UVSD model. Thus, to this
point, the results are consistent with both models.

Contrasting the DP and UVSD Models. In the next step, we asked
which model, DP or UVSD, provides a better fit to the empirical
ROCs. Because both models have two free parameters, R2 as
a measure of goodness of fit can be directly compared between
the two models. Eleven of the twelve ROCs were better fit by the
DP model than by the UVSD model, and one was fit equally well
by both models (Fig. 4). However, because ROCs were fit ex-
ceptionally well by both models (mean R2 = 0.997 for the DP
model, mean R2 = 0.985 for the UVSD model), we used a more

direct test to contrast the two models. A pure signal detection
process, as in the UVSD model, always predicts that ROCs will
be linear in z-space (zROCs). Therefore, if zROCs are nonlinear,
a pure signal detection process cannot explain the empirical
data. By contrast, the DP model predicts that the influence of a
threshold R process will lead to U-shaped zROCs. To test these
two predictions, we fit second-order polynomials to the zROCs.
Eleven of twelve nonlinear coefficients were positive. To test
whether the population of zROCs was significantly nonlinear,
we used a mixed model ANOVA on the z-transformed hit rates
[z(H)] for each bias level, with monkey (four levels) as a random

Fig. 1. ROCs (A and D), zROCs (B and E), and probability density functions (C and F) for the unequal variance signal detection (UVSD) and dual process (DP)
models, respectively. Recognition memory ROCs in humans are typically curvilinear and asymmetrical to the negative diagonal (black curves in A and D). The
UVSD model assumes that novel and repeated (old) items are represented by two Gaussian functions along the dimension of memory strength, with the
variance of the old-item distribution being greater than the variance of the novel-item distribution (C). The DP model assumes that two independent
processes, recollection and familiarity, contribute to recognition memory functions. Recollection is assumed to be a threshold process, whereas familiarity is
assumed to be an equal variance signal detection process (F). Specifically, a certain proportion of old items (the distribution of all old items is indicated by the
gray shading in F) is assumed to exceed that threshold and, therefore, is recognized with high confidence on the basis of recollection. When recollection fails,
recognition is assumed to be based on familiarity. Purely on their own, an equal variance signal detection process will produce an ROC that is curvilinear and
symmetrical to the negative diagonal, and a threshold process will produce a linear ROC (D; both ROCs shown in gray). The UVSD model predicts linear zROCs
(B), with a slope smaller than one, reflecting the ratio of the SDs of the new- and old-item distributions. The DP model predicts U-shaped zROCs (E) as a result
of the threshold process.

Fig. 2. (A) Timing of the running recognition task. Images were presented
on a computer screen, one at a time, with equally probable presentation of
old and new images. (B) Response bias was pseudorandomly manipulated in
blocks of 200 stimuli. The histogram shows the juice reward (in number of
drops; y axis) obtainable for correct “old” (black) and correct “new” (white)
responses as a function of the five experimental bias manipulations (x axis).
The symbols at the bottom indicate the cues that were presented immedi-
ately before each image as a function of bias level in effect on that block
(Methods, Behavioral Procedure).
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effect, delay (three levels) as a fixed effect, and x and x2 as
continuous variables [where x is the z-transformed false alarm
rate corresponding to each z(H)]. There was a significant main
effect of x2 (F1,4 = 27, P < 0.01), showing that the zROCs were
significantly U-shaped. Furthermore, nested F-tests were used to
test whether individual zROCs were fit significantly better by
a second-order polynomial than by a first-order polynomial. Of
12 analyzed zROCs, 6 were significantly U-shaped, and 4 of the
other 6 approached significance (details in Fig. 3). Together, our
data suggest that a signal detection model alone cannot account
for the empirical data, whereas the DP model can do so.

Parameter Estimates of R and F as a Function of Delay. Recognition
memory performance decreased as a function of increasing delay
for all four monkeys (Fig. 3). We, therefore, asked whether this
performance decrease was because of a selective decrease in
either R or F or both. Table 1 shows the parameter estimates for
R and F for all four monkeys. The mean parameter estimate for
R was 0.4 (SD = 0.25), and the mean parameter estimate for F
was 1.5 (SD = 0.48). For two of the four monkeys, both R and F
estimates decreased as a function of increasing delay; for one
monkey, R decreased and F increased; one monkey showed no
systematic relationship. Correlation analysis across all four ani-
mals revealed no significant relationship between delay and the
parameter estimates for either R (r = −0.3, P > 0.3) or F (r =
−0.1, P > 0.75).

Control Experiment to Test Whether Reward Size at Encoding Affects
Recognition Accuracy. In our running recognition task, novel items
are encoded in the context of the test phase, whereas in most
previous ROC experiments, which used study lists followed by test
lists, the encoding phase was separated from the test phase. Be-
cause the monkeys’ bias was manipulated by using different re-
ward ratios for old and new items, different amounts of reward
are administered for novel (and old) items as a function of bias
level. If the reward magnitude influences encoding, the shape of
the ROCs could be influenced through different levels of per-
formance across bias levels. We, therefore, conducted a control
experiment with three monkeys, in which reward magnitudes for
new and old items was pseudorandomized instead of being sep-
arated in different blocks. All other parameters, such as timing
and delays, were the same as in the main experiment. This ex-
periment allowed us to test whether old-item performance
changes as a function of reward delivered during this item’s first
presentation. A two-way ANOVA with the factors delay (short,
medium, and long) and reward at encoding (1, 2, 3, 4, and 5 drops
of juice) was performed for each monkey. There was no signifi-
cant interaction for any of the three monkeys (M1: F = 0.68, P >
0.7; M2: F = 0.66, P > 0.7; M3: F = 1.07, P > 0.35) and no sig-
nificant main effect of reward (M1: F = 1.09, P > 0.35; M2: F =
0.62, P > 0.6; M3: F = 0.9, P > 0.45), arguing against the possi-
bility that the running-recognition task used in the present ex-
periment influenced ROC shape through an influence of reward
magnitude during encoding on overall performance. All three
monkeys showed a significant main effect of delay (M1: F = 5.51,
P < 0.005; M2: F = 5.54, P < 0.005; M3: F = 23.6, P < 0.001).

Discussion
In this study, we showed that recognition memory ROCs in rhesus
monkeys have the same features—curvilinearity and asymmetry

Fig. 3. ROCs (Left) and zROCs (Right) for each of the four monkeys. Areas
under the ROC curves (AUCs) are given in Left. (Monkey MU) For the long
interval, the ROC was significantly curvilinear (F = 117, P < 0.005), and the
zROC was significantly nonlinear (F = 45, P < 0.05). For the medium interval,
the ROC was significantly curvilinear (F = 75456, P < 0.001), and the zROC
was significantly nonlinear (F = 89, P < 0.05). For the short interval, the ROC
was significantly curvilinear (F = 184, P < 0.001), and the nonlinearity of the
zROC approached significance (F = 18, P = 0.052). (Monkey MI) For the long
interval, the ROC was significantly curvilinear (F = 268, P < 0.001), and the
nonlinearity of the zROC approached significance (F = 11, P < 0.079). For the
medium interval, the ROC was significantly curvilinear (F = 10518, P < 0.001),
and the zROC was significantly nonlinear (F = 19, P < 0.05). For the short
interval, the ROC was significantly curvilinear (F = 225, P < 0.001), and the
zROC was significantly nonlinear (F = 30, P < 0.05). (Monkey KN) The most
extreme “new” bias level was associated with a lower hit rate and higher
false alarm rate than the neighboring bias level for all intervals. Because
analyzing ROCs assumes constant discriminability across bias levels, which is
not the case here, these extreme data points (shown in gray) were excluded
from analysis. For the long interval, the ROC was significantly curvilinear (F =
334, P < 0.005), and the zROC was not significantly nonlinear (F = 0.004, P >
0.9). For the medium interval, the ROC was significantly curvilinear (F = 7118,
P < 0.001), and the zROC was significantly nonlinear (F = 34191, P < 0.005).
For the short interval, the ROC was significantly curvilinear (F = 1326, P <
0.001), and the nonlinearity of the zROC approached significance (F = 87, P =
0.068). (Monkey RU) For all delays, hit rate was 1.0 for the extreme “old”
bias level and was set to 0.997 for analysis. For the long interval, the ROC was
significantly curvilinear (F = 353, P < 0.001), and the zROC was significantly
nonlinear (F = 22, P < 0.05). For the medium interval, the most extreme
“new” bias level (shown in gray) was excluded from analysis because of a
lower hit rate and higher false alarm rate than the neighboring bias level

(see Monkey KN for rationale). The ROC was significantly curvilinear (F =
19188, P < 0.001), and the zROC was not significantly nonlinear (F = 3.9, P >
0.25). For the short interval, the ROC was significantly curvilinear (F = 2115, P <
0.001), and the nonlinearity of the zROC approached significance (F = 15, P =
0.06).The data points that were excluded from analysis are displayed in gray.
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to the negative diagonal—characteristic of ROCs observed in
human studies. This observation leads directly to the ongoing
debate about the process(es) underlying ROC asymmetry and, by
implication, underlying recognition memory. Two opposing views
make fundamentally different claims about the variable respon-
sible for ROC asymmetry. The DP model claims that R, a
threshold process, can be used independently of F, an equal
variance signal detection process, to support recognition memory
functions. According to this view, R should lead to an asymmet-
rical ROC as opposed to the symmetrical one that would be
observed with F alone. The UVSD model claims that ROC
asymmetry arises from the variance of the old-item distribution
being greater than the variance of the new-item distribution.
Critically, these two models make different predictions about the
shape of z-transformed ROCs. The DP model predicts U-shaped
zROCs because of the threshold R process, whereas the UVSD
model predicts linear zROCs. In the present study, we found that
zROCs were significantly U-shaped. Thus, a single signal de-
tection process, as in the UVSD model, cannot account for the
empirical data. Conversely, the data show that visual recognition
memory in monkeys is well-described by an equal variance signal
detection process together with a threshold process.
Related to the study presented here are studies in rats that used

ROCs to dissociate recollection and familiarity in item (8) and
associative memory (13). These studies tested odor recognition
in rats and showed that selective lesions of the hippocampus
impair what the authors (8, 13) termed “recollection-like”
memory, whereas familiarity-based memory was unimpaired. The
findings show the great potential that such research in experi-
mental animals has for furthering our understanding of the neural
basis of human recognition memory processes. However, com-
parison of recognition processes across species clearly benefit
from comparability of experimental procedures, and human and
rodent task designs are inherently difficult to match. The present
study in nonhuman primates advances the goal of procedural
comparability by using, as in studies conducted in humans, visual
presentation of stimulusmaterial together with a setup that allowed
for subsecond manual responding. At the same time, despite dif-
ferences in task design, stimulus material, type of responding, and
species used, the main conclusions of the rodent studies described
above and the present one are similar, suggesting that the processes
underlying recognition memory are fundamental building blocks of
memory function that are shared across species.
The vast majority of studies using ROCs to investigate rec-

ognition memory processes have been conducted in humans (10,
11). The findings from the present study show that recognition
memory ROCs in monkeys share the same features with those
obtained from human studies, namely curvilinearity and asym-
metry to the negative diagonal. However, unlike the present
study, most studies on item recognition in humans have not
reported U-shaped zROCs. It is possible that the large number

of trials that we collected (on average, nearly 2,000 trials per
monkey per bias level) together with the within-subject and
-delay analyses contributed to the detection of U-shaped zROCs,
but the large number of studies that have failed to show non-
linear zROCs in humans argues against this proposal. Another
possible explanation of the difference is that we obtained ROCs
by manipulating the monkeys’ bias through differential reward
payoffs in a block design using a running-recognition task,
whereas in humans, ROCs are typically obtained by asking sub-
jects, in a study/test design, to rate their recognition confidence
on a continuous scale; however, several arguments speak against
this explanation. First, a recent study in humans showed that
ROCs obtained using a bias method are comparable in shape to
ROCs obtained using the confidence method (14). Second, our
control experiment suggests that the running recognition task in
conjunction with differential reward payoffs did not influence
accuracy differentially for the different bias levels. Third, overall
reward availability and accessibility were constant across bias
levels in the present experiment, arguing against the possibility
that either could have influenced ROC shape through a differ-
ential effect on accuracy.*
Perhaps the most plausible explanation for the differences in

zROC shape between the present study and the majority of
human studies is that, in the present experiment, we used trial-
unique images that the monkey had never seen before, whereas
most human studies of recognition memory use highly familiar
words. Consistent with this possibility are the findings from
several studies in humans that have reported U-shaped zROCs
for item recognition when images were used as the stimulus
material (17–19). The use of trial-unique images could also have
contributed to the high levels of performance observed in the
present experiment. However, high performance alone does not
produce U-shaped zROCs (20).
In the present study, we contrasted two extensively in-

vestigated models of recognition memory, namely, the DP and
UVSD models. The greatest difference between them is that the
DP model assumes that the contribution of recollection to rec-
ognition memory is an independent threshold process (i.e., it
succeeds for some items but completely fails for others). It is
worth noting in this connection that recent evidence raises the
possibility that recollection could be a continuous process just
like familiarity (18, 21). However, the proposal that recollection
is a threshold process is not inconsistent with the idea that rec-
ollective strength can vary for above-threshold items, and the
results presented here—curvilinear and asymmetrical ROCs to-
gether with nonlinear zROCs—are perfectly compatible with this
proposal. Thus, the issue of whether recollection, when it occurs,

Fig. 4. Comparison of R2 as goodness of fit measures for the UVSD (x axis)
and DPmodels (y axis). Eleven of twelve ROCs were better fit by the DPmodel
than by the UVSD model, and one was fit equally well by both models.

Table 1. Estimates for R and F as a function of delay for all four
monkeys

Short Medium Long

R estimates
MU 0.7568 0.6785 0.5548
MI 0.2071 0.1525 0.0700
KN 0.5351 0.4217 0.2048
RU 0.5786 0.0618 0.5580

F estimates
MU 1.1651 1.1507 1.0409
MI 1.2945 1.2846 1.1863
KN 1.2796 1.4580 1.6074
RU 2.2592 2.5941 1.7225

*The possibility that differential reward payoffs, reward availabilities, and reward acces-
sibilities could influence ROC shape through a differential effect on accuracy has been
raised in response to the rodent work discussed above (15, 16).
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is a continuous process does not affect the study’s main con-
clusion, namely, that two processes support recognition memory
in rhesus monkeys.
Recollection is often thought of as a retrieval process that

enables access to episodic memory. Episodic memory (22) ena-
bles an organism to remember specific episodes of the past and is
characterized by a specific phenomenological state involving the
re-experiencing of personally experienced past episodes (4). It is
this awareness of the self in past, present, and future that has
been widely assumed to be a uniquely human faculty, perhaps
in part because of the difficulty of assessing metamnemonic
awareness in nonlinguistic animals (but see ref. 23). However,
whereas episodic memory may rely on recollection, recollection
as a neural process may support memory function independently
of episodic memory, and thus, it could exist even in animals
without the ability to remember episodes from the past. The
assumption that animals use familiarity in recognition memory
tasks seems to be much less controversial, despite the fact that
familiarity in humans is also thought to be accompanied by
a characteristic form of phenomenological awareness (a feeling
of knowing) (4). Consequently, just as metamnemonic awareness
in humans may be as intimately linked with familiarity as it is
with recollection, the neural processes underlying familiarity, just
like those processes underlying recollection, could operate in-
dependently of such awareness in nonhuman animals.
In summary, our results suggest that recognition memory in

monkeys can be supported by two processes. The data are in line
with previous work in humans arguing that a threshold recol-
lection process and a signal detection familiarity process in-
dependently support recognition memory. The finding not only
provides converging evidence across species for the DP model
but also opens up the possibility of studying the neural mecha-
nisms of visual recognition memory processes in primates, in-
cluding the contributions of different regions in the medial
temporal lobe, to performance on tasks that are highly similar to
the ones used in humans.

Methods
Subjects and Testing. Four experimentally naïve rhesus monkeys (M. mulatta;
all male and 5.0–7.0 kg) were used in this study. They were housed singly or
in pairs and fed a diet of primate chow and fruit. Fluid intake was controlled.
On testing days, monkeys received apple juice as a reward for correct
responses, and no water was supplemented. On nontesting days, monkeys
received water in their home cage. All procedures were carried out in ac-
cordance with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals and approved by the Animal Care and Use Committee
of the National Institute of Mental Health. Monkeys were tested 5–7 d/wk,
and, during testing, their heads were restrained.

Behavioral Procedure. Monkeys were trained on a visual running-recognition
task (e.g., ref. 24). The task was automated and programmed using LabView
(http://www.ni.com/labview/). Monkeys sat in front of a computer monitor
on which complex clipart images (size of library, ∼160,000) were displayed,
one at a time, with an average interstimulus interval of about 5 s (range
∼3,300–6,800 s). First and repeat presentations were of equal probability
within subsequent blocks of 108 stimuli (called randomization blocks be-
low). The proportion of images that were second presentations was 41.7%
of all images, with an equal likelihood of 5, 16, 17, 18, and 26 images
intervening between first and second presentation. For subsequent anal-
ysis, the different numbers of intervening stimuli (IS) were grouped
according to short delay (5 IS), intermediate delay (16, 17, and 18 IS), and
long delay (26 IS). The recognition delays represented by these different
numbers of intervening stimuli were ∼30 s for the short delay, 90 s for the
intermediate delay, and 135 s for the long delay. All subsequent analyses
are based on these trials together with the corresponding first pre-
sentations of the stimuli in these trials. For randomization purposes and to
keep the proportion of first and repeat presentations equal, 8.3% of the
images were never repeated, and 8.3% of the images consisted of third
presentations; the responses to these single- and third-presentation
images were not analyzed.

Monkeys were trained to pull a lever on their left with their left hand if the
image had been shown before (“old” response) and pull a different lever on
their right with their right hand if the image was being shown for the first
time (“new” response). The stimulus was extinguished immediately after the
monkey responded. For every correct response, the monkey obtained a juice
reward. The monkeys’ bias to respond “old” or “new” was manipulated by
varying the relative amount of juice that they could obtain for correct “old”
and correct “new” responses across five discrete levels (Fig. 2B). Each level
was used for 200 stimuli at a time, and the monkeys performed one to three
blocks each day, with a different bias level for each block. In our running
recognition task, the first images in each randomization block (see above)
are necessarily novel, which could potentially influence the results in some
way (e.g., because of lower levels of interference at the beginning of
blocks). Excluding the first 15 stimuli of each block from analysis did not
change the overall results, and we, therefore, used all trials for all analyses.
Each stimulus was preceded by a cue, indicating the current bias level (Fig.
2B) to provide the monkeys with information about the bias level in effect
before each stimulus presentation. Independently of the cues, however, the
current bias level became evident after the first correct response was made
and the reward for it was received. ROC curves were generated for each
monkey separately by first averaging data across blocks for each reward
ratio. zROCs were generated by computing the z-score for the hit and false
alarm rate at each bias level.

ROC Analyses. All analyses were performed using Matlab. Model fitting to the
empirical data was performed by using a least squares approach as well as a
maximum likelihood approach. Because the two methods yielded virtually
identical results, we show only the results from the least squares analysis.
According to the DP model, recognition can be based on a recollection
process (R) or an independent familiarity process (d′) (25). This model can be
formalized by the following equations (Eq. 1):

Pð‘old’joldÞ¼ Rþð1−RÞFold with Fold ¼ Φðd’=2− ciÞ and ðEq: 2Þ [1]

Pð‘old’jnewÞ¼ Fnew with Fnew ¼ Φð-d’=2− ciÞ; [2]

where P(‘old’|old) refers to the probability of responding “old” to old items
(hit rate) and P(‘old’|new) refers to the probability of responding “old” to
new items (false alarm rate). The variable R reflects the probability of an
item being recognized based on recollection (the threshold process). The
variable d′ reflects the distance between the equal variance Gaussian
strength distributions for old and new items (i.e., the discrimination sensi-
tivity of the signal detection process); ci reflects the response criterion at
point i, which was experimentally obtained by manipulating the monkey’s
bias, and Φ is the cumulative response function.

Where indicated in Results, nested F-tests were used to statistically com-
pare models of the empirical ROCs and zROCs according to (Eq. 3)

F ¼ ðss1 − ss2Þ=ss2
ðdf1 −df2Þ=df2; [3]

where ss stands for sum of squares and df stands for degrees of freedom.
The subscripts 1 and 2 stand for the simpler and more complex models,
respectively. Specifically, when testing for ROC curvilinearity, the simpler
model is the threshold model with one free parameter (R), and the more
complex model is the DP model with two free parameters (R and d′). When
testing for zROC nonlinearity, the simpler model has two free parameters,
and the more complex model, adding a quadratic coefficient, has three-
parameters.

To test zROC nonlinearity on the population data, we used a mixed model
ANOVA on the z-transformed hit rates [z(H)], with monkey (four levels) as a
random effect, delay (three levels) as a fixed effect, and x and x2 as con-
tinuous variables [where x is the z-transformed false alarm rate corre-
sponding to each z(H)]. A significant main effect of x2 would indicate
nonlinearity of the zROCs.

AUCs were calculated using the parameters from a fit of the DP model to
the individual ROCs.
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