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Large-scale transcription profiling via direct cDNA sequencing
provides important insights as to how foundation species cope
with increasing climatic extremes predicted under global warming.
Species distributed along a thermal cline, such as the ecologically
important seagrass Zostera marina, provide an opportunity to as-
sess temperature effects on gene expression as a function of their
long-term adaptation to heat stress. We exposed a southern and
northern European population of Zostera marina from contrasting
thermal environments to a realistic heat wave in a common-stress
garden. In a fully crossed experiment, eight cDNA libraries, each
comprising ∼125 000 reads, were obtained during and after a sim-
ulated heat wave, along with nonstressed control treatments. Al-
though gene-expression patterns during stress were similar in
both populations and were dominated by classical heat-shock pro-
teins, transcription profiles diverged after the heat wave. Gene-
expression patterns in southern genotypes returned to control
values immediately, but genotypes from the northern site failed
to recover and revealed the induction of genes involved in protein
degradation, indicating failed metabolic compensation to high
sea-surface temperature. We conclude that the return of gene-
expression patterns during recovery provides critical information
on thermal adaptation in aquatic habitats under climatic stress. As
a unifying concept for ecological genomics, we propose transcrip-
tomic resilience, analogous to ecological resilience, as an impor-
tant measure to predict the tolerance of individuals and hence the
fate of local populations in the face of global warming.

EST-library | extreme event | thermal tolerance

Global climate change is imposing increasing stress on many
organisms. Thus, one central question in ecology and evo-

lution is how species cope with such environmental challenges
(1–4). Global climate change is characterized by both the change
in mean variables and the increase in extreme events such as heat
waves, droughts, and heavy precipitation (5). These extreme
events, in particular, strongly impact ecosystems and associated
species (5, 6). In habitat foundation species (sensu ref. 7), such as
corals, trees, and seagrasses, entire ecosystems depend on the
stability and performance of populations of single species (8).
Therefore, their persistence in the light of climate change is of
particular interest. Among these habitat foundation species are
the 60 or so species of seagrasses (9), monocotyledonous plants
which form the basis of productive marine ecosystems, providing
habitat and nursery grounds for associated species (10). Sea-
grass-based ecosystems alter the physical environment by stabi-
lizing the sediment, nutrient fixation, and current modification
(11), sometimes exceeding the ecosystem services provided by
coral reefs (12). Accelerating global declines of seagrasses
therefore are of major concern (13). Currently, it is unclear how
much ocean warming contributes to seagrass decline, potentially
exacerbating the other known anthropogenic factors that nega-
tively impact seagrass beds such as eutrophication, fishing, me-
chanical destruction, and aquaculture (13).
We focus here on the effects of extreme summer sea-surface

temperature on eelgrass (Zostera marina), a widespread and often

locally dominant seagrass species of the northern hemisphere (9).
Field surveys and experimental studies suggest that high water
temperatures (≥25 °C) during summer heat waves increasingly
threaten seagrass performance and survival in northern European
seagrass beds (14–17). In contrast, genetically divergent Z. marina
populations (18, 19) persist in Mediterranean bays and lagoons
where summer temperatures frequently exceed 26 °C (20), sug-
gesting enhanced thermal tolerance of the high summer temper-
atures in these locations. Together these data emphasize the
importance identifying the physiological and genetic basis of ther-
mal tolerances across species’ distributions (1, 21) and addressing
whether limits to distributions can evolve or represent fundamental
constraints (22).
Global gene-expression profiling is one emerging approach

toward understanding these differences in tolerance, because
thermal tolerance often is reflected in the differential expression
of particular genes under thermal exposure, and such variation
between populations often is indicative of local adaptation (23–
28). Studying populations along a thermal gradient, for example
the northern and southern European seagrass populations, is
particularly instructive, because we can test the basic hypothesis
that differential expression among localities under heat-stress
conditions reflects thermal adaptation (29). Few studies have
applied large-scale gene expression in natural populations along
an environmental gradient (but see refs, 24, 30–32), and we are
unaware of studies using next-generation RNA sequencing tech-
nologies that do not require a priori genomic/transcriptomic in-
formation for digital gene-expression analysis (33, 34). Still fewer
studies have covered the recovery phase after an extreme event
explicitly, and those that have done so have considered only
a short time scale of a few hours to days (e.g., refs. 35–37).We also
are not aware of any study on ecologically important foundation
species, which often are not genetic/genomic model species.
To bridge this gap, we used 454 direct cDNA sequencing (34,

38) for a global assessment of the transcription profiles of heat-
stressed and nonstressed eelgrass (Z. marina) plants from two
contrasting locations. The experimental heat stress mimicked an
actual heat wave that struck Europe in 2003 (Fig. S1) (39) and
led to considerable mortality in northern European seagrass
populations (15, 17). Our goal was to identify putative genes and
molecular functions involved in adaptation to the specific local
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conditions (24, 40), with special attention to a joint analysis of
both the acute response to heat stress and the recovery phase.
Although we expected classical heat-shock proteins (HSPs) and
chaperones to play an essential role during the acute phase of the
heat wave (41–43), longer-term effects on the cellular metabo-
lism, including increasing expression of proteins involved in
protein degradation needed for the turnover of irreversibly
damaged proteins, may be as critical as changes during the stress
event (44, 45). Such assessments are possible only with a more
comprehensive gene-expression analysis that goes beyond avail-
able target-gene approaches (20).

Results
Assembly and Gene Annotation. Our global gene-expression anal-
ysis using leaf tissue covered ∼one-third of all genes of a typical
flowering plant. The number of unique genes was highest in the
larger reference clone assembly with 11,135 gene identifications.
The population-level assemblies identified 8,673/8,579 unique
genes for the northern and southern populations, respectively
(Table S1). We identified tentative unigenes by mapping de
novo-assembled contigs against reference proteomes from Ara-
bidopsis thaliana and Oryza sativa. Annotation success was high,
with 76% and 78% of the Z. marina contigs yielding results with
e-values <10−4 against the A. thaliana proteome for the northern
and southern population, respectively (Table S1). Often, more
than one of the obtained de novo-assembled Z. marina contigs
mapped against the same Arabidopsis-annotated tentative unig-
ene. The underlying causes were evaluated in a small case study
mapping all contigs against a set of 14 nonredundant Z. marina
coding sequences downloaded from the National Center for
Biotechnology Information (NCBI). The observed contig re-
dundancy was caused by a combination of polymorphisms in
gene sequences obtained from multiple genotypes in the librar-
ies, sequencing errors, and contigs that mapped to different,
nonoverlapping sections of reference genes. Interestingly, the
annotation success against the phylogenetically closer mono-
cotyledonous plant species O. sativa (rice) was very similar
(Table S1). We thus continued with A. thaliana as reference
because it is the better-annotated plant species. When very lowly
expressed genes (read count across libraries of ≤2) were elimi-
nated, 5,908 genes remained, corresponding to 104,753–139,020
EST reads for each library (Table S2).

Validation of 454 Transcriptome Sequencing via Quantitative Real-
Time PCR. Expression profiles obtained by direct cDNA 454 se-
quencing were validated using a sample of candidate genes
measured in both populations during the heat wave using an
independent method. We quantified expression levels of 18
genes in replicated genotypes (n = 5) using quantitative real-
time PCR [via the delta-delta cycle threshold (ΔΔCT) method
(46)] and compared these levels with data obtained via direct
cDNA sequencing (via log2 fold-change) (Fig. S2). The two
methods corresponded well, with correlation coefficients r =
0.812 and 0.807 for A. thaliana and O. sativa as reference pro-
teome, respectively (P < 0.001) (Fig. S2).

Multivariate Characterization of Gene-Expression Profiles. We iden-
tified genes that were tentatively differentially expressed (TDE)
in response to the heat treatment by assembling sequence reads
into contigs and then mapping those contigs against A. thaliana
orthologs. We refer here to TDE genes because we do not wish
to draw any conclusions based on particular genes; it is well
known that genes identified in global transcription profiling need
independent verification, for example using quantitative real-
time PCR as described above. TDE genes were determined
separately in all four library pairs (northern/southern population *
during /after heat wave). Of 5,908 genes, 1,872 revealed evidence
for significant changes in expression at least once and were kept

for further analyses (Table S3). TDE genes with ∼40 mean read
counts across libraries revealed fold-changes of ∼2, which we
consider appropriate, although with higher transcript abundance,
smaller fold-changes were detected as significant (Fig. S3). TDE
genes were not interpreted at face value but only based on
functional groupings that emerged from subsequent multivariate
analyses. To identify patterns of similarity across all eight
treatments (north/south * heat stress/control * during/after heat
wave), a principal component analysis (PCA) of scaled expres-
sion profiles explained 41.84% of the variance and revealed
three distinct clusters (Fig. 1). The largest cluster comprised li-
braries obtained from all four control conditions, along with the
previously heat-stressed library of the southern population after
the heat wave. A second well-defined cluster included the heat-
stressed libraries of both populations during the heat wave. As
a third cluster, genes in the northern population upon termina-
tion of the heat wave showed the most divergent expression of all
libraries. The grouping of libraries was supported by analysis of
similarity (ANOSIM) of the scaled expression profiles of TDE
genes (r = 0.7968; P = 0.0057). We also performed a similar
PCA on a smaller subset of TDE genes. When applying a more
stringent filter of ≥10 reads in at least one of the libraries re-
vealing significant expression change, 1,422 of the initial 1,872
TDE genes remained. When analyzed as above, full support of
the three identified clusters in the PCA could be found (ANO-
SIM, r = 0.7112, P = 0.0059).

Identification and Functional Annotation of Indicator Genes. To
identify TDE genes with the largest contribution to the identified
grouping, an indicator gene analysis was conducted. Among the
234 TDE genes identified (all r ≥ 0.9 with above groupings; Table
S4), 17 were specific for group 1 (the “control expression” group),
with six indicating up-regulation and 11 indicating down-regula-
tion of that group (Fig. 2). Group 2 (“during heat stress”) was
supported by the expression of 39 genes, 34 showing group-spe-
cific up-regulation and five showing up-regulation. Group 3 (“di-
vergent northern recovery”) contained 178 genes, 173 showing up-
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Fig. 1. Multivariate grouping of experimental libraries based on the expres-
sion profiles of 1,872 TDE genes using PCA. TDE genes between heat and
control treatment were assessed for four library combinations (southern vs.
northern population; within vs. after heat wave). PCA was performed on the
scaled expression matrix of genes (mean = 0; SD = 1). Populations: northern
(N), southern (S); heat treatment (H), control treatment (C); time points: acute
heat and recovery. Groupings are indicated by color: blue, expression during
control conditions; red, expression during heat stress; green, divergent ex-
pression during early recovery. A list of all TDE genes is found in Table S3.

Franssen et al. PNAS | November 29, 2011 | vol. 108 | no. 48 | 19277

EC
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st02.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/pnas.201107680SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/pnas.201107680SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st03.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/pnas.201107680SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st04.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st04.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107680108/-/DCSupplemental/st03.xls


regulation and five showing down-regulation in comparison with
the remaining groups.
The six different subsets of indicator genes (respective PCA-

based group * up-/down-regulation) were functionally annotated
via MapMan (47). The dominant functional group of up-regu-
lated genes during heat stress was associated with the category
“stress.abiotic.heat” (25% of all annotations) and consisted of
various HSPs (Fig. 3A), which were significantly overrepresented
(Fisher’s exact test; P < 0.001). Further categories were related
to “protein” (22%) (belonging to the differing subcategories
protein targeting, degradation, posttranslational modification,
folding, and amino acid activation) and the categories “RNA.
Regulation of transcription” (6%), “development” (6%), and
“signaling” (6%). In contrast, HSPs played a only minor role
during early recovery of the northern population (Fig. 3B). Here,
genes of different putative functions were abundant. The cate-
gory “protein.degradation” was most frequent (12%) and also
was significantly overrepresented (Fisher’s exact test; P = 0.034).

Other frequently identified genes were associated with categories
“RNA.regulation of transcription” (9%), “protein.postransla-
tional modification” (6%), and “signaling” (7%). The functional
annotation of the remaining four groups of indicator genes can
be found in Fig. S4.

Expression of HSPs During Heat Stress.We further scrutinized gene-
expression patterns during the heat wave in both populations and
searched for TDE genes that were annotated by MapMan cat-
egory “stress.abiotic.heat” or directly with the key term “HSP”;
this search yielded 27 genes. The expression of these 27 genes
during heat stress was highly correlated in the two populations
(r = 0.97; P < 0.001). Of these 27 genes, only two showed dif-
ferential expression between populations during the heat treat-
ment (Fig. S5).

Discussion
In this study we examined a nearly complete transcriptomic re-
sponse to global warming by a foundation species that structures
an entire ecosystem, including a recovery phase after a realistic
heat-wave scenario. The experimental genotypes came from two
contrasting regions in the European thermal cline, the Adriatic
Sea (southern population, Italy), and the Limfjord (northern
population, Denmark).
After systematic data reduction, two salient findings of the

transcription profiling were the similarity of gene expression
during the heat wave and the strong divergence between the two
populations shortly thereafter. During heat stress, in both the
northern and southern population, the transcriptomic syndrome
was dominated by the up-regulation of genes associated with the
MapMan annotation “stress.abiotic.heat” (Fig. 3A), comprised
mainly of classical HSPs. This finding is in line with studies sug-
gesting that the expression of HSPs and molecular chaperones is
correlated with thermotolerance and thermal adaptation (41–43,
48). Most previous studies, however, came from terrestrial
organisms, and the duration of the experiment and the period of
gene induction were, on average, 10-fold shorter (35, 49–53).
Gene-expression studies in aquatic plants that experience more
gradual temperature changes remain largely unexplored (but see
refs. 54 and 55). Aquatic organisms experience smaller extremes
in temperature that are dampened because of the high specific
heat of the aqueous medium (20, 41). Once critical temperatures
are attained, however, these conditions typically last longer in
aquatic habitats, with no possibility for evaporative cooling. This
gradual onset and prolonged duration of critical temperatures
may explain, at least in part, why differences in expression be-
tween the two populations during the heat-stress treatment were
modest, with only two of 27 HSP genes revealing differences in
expression between populations (Fig. S5).
In contrast, both populations showed drastic differences in

gene expression 1 d after termination of the heat wave. The
expression profile of the southern population revealed consid-
erable resilience and rapidly returned to control expression lev-
els, but the transcription profile of the northern population
diverged even further from all control treatments. The func-
tional annotation of up-regulated genes in the northern pop-
ulation suggests a nonadaptive syndrome of failed metabolic
compensation in the northern plants. Accordingly, up-regulated
functions after the heat stress were dominated by “protein.
degradation” and “RNA.regulation of transcription,” suggesting
that proteins were damaged irreversibly and needed to be de-
graded and removed from the cell (56). Similar up-regulation of
protein degradation has been observed in other plant species
under various stressors (44, 45, 57). That the southern popula-
tion returned so rapidly to control levels of gene expression dem-
onstrates that temperatures >26 °C do not represent a funda-
mental limit to the distribution of Z. marina (22), a finding that is
significant for seagrass conservation and ecology (13).

Fig. 2. Heatmap shows cross-correlation by treatment and similarity of
gene-expression profiles of 234 heat-responsive genes that are strongly
correlated (r ≥ 0.9) with the PCA-based clustering (Fig.1). x axis: columns
display the cDNA libraries from the eight treatments, clustered by similarities
among gene-expression profiles; y axis: each row displays the expression
strength of a particular gene in the respective library, clustered by similari-
ties across treatments. Expression strength was scaled for each gene across
libraries (mean = 0; SD = 1). Values are color coded (white: highest expression
strength; red: lowest expression strength). In combining library (treatment)
and gene clustering, the following groups of genes are indicated: blue (1),
control expression; red (2), during heat stress; green (3), divergent early
recovery. Arrows along the gene order indicate up- and down-regulation of
genes. Treatment codes are as in Fig. 1. Functional annotations of the six
different gene sets that display characteristic up- or down-regulation of
a group are shown in Fig. 3 and Fig. S4; a detailed list is given in Table S4.
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The use of next-generation direct cDNA sequencing on the
Roche 454 Titanium platform enabled us to perform global
transcription profiling in a non-model foundation species (34,
38), at the cost of having to pool RNA over individuals within
treatments. The digital expression measurement on cDNA li-
braries of pooled genotypes was verified by quantitative real-time
PCR. The quantitative real-time PCR measurements in 18 genes
used biological replicates (n = 5) sampled in the same experi-
ment (Fig. S2). Because the level of concordance between the
two methods was high (r ∼0.8; P < 0.001), we conclude that the
pooling of genotypes within treatment had only a small effect on
the biological signal.
Upon de novo transcriptome assembly, our actual gene identi-

fication was guided by mapping to orthologs in reference pro-
teomes in well-characterized plant species. Although de novo
transcriptome assemblies have been performed on a variety of
higher plants (e.g., refs. 58–60), currently used assembly software
and assembly strategies are still in need of improvement, particu-
larly when reference genomes are unavailable (61). In these cases,
annotations against reference proteomes of related plant species,
as was used here, are the second-best alternative. A reassuring
result was that gene identification success was largely congruent,
whetherweused amonocotyledonous (O. sativa) or dicotyledonous
(A. thaliana) plant species as reference proteome; the former was
phylogenetically closer than the latter to our target species (62).
One key assumption of our common-stress garden approach is

that the observed differences in gene expression in the two
populations have a heritable basis, at least in part (25, 28, 31). In
allowing a relatively long acclimation period, we tried to mini-
mize the likelihood that our common-stress garden design cap-
tures carry-over effects from the past environments of the
experimental plants. However, environmental and epigenetic
influences during the life history of the studied individuals can-
not be ruled out completely (63, 64).

The transcriptional patterns observed here were in line with
recent phenotypic measurements of photosynthetic performance
using pulse amplitude-modulated fluorometry, in which southern
Z. marina genotypes, in contrast to their northern counterparts,
recovered to control values immediately after the heat wave (65).
Because dramatic differences in gene responses were detectable
only during recovery, we speculate that many previous studies
investigating transcriptomic responses to acute stress missed crit-
ical gene-expression patterns. We posit that evolutionary ecology
experiments addressing the physiological response among di-
vergent populations should fulfill the following criteria: (i) in-
clusion of a reasonable acclimation phase; (ii) application of
realistic stress scenarios including rate of increase, intensities,
duration, and recovery; and (iii) inclusion of nonclassical stress
genes to detect general deviation from normal cell homeostasis
compared with a control treatment.
Because acute heat-stress responses were surprisingly simi-

lar among genotypes from two locations with widely diverging
thermal conditions, we suggest that the transcriptomic patterns
during recovery may be a better predictor as to how populations
across latitudinal clines are adapted to thermal stress. As a uni-
fying concept for ecological genomics, we propose transcriptomic
resilience, describing the return to control levels of gene expres-
sion, analogous to ecological resilience, which describes the re-
turn of species abundance and performance to predisturbance
conditions (7, 66).

Methods
Study Species and Experimental Setup. Eelgrass (Z. marina) plants were col-
lected from two different populations located in Doverodde, Denmark
(Limfjord, 56°43.07′N 8°28.45′E, hereafter “north”) and Gabicce Mare, Italy
(Adriatic Sea, 43°57.97′N 12° 45.86′E, hereafter “south”) in early spring 2008
and transported within 48 h to the laboratory. At each location ∼30 leaf
shoots were sampled from each of ∼15 sampling spots to collect several
different genotypes that were identified via microsatellite genotyping (20).
Plants were planted in a mesocosm facility at the University of Münster

A

B

Fig. 3. Functional annotation of gene
sets showing up-regulation in a specific
group of libraries in comparison with
the remaining groups. Putative func-
tions of (A) up-regulated genes in group
2, during heat stress (5.6% of genes not
annotated) and (B) up-regulated genes
in group 3, divergent early recovery
(24.1% of genes not annotated). Genes
were annotated with MapMan catego-
ries and are presented via term clouds;
the annotation frequency is proportional
to word size. Gene categories that are
significantly enriched (Fisher’s exact test)
are marked (*P ≤ 0.05; ***P ≤ 0.001).
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(Münster, Germany) that has been described in detail elsewhere (20). In
brief, the experimental set-up consisted of two temperature-controlled
flumes, each with six large 1-m3 tanks filled with artificial seawater and
silicate sediments to a height of 10 cm. Plants were grown at 31 practical
salinity units and under light-saturated conditions (∼400 μmol photons s−1

m−2). Plants were allowed to acclimatize for ∼30 d while the temperature
was raised slowly from 14 °C (collecting temperature) to 19 °C, the control
temperature during the heat-wave treatment (Fig. S1).

Heat-Wave Simulation. The heat-wave simulation followed a common-stress
garden design. Half of the experimental units were kept at a water tem-
perature of 19 °C after acclimation, and the other half was subjected to a
simulated heat wave, where water temperature was increased by 1.5 °C/d until
it reached 26 °C. This temperature was maintained for 3 wk, followed by a
temperature decrease of 1.5 °C/d until the water temperature reached 19 °C
again (Fig. S1). The temperature profile closely followed the summer heat
wave of 2003 (17).

RNA Preparation, 454 Library Construction, and Sequencing. RNA samples were
taken from eight conditions: the northern vs. southern population, under
heat stress vs. control conditions, with samples taken at two time points
during the experiment, in themiddle of the heat wave, and 1 d after return to
control values (Fig. S1). For RNA extraction an ∼2-cm-long section from a
young, growing leaf was cut from a randomly chosen plant from each
condition and replicate, cleaned, frozen by dipping into liquid nitrogen, and
immediately ground in a ball mill, followed by RNA extraction with the
Invisorb RNA plant HTS 96 extraction kit (Invitek). For each condition RNA
samples were pooled from six to eight genotypes. cDNA libraries were
constructed using the Clontech SMART cDNA synthesis kit (Invitrogen). First-
strand synthesis was performed with ∼0.5 μg total RNA for first-strand
synthesis via anchored oligo(dT) priming followed by 15 amplification cycles.
Sequencing libraries were constructed based on 3 μg of obtained cDNA.
Every library was sequenced on a quarter of a slide using physical library sep-
aration with the 454 Genome Sequencer FLX using the Titanium chemistry
(Roche and 454 Life Sciences).

EST Preprocessing and de Novo Transcriptome Assembly. After removal of the
adaptor sequence, EST reads were quality trimmed with standard settings
of the 454 Genome Sequencer FLX proprietary software (Roche) software.
These raw sequence data for the eight generated libraries were deposited
at the Sequence Read Archive (accession no. SRP007220). cDNA primer
contaminations introduced by the SMART cDNA synthesis kit (Invitrogen)
were identified by CROSSMATCH (http://www.phrap.org/) using the parameters
minmatch 10 and minscore 15.

Three different subsets of 454 Genome Sequencer ESTs originating from
different Z. marina populations were assembled independently into contigs
to minimize polymorphisms derived from multiple divergent genotypes for
de novo assembly. Subsequently they were combined in a final mapping
assembly of the contigs of the northern and the southern population as-
semblies against the assembled contigs with the sequence reads obtained
from a single Z. marina clone (Falkenstein, Germany) used as a backbone. De
novo assembly was performed using MIRA (version 3.0.3, http://sourceforge.
net/projects/mira-assembler/files/) using standard parameter settings in the
accurate assembly mode (67). Note that the ESTs for the third assembly came
from a single clone (Falkenstein, Germany, Baltic Sea, 54°24′N 10°12′E),
comprised of 866,838 Roche 454 Titanium EST reads (NCBI Sequence Read
Archive, accession no. SRA002573) (Table S1). The final assembly was created
by mapping the contigs obtained from the two population assemblies
against those from the single-clone assembly. For the second-stage assem-
bly, MIRA was used in the mapping and accurate mode, also allowing the
creation of new contigs.

Quantification and Verification of Library-Specific Gene-Expression Profiles.
Differential gene expression for each of the eight experimental conditions
was assessed by mapping cleaned sequence reads first to the final tran-
scriptome assembly with BLASTN (68) and then identifying tentative unigenes
via annotation using the A. thaliana proteome, using TAIR9 (69). We also
mapped against rice O. sativa (Michigan State University Rice Annotation
Project Release 6.0) using BLASTX. Our approach was verified via quantita-
tive real-time PCR for a set of 18 genes. Log2 fold-changes between read
counts of heat and control treatment and ΔΔCT values (20) for both pop-
ulations in the middle of the heat wave were compared (Fig. S2).

Identification of TDE Genes. Genes TDE in response to the heat treatment
were identified via bootstrapping for all four pairwise comparisons of
control vs. heat-stress treatment. A null model was created under the hy-
pothesis that gene expression is not different in heat-stress and control
treatment. Sequence reads were resampled with replacement from the
expressed sequence read pool of the control library. For each of the 10,000
bootstrap replicates, reads were sampled until the number of reads in the
respective heat-stress library was attained. For each gene, the read count of
the heat-treated library thenwas comparedwith the read distribution of the
created null model to calculate empirical P values. P values were calculated
with subsequent one-sided tests of the area outside the null distribution
when assuming higher as well as lower gene expression. To correct for
multiple testing, the false discovery rate (FDR) of α = 0.01 was used (70);
thus we expect only 1% of genes to be false positives per pairwise com-
parison and roughly 4% to be false positives on a per gene basis. At low
absolute expression levels of a given gene (∼40 reads per library compari-
son), a log2 fold-change of ∼2 can be detected (Fig. S3). Most indicator
genes (215/234) identified in the analysis described below, on which our
data interpretation relies, have absolute transcript abundances of ≥10
reads in at least one of the libraries involved (Fig. S3).

Multivariate Analysis of Gene-Expression Profiles. The profiles of all TDE genes
were subjected to multivariate analysis to detect similarities and differences
in the transcriptomic response to treatments. Expression profiles were nor-
malized for differences in library sizes (Table S2) (71) and scaled across all eight
libraries to a mean of zero and an SD of one. PCA was performed with the R
package VEGAN [(http://cran.r-project.org/web/packages/vegan/index.html)
version 1.17–6].The resulting groups then were tested with ANOSIM imple-
mented into VEGAN. Euclidian distances were used to calculate similarities
between libraries, with P values calculated based on 10,000 permutations
(72). The identification of genes that were indicative for the identified
grouping of libraries followed an indicator value analysis (73), calculating
a correlation index for each gene between the given grouping and the ex-
pression values across the libraries. The method is implemented in the R
package indicspecies (version 1.5.1). Subsets of indicator genes were func-
tionally annotated via MapMan (47). Abundant functional groups within
those subsets of genes were tested formally for overrepresentation against
the entire set of functionally annotated indicator genes using one-sided
Fisher’s exact test.
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