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Synaptic strength depresses for low and potentiates for high ac-
tivation of the postsynaptic neuron. This feature is a key property of
the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which
has been shown to maximize the selectivity of the postsynaptic neu-
ron, and thereby offers a possible explanation for experience-depen-
dent cortical plasticity such as orientation selectivity. However, the
BCM framework is rate-based and a significant amount of recent
work has shown that synaptic plasticity also depends on the precise
timingofpresynapticandpostsynapticspikes.Hereweconsideratrip-
let model of spike-timing–dependent plasticity (STDP) that depends
on the interactions of three precisely timed spikes. Triplet STDP has
been shown to describe plasticity experiments that the classical STDP
rule, basedonpairs of spikes, has failed to capture. In the caseof rate-
based patterns, we showa tight correspondence between the triplet
STDP rule and the BCM rule. We analytically demonstrate the selec-
tivity property of the triplet STDP rule for orthogonal inputs and
perform numerical simulations for nonorthogonal inputs. Moreover,
in contrast to BCM, we show that triplet STDP can also induce selec-
tivity for input patterns consisting of higher-order spatiotemporal
correlations, which exist in natural stimuli and have been measured
in thebrain.We showthat this sensitivity tohigher-order correlations
can be used to develop direction and speed selectivity.

Synaptic plasticity depends on the activity of presynaptic and
postsynaptic neurons and is believed to provide the basis for

learning and memory (1, 2). It has been shown that low-frequency
stimulation (1–3 Hz) (3) or stimulation paired with low post-
synaptic depolarization (4) induces synaptic long-term depression
(LTD), whereas synapses undergo long-term potentiation (LTP)
after high-frequency stimulation (100 Hz) (5). Such findings are
consistent with the well-known Bienenstock–Cooper–Munro
(BCM) learning rule (6). This BCMmodel has been shown to elicit
orientation selectivity and other aspects of experience-dependent
cortical plasticity (6, 7). Furthermore, in this model the modifica-
tion threshold between LTP and LTD varies as a function of the
history of postsynaptic activity, a prediction that has been con-
firmed experimentally (8).
Despite its consistency with experimental data and its functional

relevance, the BCM framework is still limited experimentally and
functionally. Experimentally, because the learning rule is expressed
in terms of firing rates, it cannot predict synaptic modification
on the basis of the timing of pre- and postsynaptic spikes (9, 10).
This form of plasticity, called spike-timing–dependent plasticity
(STDP), uses the timing of spike pairs to induce synaptic modifi-
cation (11, 12). The presynaptic spike is required to shortly precede
the postsynaptic spike to elicit LTP, whereas the reverse timing of
pre- and postsynaptic spikes leads to LTD (9, 10). Functionally, the
BCMmodel cannot segregate input patterns that are characterized
by their temporal spiking structure. STDP provides a possible so-
lution, but how STDP relates to BCM remains debated (13–15).
Here, we consider a spike-based learning rule, “the triplet STDP

model” (15, 16), and show that it overcomes those two important
limitations of the BCM rule and thus generalizes the BCM
framework. This triplet model uses sets of three spikes (triplets)—
instead of pairs of spikes as in the case of classical STDP—to

induce potentiation. More precisely, LTP depends on the interval
between the pre- and postsynaptic spikes and on the timing of the
previous postsynaptic spike (Fig. 1A). Furthermore, this triplet
learning rule has been shown to explain a variety of synaptic
plasticity data (17, 18) significantly better than pair-based STDP
(15) (Fig. 1B). Plasticity induced by multiples of spikes has also
been the focus of other studies (19, 20); despite using the same
spike combinations some differences have been observed, most
likely due to the different (extracellular or intracellular) stimula-
tion protocols used in these studies (21).
Computationally, it has been shown that under some rather

crude assumptions—when the input and output neurons have
independent Poisson statistics—the triplet STDP model can be
mapped to the BCM learning rule (16). In this paper, we take
a more biologically plausible approach by incorporating con-
tributions from input–output spiking correlations in inducing
synaptic plasticity. Consistent with results from the BCM theory,
we demonstrate that in the presence of orthogonal rate-based
patterns, the maximally selective fixed points of the weight dy-
namics induced by the triplet rule are stable. Furthermore, we
show that the triplet rule acts as a generalized BCM rule in the
sense that postsynaptic neurons become selective not only to rate-
based patterns of the inputs, but also to patterns differentiated
only by their spiking correlation structure. The mathematical
simplicity of the tripletmodel allowed us to characterize the explicit
dependence of the weight dynamics on higher-order input corre-
lations. We believe this study is of great relevance given the ubiq-
uity of higher-order correlations in the brain (22, 23) and their
relevance for neural coding (24).

Model and Methods
Neuronal Dynamics. We considered a feedforward network with N input
neurons xj(t) as Dirac delta spike trains connected to a single output neuron
through the weights wj(t) and giving rise to the postsynaptic spike train y(t)
(SI Text). The input spike trains had average firing rates ρj(t).

We assumed that the membrane potential of the postsynaptic neuron u(t)
increased with the spike times of each input by the excitatory postsynaptic
potential (EPSP) scaled by the corresponding weight

uðtÞ ¼
XN
k¼1

wkðtÞ
ð∞
0
εðrÞxkðt − rÞdr: [1]

The function ε(r) denoted the EPSP kernel, taken to be a decaying expo-
nential with a membrane time constant of 11 ms. For spatio-temporal
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receptive field development, an inhibitory postsynaptic membrane potential
kernel with a membrane time constant of 20 ms was also used. Postsynaptic
spikes were generated stochastically from the membrane potential, with
a probability density of firing a spike at time t given by the transfer function
〈y(t)〉 = g(u(t)). For simplicity, we used linear neurons where the transfer
function was approximated by

gðuðtÞÞ≈ gðu0Þ þ g′ðu0ÞðuðtÞ−u0Þ; [2]

where the averaged membrane potential was u0. We also used ν = g(u0) to
denote the mean postsynaptic firing rate.

Synaptic Dynamics and Input Selectivity. Following the approach of ref. 25, we
expressed the weight change as a Volterra expansion of both pre- and
postsynaptic spike trains and the two learning rules: pair-based STDP

W2ðΔtÞ ¼
�
Aþ

2 e
−Δt=τþ ; Δt ≥ 0

−A−
2 eΔt=τ− ; Δt < 0;

[3]

where Δt = tpost – tpre denotes the timing difference between a post- and
a presynaptic spike, τ+ is the potentiation time constant, and τ– is the de-
pression time constant and triplet STDP

W3ðΔt1;Δt2Þ ¼ Aþ
3 e

−Δt1=τþe−Δt2=τy ; Δt1 ≥ 0;Δt2 ≥ 0 [4]

and 0 otherwise, where spike triplets (tpre, tpost, t′post) affect synaptic po-
tentiation depending on their timing difference Δt1 = tpost – tpre and Δt2 =
tpost – t′post. The parameters used throughout this paper were those of the
minimal triplet rule (15), i.e., Aþ

2 ¼ 0, A−
2 ¼ − 6:5× 10−3, Aþ

3 ¼ 7:1× 10− 3,
τ+ = 16.8 ms, τ− = 33.7 ms, τy = 114 ms. Assuming slow learning dynamics (25),
we derived Eq. 6 (Results) to describe the weight dynamics (SI Text).

We consideredM input patterns, where pattern i had mean firing rate ρ(i ),
and pairwise and triplet correlation terms A(i ) and B(i ), respectively. Each
input pattern i was associated with a probability pi of occurrence and gave
rise to an average postsynaptic firing rate ν(i ) = wTρ(i ). The selectivity of the
postsynaptic neuron was SelðwÞ ¼ 1− ðPi piwTρðiÞÞ=ðmaxiwTρðiÞÞ (6).

To match the triplet rule to the BCM model, we set A−
2 → A−

2 ν=ρp0 , where
the expectation of the pth power of the postsynaptic firing rate can be
expressed as ν ¼ PM

i¼1piðνðiÞÞp. This quantity was approximated by low-pass
filtering the pth power of the instantaneous postsynaptic firing rate ν(t) = g
(u(t)) with a time constant of τr = 5 s. For all of the calculations in this paper
we took p = 2.

In the case of orthogonal rate-based patterns modeled as independent
Poisson inputs, we proved that the maximally selective fixed points of
the weight dynamics are stable (SI Text). For the development of selec-
tivity in the case of correlation-based patterns, we calculated the fixed
points of maximal selectivity only in the case of a reduced 2D system

(SI Text). In this case, two patterns were presented to the feedforward
network, each consisting of two groups (or pools) of input neurons.
Extensions to more than two correlated patterns are currently possible
only with numerical simulations.

Numerical Simulations with Multiple Patterns. For all numerical simulations
we simulated the triplet learning rule given by Eq. 4 that can also be
expressed in differential form (SI Text). A lower bound of 0 and an upper
bound of 3 were imposed on the weights. The methods for generating
correlated spike trains and the correlation strength used in each figure are
described in the SI Text. The phase plane diagrams for the 2D systems in
Figs. 2D and 3E were plotted using the MATLAB software pplane written by
John Polking (Rice University, Houston, TX).

Results
Triplet STDP Induces Selectivity with Rate-Based Patterns. Orienta-
tion-selective neurons in the primary visual cortex respond with
higher firing rates when a bar is presented in a particular orien-
tation and with lower rates when the bar is presented in a different
orientation (26). This orientation selectivity is learned during
receptive field development, and normal patterns of sensory ex-
perience are important for receptive field maturation (27).
Bienenstock et al. (6) proposed a model for how orientation se-
lectivity, or more generally pattern selectivity, is learned by
a neural network: the BCM learning rule. In the BCM framework,
a randomly chosen input pattern i (of M possible patterns) with
rates ρ(i) is presented with probability pi to a feedforward network
withN inputs. The postsynaptic neuron responds with a firing rate
ν(i) = wTρ(i), where w is the weight vector. The weight change
induced by the BCM rule is proportional to the input firing rate

_w ¼ ϕðν; νÞ ρ [5]
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Fig. 1. The triplet STDP rule. (A) Synaptic depression is induced as in classical
pair-based STDP using spike pairs separated by Δt1 = tpost − tpre < 0. Synaptic
potentiation is induced using triplets of spikes consisting of two postsynaptic
spikes and one presynaptic spike on the basis of the timing interval between
them Δt1 = tpost − tpre > 0 and Δt2 = tpost − t′post > 0. (B) Synaptic change as
a function of the time between pre- and postsynaptic spikes in a protocol
where 60 pairs were presented at different frequencies ρ = 0.1, 20, and 50
Hz. Depression predominated at low frequency, whereas potentiation was
more prevalent at high frequencies. The data points are experiments are
from ref. 17 and the lines were generated with the triplet STDP rule with the
parameters taken from ref. 15.
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Fig. 2. Triplet STDP induces selectivity with rate-based patterns. (A) Evolution
of the weights (Right) for 10 rate-based patterns (uniformly spaced Gaussian
profiles across the 100 inputs) determining the inputs’ firing rates (Left)
presented to a feedforward network. The selected pattern corresponds to
a Gaussian profile with rmin/rmax = 5/55 and σ = 15 Hz. (B) Mean (±SEM) selec-
tivity (for 10 trials) as a function of the Gaussians’ SD σ and for Gaussian profiles
with different ratios of background to peak firing rates rmin/rmax = {0/55, 5/55,
10/55} (solid lines, the triplet STDP rule; dashed lines, the BCM rule). The
Gaussian profiles below illustrate the amount of overlap for two neighboring
Gaussians. Numerical simulations implementing the differential form of the
triplet STDPwere performed inA and B. (C)Weight changeΔw as a function of
postsynaptic activity for three different input firing rates, which determine the
threshold θ for weight modification. Symbols denote numerics and lines ana-
lytics. (D) 2D phase plane analysis for the analytically derived weight equation
with orthogonal rate-based patterns. Nullclines in green and purple intersect
at the equilibria shown in red. (E) An example trajectory for the two weights
attracted to one of the stable nodes in D. (a.u., arbitrary units).
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and scales with a nonlinear function ϕ, which depends not only
on the postsynaptic firing rate ν, but also on the average (over all
patterns) of a nonlinear function of the postsynaptic rate
ν ¼ P

i piðνðiÞÞ2. The nonlinear function ϕmust be negative when
the postsynaptic firing rate is below a given threshold θ—which
itself depends on ν—and positive when it is above it (Fig. 2C).
Interestingly, assuming a linear transfer function, the average

weight change under the triplet rule can be written precisely
as the BCM term plus some perturbation terms due to the input
correlations (SI Text)

_wj ¼ ϕðνÞρj þ
XN
k¼1

ΔAjkwk þ wTΔBjw [6]

where ϕðνÞ ¼ W2νþW3ν2 is the BCM term (Fig. 2C) with W2
and W3 being the overall area under the pair-based and triplet
STDP rules, respectively. ΔA and ΔB describe the contributions
from the input statistics (SI Text). To get depression at low
postsynaptic firing rate and potentiation for higher firing rate,
pairs of spikes must have an overall depressive effect ðW2 < 0Þ
and triplets of spikes must induce potentiation ðW3 > 0Þ, as is the
case for the minimal triplet STDP model considered here (15).
There are two differences between the original BCM rule in Eq.

5 and the triplet model in Eq. 6. First, in the triplet model, the
function ϕ depends only on the temporally averaged postsynaptic
activity ν, whereas in the BCM model, ϕ also depends on the
postsynaptic activity averaged over all patterns, ν. However, if we
redefine the amplitude parameter for pair-based depressionA−

2 as
A−
2 ν=ρ20, where ρ0 is a constant denoting the target rate of the

postsynaptic neuron (15), then both ϕ andΔA in Eq. 6 will depend
on ν:
The second difference is the presence of the two additional

terms (ΔA and ΔB) in Eq. 6. If the inputs are Poisson neurons,
we can rewrite Eq. 6 as

_w ¼ ðϕðν; νÞ1þ ΛÞ ρ; [7]

where 1 denotes the identity matrix and Λ is a diagonal matrix
(SI Text). If we now assume that the patterns are orthogonal,
we can show that the condition _w ¼ 0 in Eq. 7 gives rise to 2N
fixed points. Moreover, the N maximally selective fixed points,
w∗ðnÞ ¼ ð0; . . . ; 0;w∗

n; 0; . . . ; 0Þ, are stable fixed points (Fig. 2D
and E shows an illustration in two dimensions), which is con-
sistent with results of the BCM theory.

The general problem of deriving selectivity analytically has not
yet been solved; however, numerical simulations suggest that the
triplet rule successfully drives selectivity even when the rate-based
inputs are nonorthogonal. We designed an experiment to examine
the level of selectivity as 10 Gaussian input patterns were pre-
sented to the network with varying amounts of overlap (Fig. 2A).
The Gaussian profiles were uniformly spaced across the input
neurons, and we varied the ratio of the background firing rate
(rmin) to the peak firing rate (rmax) of each Gaussian (Fig. 2B, Inset)
and the SD (σ). The Gaussian profiles were closest to orthogonal
for small σ and rmin/rmax = 0, whereas their amount of overlap
increased as either σ or rmin/rmax increased. We computed the
amount of selectivity of the postsynaptic neuron at the end of a
simulation when the weights reached a steady state (Fig. 2A) as
a function of the Gaussians’ SD (σ). We observed that for the case
of nearly orthogonal Gaussian profiles (rmin/rmax = 0/55 and small
σ, Fig. 2B, red lines), the achieved selectivity was close to the
maximally attainable selectivity of 0.9 for 10 orthogonal patterns
(6). The selectivity dropped as σ or rmin/rmax increased (Fig. 2B).
We compared the performance of the triplet to the BCM rule
using the same Gaussian input profiles, while keeping the weights
nonnegative during the entire simulation (Fig. 2B, dashed lines). As
expected, we obtained similar results to those of the triplet rule.

Triplet STDP Induces Selectivity with Correlation-Based Patterns. In
addition to mapping the triplet to the BCM rule for rate-based
patterns, the triplet rule further generalizes the BCM model:
In Eq. 6, ΔA and ΔB depend on the second- and third-order
input correlations, respectively (SI Text); therefore, we expected
triplet STDP to be sensitive to spatiotemporal correlations in
the inputs.
To examine our hypothesis, we presented 10 “correlation-

based” patterns to the feedforward network with 100 inputs. The
correlation-based patterns were determined by different pairwise
and third-order correlations (Fig. 3A), but had the same input
firing rates. Therefore, the response of the postsynaptic neuron
to each pattern was the same, which prevented us from using the
same measure of selectivity as for rate-based patterns. Instead,
selectivity was defined in terms of the selective potentiation of
a group of correlated inputs. Fig. 3B shows a simulation with
purely spatial correlations that had no temporal structure (the
input correlations were due to identical spikes in the neurons).
The weights from one pattern potentiated (inputs 41–50),
whereas the other weights depressed. When we presented
spatiotemporal correlations with an exponentially decaying
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Fig. 3. Triplet STDP induces selectivity with corre-
lation-based patterns. (A) Ten correlation-based
patterns that have the same firing rates, but dif-
ferent correlation strength. (B) Evolution of the
weights illustrates selectivity in the case of 10 cor-
relation-based patterns. The firing rate of each of
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pattern, for which exponentially decaying correla-
tions with a time constant of 5 ms were used. Nu-
merical simulations implementing the differential
form of the triplet STDP were performed in B and
C. (D) The average weight change Δw (for 100
weights) was computed for different initial con-
ditionsw0 after 100 s. The symbols denote numerical
results obtained by simulating the differential form
of the triplet rule, and the lines indicate a semi-
analytic solution by numerically solving Eq. 6 given
an initial condition w0 for 100 s. The average weight change was plotted as a function of the postsynaptic firing rate given by ν = w0ρ, where ρ was the input
firing rate. Here we simulated two networks where the inputs had the same firing rate (10 Hz) and exponentially decaying correlations with a timescale of 10
ms. The correlation peak for the curve in black (SI Text) was half of the correlation peak for the curve in red (γ = 9.09, λ = 9.09); see Inset. (E) 2D (two groups of
inputs) phase plane analysis for correlation-based patterns. Nullclines in green and purple intersect at the unstable fixed points shown in red. Imposing a lower
bound at 0 resulted in stable maximally selective fixed points on the axes shown in black. (F) An example trajectory for the two weights attracted to one of the
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(Eq. 6). Same scenario as C, but for different correlation time constants τc. Correlations were symmetric and exponentially distributed (Inset).
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correlation function, selectivity was also achieved: A set of 10
weights (81–90) characteristic of one pattern potentiated,
whereas the other weights depressed (Fig. 3C).
In the case of correlation-based patterns, the sliding threshold

depends both on the input firing rates and correlations. Although
the additional terms ΔA and ΔB in Eq. 6 prevent us from de-
riving an explicit expression for the modification threshold, we
illustrated the dependence of the threshold on the correlation
strength in Fig. 3D. Here we computed the average weight
change for 100 weights as a function of the postsynaptic firing
rate for two different input correlations: In both cases the firing
rate of the 100 inputs was the same (10 Hz), and the correlation
function was a decaying exponential with a timescale of 10 ms
(Fig. 3D, Inset); however, the two functions differed in the cor-
relation peak (black peak was one-half of the red peak). The
network with the higher correlation peak had a lower modifica-
tion threshold, resulting in a larger potentiation region.
Due to the increased complexity of the system when the inputs

are correlated, we derived the fixed points of maximal selectivity
ðw∗

1; 0Þ and ð0;w∗
2Þ in a small network of two groups of input

neurons and analyzed their stability (SI Text). A lower bound had
to be introduced to prevent the weights from becoming negative
(in agreement with Dale’s law). For the 2D network, we found
that the maximally selective fixed points were always stable. Fig.
3E shows the 2D phase plane, where the two unstable fixed
points (red symbols) drive the weight trajectories toward the axes
where the stable maximally selective fixed points are located
(black symbols). Example weight trajectories are shown in Fig.
3F for one choice of initial condition.
We extended the simulation in Fig. 3C to examine how the

temporal correlation structure of the inputs influences the se-
lective potentiation of synaptic weights corresponding to differ-
ent patterns. We studied a particular example of a symmetric
spatiotemporal correlation: an exponential function decaying in
time, which was the same for all pairs and the same for all triplets
of inputs (SI Text). Therefore, while preserving the correlation
strength, we examined the role of the correlation timescale on
the selective potentiation of synaptic weights (Fig. 3G, Inset).
Increasing the correlation timescale had a similar effect as “di-
luting” the correlation strength. The triplet STDP rule failed to
consistently potentiate the weights of one input pattern, and
often two or three patterns were simultaneously selected (Fig.
3G). Therefore, correlations over broad timescales fail to evoke
selective potentiation of correlation-based input patterns and
could be used to understand the implications of different cor-
relation structures in different brain regions.

Triplet STDP, but Not Pair-Based STDP, Can Induce Selectivity Driven
by Third-Order Correlations.Despite the advantage of triplet STDP
over classical pair-based STDP to capture a large variety of ex-
perimental plasticity data (for instance, frequency dependence)
(17), we asked whether triplet STDP can do computations that
pair-based STDP cannot. Previous studies have shown that for
correlation-based patterns pair-based STDP selects the corre-
lated groups of inputs in the case of static patterns (where the
correlations are always presented to the same group of inputs),
but have not addressed the case of dynamic patterns (28). We
hypothesized that triplet STDP will be able to select patterns
determined by the inputs’ third-order correlations, whereas pair-
based STDP will not be able to distinguish any higher-than-
pairwise correlations.
For this task, we designed a selectivity scenario consisting of

two correlation-based patterns presented to a feedforward net-
work of six input neurons. The inputs in the two patterns con-
sisted of the same firing rates and the same pairwise correlations,
but differed in the presence or absence of third-order correlations
in half of the inputs (Fig. 4A). Pattern 1 consisted of third-order
correlations in inputs 1–3 (denoted as group 1) and no third-order
correlations in inputs 4–6 (denoted as group 2). Pattern 2 con-
sisted of third-order correlations in inputs 4–6 of group 2 and no
third-order correlations in inputs 1–3 of group 1. Next, we pre-
sented each pattern to the network with a fixed probability; for
instance, in Fig. 4A we illustrate a scenario in which, of 10 pattern
presentations, pattern 1 was presented on average eight times
(with probability 0.8). As the probability of presenting pattern 1

varied between 0.5 and 1 (Fig. 4C), we estimated the probability
that pattern 1 wins in 200 simulation runs. An example of pattern
1 winning is illustrated in Fig. 4B, where inputs 1–3 potentiate,
and inputs 4–6 depress to 0. We estimated the probability that
pattern 1 wins for both pair STDP (Fig. 4C, red symbols) and
triplet STDP (Fig. 4C, black symbols). When only pattern 1 was
presented to the network (third-order correlations only in inputs
1–3), almost all simulations resulted in the potentiation of these
inputs under the triplet STDP rule. As the probability of pre-
senting pattern 1 decreased to 0.5, the probability that pattern 1
wins also decreased. However, pair-based STDP was not sensitive
to the third-order input correlations and it treated both patterns
equally, selecting each pattern randomly with equal probability of
1/2 regardless of how frequently pattern 1 was presented.
This result demonstrates that the triplet STDP rule can dis-

tinguish between inputs solely on the basis of the higher-order
correlation structure, which pair-based STDP ignores. As a
result, triplet STDP will be computationally more powerful in
systems where such higher-order correlations have been char-
acterized (22–24) and where firing rates and pairwise correla-
tions are of similar magnitude.
These studies demonstrate that because pair-based STDP uses

only pairs of spikes to induce synaptic plasticity, it is sensitive
only up to pairwise correlations. Thus, we suspected that the
triplet STDP rule, which evokes plasticity using triplets of spikes,
will be sensitive only up to third-order correlations. To confirm
this, we repeated the simulation scenario above for a network of
two groups of five neurons each. In each case, the two input
groups had the same lower-order correlations, but differed in the
presence or absence of higher-order correlations in each group.
We studied correlations with highest order of five. The triplet
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Fig. 4. Triplet STDP, and not pair-based STDP, can distinguish between
patterns determined by third-order correlations. (A) Two patterns were
randomly presented to a feedforward network: The inputs in the two pat-
terns had the same firing rates and the same pairwise correlations. The
patterns differed only by the presence or absence of third-order correlations
in half of the inputs (illustrated with the red triplets of spikes and the col-
ored background). The probability of presenting pattern 1 was varied, e.g.
of 10 pattern presentations, pattern 1 was presented with probability 0.8. (B)
The evolution of the weights under the triplet STDP rule demonstrating an
example where pattern 1 (inputs 1–3) wins. (C) Pattern 1 was presented to
the network at different probabilities and the mean ± SEM of the proba-
bility that pattern 1 wins was computed for 200 simulations runs: triplet
STDP (black symbols) and pair STDP (red symbols). (D) The triplet STDP rule is
sensitive up to third-order correlations, but not to higher-order correlations.
Pattern 1 was always presented and consisted of two groups of five neurons
each. Both groups had the same correlations up to (but not including) order
k (horizontal axis). Group 1 had nonzero ≥kth-order correlations, and group
2 had zero ≥kth-order correlations. The mean ± SEM of the probability that
pattern 1 wins (i.e., all of the weights of group 1 potentiate) was computed
for 200 simulation runs. Dashed lines correspond to chance level.
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rule distinguished correlations up to third-order, but was in-
sensitive to fourth- and fifth-order correlations (Fig. 4D). We
expect that for a learning rule to be sensitive to higher than third-
order correlations, the rule would need to incorporate more than
three spikes, or the neural model would have to be nonlinear.

Spatiotemporal Receptive Field Development. Due to its sensitivity
to higher-order correlations, we expected that the triplet rule
would succeed in driving the development of spatiotemporal
receptive field properties encountered in visual cortex, such as
orientation and direction selectivity. Using the same feedforward
framework we presented eight different patterns consisting of
four bars at different orientations, each moving in one of two
directions, as drawn in Fig. 5A. The input neurons in the network
were organized in a 9 × 9 grid mapping to a single postsynaptic
neuron. Each input spike produced both an EPSP and an IPSP
with a longer time constant (Model and Methods) (29). The syn-
apses in the network selectively refined under the triplet learning
rule, some depressing to the lower bound of zero and others
potentiating maximally to the upper bound (Fig. 5B). At the end
of the simulation the postsynaptic neuron became selective to one
of the bars, as shown in Fig. 5C by the strong weights correspond-
ing to inputs arranged in the bar with a vertical orientation
(although this selectivity was not as robust as for nonmoving bars,
i.e., Fig. 2).
Recently, after training with moving stimuli, Li et al. (30) ob-

served the emergence of direction selectivity in cortical neurons
of visually naive ferrets for the trained directions of motion. Mo-
tivated by this experimental result, we examined the histogram of
the postsynaptic firing rate for all patterns after learning (Fig. 5D).
We found that the postsynaptic neuron respondedwith the highest
firing rate for a bar in given (vertical) orientation and moving in
one direction (left), thus becoming weakly selective to direction.
The receptive field in this scenario also developed a temporal

structure as a result of the spatiotemporal correlations imposed
by the moving bars. To visualize this effect, the weights were
frozen after learning (at a given presentation time) and a test

phase was conducted. The pattern that produced the highest
firing rate for the trained presentation time was tested at a range
of testing presentation times. The best testing presentation time
for which the firing rate was the highest was plotted against the
training presentation time. There was a high correlation between
training presentation time and best tested presentation time,
demonstrating that the neuron became selective to the training
speed (Fig. 5E).
In this scenario the development of direction selectivity relied

on two elements. First, triplet STDP was sensitive to the spatio-
temporal input correlations, and second, we used a modified
postsynaptic potential kernel that included an inhibitory compo-
nent with a longer time constant than for the excitatory current.
This additional IPSP was necessary for obtaining direction se-
lectivity because it made the postsynaptic neuron sensitive to a
temporal derivative of the input currents. A similar assumption
has been used in previous models of direction selectivity driven by
pair-based STDP (29, 31), although in these models the post-
synaptic neuron was usually trained in a single direction. The
temporal sensitivity to obtain direction selectivity can be also
implemented by the order of presentation of the stimuli, instead
of modifying the dynamics of the postsynaptic neuron, as shown
with the BCM rule (32). More robust direction selectivity as
observed biologically (26, 33) can also be obtained by using a
network with recurrent excitatory and inhibitory connections (29),
where the source of inhibition could arise from neocortical
interneurons, such as fast-spiking interneurons. Finally, we note
that the receptive fields we observed depend on the choice of
input statistics (here moving bars), the learning rule, and the
neural model. Receptive fields with more complex structure (such
as Gabor patches) could be developed with inputs of richer spa-
tiotemporal contents, such as natural images.

Discussion
The BCM theory is attractive because it generates selectivity in a
variety of scenarios and has been supported experimentally (6–
8). Synaptic plasticity, however, has been shown to depend on
the precise spike timing (9, 10) classically modeled by pair-based
STDP (11, 12). In this paper, we show that a different spike-
based rule, triplet STDP, known to accurately capture plasticity
experiments (15), exhibits the computational properties of the
BCM rule and is additionally sensitive to higher-order spatio-
temporal input correlations.
We mapped the triplet STDP to the BCM learning rule for

rate-based patterns, determined by the input firing rates. Con-
sistent with the BCM theory, we showed that for nonoverlapping
(orthogonal) patterns, the maximally selective fixed points of
the weight dynamics under triplet STDP are always stable. For
overlapping Gaussian patterns, numerical simulations demon-
strated that the selectivity achieved with the triplet rule is similar
to the selectivity achieved with the BCM rule.
We also showed that the triplet rule can generate selectivity in

the case of correlation-based dynamic patterns, determined solely
by the higher-order input correlations. However, because the rule
uses triplets of spikes to induce plasticity, it is sensitive to higher-
order correlations of maximum order three. This sensitivity led to
the development of direction selectivity and speed selectivity. We
observed that increasing the input correlation timescale dilutes
the correlation strength, which prevents the cooperation of inputs
necessary for the emergence of selectivity. Therefore, our results
make experimental predictions about the types of correlation
structure that lead to selectivity.
Higher-order correlations have not only been measured in the

brain, but also shown to play an important role in visual coding
and representing experimental data (22–24, 34). Higher-order
correlations are ubiquitous in sensory stimuli, such as natural
stimuli and speech signals (35, 36). These correlations have been
previously used in learning rules to extract the independent
components or features in natural images resulting in simple cell
receptive fields as seen in V1 (35, 37). One such rule is the BCM
rule, shown to perform projection pursuit that relies on higher-
order correlations to find the most interesting projection, i.e., the
one that minimizes the Gaussianity of the output distribution
(38, 39) and is closely related to independent component analysis
(ICA). Because of its mapping to the BCM rule, we can interpret
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Fig. 5. Triplet STDP leads to spatiotemporal receptive field development.
(A) Four different bars (horizontal, vertical, and the two diagonals on a
9 × 9-pixels image) were presented as inputs to a feedforward network
with a single postsynaptic neuron; each bar can move in one of two
directions, giving a total of eight patterns. (B) Time evolution of the 81
synaptic weights. (C ) Final weights reordered in a grid corresponding to
the input location. (D) Histogram of the postsynaptic firing rate plotted
after convergence of the weights, at the end of the learning in B. The
firing rates shown resulted from the presentation of the eight different
patterns (four orientations and two directions) averaged over 200 s. (E )
After learning with different training presentation times (5, 7, 10, 12, 17,
20, 22, and 25 ms), the weights were frozen during a testing phase. The
pattern (of the eight patterns) that resulted in the highest firing rate at
the training presentation time was presented again to the network at
different tested presentation times (5, 7, 10, 12, 17, 20, 22, and 25 ms)
while the firing rate was measured. The best tested presentation time for
which the firing rate (averaged over 100 s) was the highest is plotted
against the training presentation time (mean ± SEM over 10 trials).
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the triplet rule as a method for performing such ICA-like com-
putations. In addition to spatial ICA (where the independent
components are obtained from the input statistics at each fixed
time point) (35), the triplet rule can also perform temporal
ICA-like computations, which additionally rely on the temporal
structure of the inputs (40).
Several other models have addressed the issue of spiking-

based implementations of the BCM learning framework (13,
14). Izhikevich and Desai (14), for instance, proposed that by
implementing classical pair-based STDP with nearest-neighbor
spike interactions, the rule can be mapped to the BCM rule.
However, their model failed to capture the frequency de-
pendence of ref. 17 if pairs of spikes are presented at different
frequencies (21) and considered the rather crude approxima-
tion that input and outputs are independent. Although the
model of Senn et al. (13) captured the frequency dependence of
the pairing protocol, it could not reproduce the triplet and
quadruplet experiments of ref. 18 (see ref. 15) and the corre-
spondence to the BCM rule is only approximate (the sliding
threshold depends on the weights and not on the postsynaptic
firing rate as in the BCM framework). Toyoizumi et al. (41)
derived an alternate spike-based learning rule designed to
maximize the information transmission between an ensemble of
inputs and the output of a postsynaptic neuron. Although such
plasticity rules derived from the infomax principle can gener-
alize the BCM theory to spiking neurons and can be reduced
under some assumptions to the triplet STDP rule (42), the
dynamics of these rules are rather complicated to be studied

analytically in contrast to the triplet STDP model. The same
problem arises with biophysical models (43, 44) or with more
elaborate phenomenological models (45), which have primarily
been studied numerically. Therefore, the triplet STDP model is
a good trade-off: It can reproduce a large set of electrophysio-
logical data and yet has a relatively simple formulation so that we
can study it analytically and generalize its functional properties to
networks of different size and input statistics. Additionally, the
triplet STDP model extends the BCM theory to correlation-based
patterns with higher-order correlations, which were not considered
by any of the above models.
The emergence of input selectivity in this work has been

studied with a linear neuron. This analysis can be extended to
consider nonlinear neurons and to relate it to a variant of the
BCM theory that uses nonlinear neurons (38). We expect that
with an appropriate nonlinearity, this variant will lead to
a more robust orientation selectivity for natural image stimuli
(46). Furthermore, because the triplet rule is also sensitive to
the temporal structures of the inputs, we expect it to be able to
capture relevant aspects of the spatiotemporal statistics of
natural scene environments.
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