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Abstract
We investigate asymptotic properties of a family of sufficient dimension reduction estimators
when the number of predictors p diverges to infinity with the sample size. We adopt a general
formulation of dimension reduction estimation through least squares regression of a set of
transformations of the response. This formulation allows us to establish the consistency of
reduction projection estimation. We then introduce the SCAD max penalty, along with a
difference convex optimization algorithm, to achieve variable selection. We show that the
penalized estimator selects all truly relevant predictors and excludes all irrelevant ones with
probability approaching one, meanwhile it maintains consistent reduction basis estimation for
relevant predictors. Our work differs from most model-based selection methods in that it does not
require a traditional model, and it extends existing sufficient dimension reduction and model-free
variable selection approaches from the fixed p scenario to a diverging p.
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1. Introduction
As data with a large number of predictors prevail in many scientific fields such as
computational biology, dimension reduction is becoming central to high-dimensional
regression analysis of these datasets. Among many dimension reduction methodologies,
research in sufficient dimension reduction (SDR), pioneered by Li (1991) and formulated by
Cook (1998), has gained considerable interest in recent years. It aims to reduce the predictor
dimension by a linear projection of the predictor vector while preserving full regression
information. For high-dimensional data, it is often further believed that only a subset of
predictors suffice to fully characterize response-predictor relation. Toward this end,
simultaneous variable selection along with dimension reduction projection can be achieved
(Ni, Cook, and Tsai (2005), Ni et al. (2008), Zhou and He (2008), Bondell and Li (2009). In
this article we investigate asymptotic properties of a family of sufficient dimension
reduction methods, in terms of both reduction projection estimation and variable selection,
while we allow the number of predictors p to diverge as the sample size n approaches
infinity.

Specifically, for regression of a univariate response Y given a predictor vector X = (X1, …,
Xp)T ∈ IRp×1, SDR seeks a minimum subspace , with a p × d basis matrix , such that Y ⫫
X|  X. Under minor conditions (Cook (1996), Yin, Li, and Cook (2008)), such a subspace
uniquely exists and is a parsimonious population parameter that contains all regression
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information of Y|X. It is named the central subspace, and is denoted by  (Cook (1998)).
Since the seminal sliced inverse regression (SIR) proposed by Li (1991), there have been a
variety of methods proposed to estimate  including, for instance, sliced average variance
estimation (Cook and Weisberg (1991)), directional regression (Li and Wang (2007)),
constructive estimation (Xia (2007)), and sliced regression (Wang and Xia (2008)). Among
those methods, SIR is perhaps the most commonly used one for estimating , and there
have been a number of elaborations on the original methodology of SIR, see for instance,
Fung et al. (2002), Yin and Cook (2002), and Cook and Ni (2006). The asymptotic
properties of SIR were studied in Li (1991), Hsing and Carroll (1992), Zhu and Ng (1995),
and Zhu and Fang (1996). In all those cases, however, the predictor dimension p is treated as
fixed. Toward variable selection, Ni, Cook, and Tsai (2005) introduced the lasso type of
penalty to SIR to select important predictors along with dimension reduction basis
estimation. Zhou and He (2008) imposed the lasso penalty along with thresholding for
variable filtering. Ni et al. (2008) and Bondell and Li (2009) generalized the penalized
estimation idea to a family of inverse regression estimators and obtained asymptotic
properties in terms of consistency in variable selection. Again, p is fixed in those studies and
extension to a diverging p is by no means trivial. Recently, there has been work on the
diverging p case in the context of sufficient dimension reduction: Zhu, Miao, and Peng
(2006) studied the asymptotic properties of SIR as p diverges, but their result is for SIR
only, and variable selection is not studied at all; Zhu and Zhu (2009a) investigated weighted
partial least squares with a diverging p, but again variable selection is not tackled; Zhu and
Zhu (2009b) studied variable selection with a diverging number of predictors through
inverse regression, but focused on single-index models only. By contrast, we establish
asymptotic properties for a family of inverse regression estimators that includes SIR, study
simultaneous dimension reduction and variable selection with a particular emphasis on the
latter, and encompass more general model forms.

More specifically, we employ a general formulation of a family of SDR estimators that
estimate the central subspace through least squares regression of a set of transformations of
the response given the original predictors. This formulation can be viewed as a
generalization of the original sliced inverse regression, and includes SIR as a special case in
certain situations. Based on this formulation, we investigate the asymptotic properties of our
dimension reduction basis estimator while we allow p = pn to increase with the sample size
n. Under reasonable regularity conditions, we find the rate of convergence of the estimator

to be .

In terms of variable selection, we adopt the SCAD type penalty that was first proposed by
Fan and Li (2001), then further developed in Fan and Li (2002), Li and Liang (2008), among
others, and combine it with our dimension reduction estimator. It is important to note that
exclusion of a predictor in our context of reduction basis estimation requires an entire row of
the corresponding basis matrix estimator be zero simultaneously. For this purpose, we
employ the SCAD max penalty. We also note that the SDR estimators generally impose no
assumption on the conditional distribution Y|X and thus require no traditional models. As a
consequence, the penalized SDR estimators achieve variable selection in a model-free
fashion. This characteristic distinguishes our result of variable selection with a diverging p
from the existing literature, e.g., Fan and Peng (2004), where a parametric model and most
often a homoscedastic linear model is assumed. We employ the pseudo-likelihood approach
in our proof since no parametric model is imposed. Under suitable conditions, we show that
our estimator achieves consistency in variable selection, i.e., the estimator selects all truly
relevant predictors with probability approaching one. In addition, the basis estimator of all
the relevant predictors is consistent with a -rate.
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The rest of the article is organized as follows. In Section 2, we review a family of SDR
estimators and study the convergence as p diverges. In Section 3, we propose the SCAD
regularized SDR estimator for variable selection, and investigate its asymptotics with a
diverging p in terms of variable selection consistency and basis estimation consistency. We
also propose a difference convex algorithm for optimization. We present numerical studies
in Section 4, and conclude the paper with a discussion in Section 5. Some technical proofs
are given in the Appendix.

2. Dimension Reduction Basis Estimation
2.1. Dimension reduction via response transformation

Throughout, we assume the central subspace  exists and its dimension d = dim( ) is
fixed when p → ∞. This assures that there is a well-defined population parameter as the
target of our dimension reduction estimation.

By marginal standardization, if necessary, we assume E(X) = 0 and Var (Xj) = 1, j = 1, …, p.
Let Σ = Cov (X), and define the first moment inverse mean function φ(Y) = Σ−1E(X|Y).
Sliced inverse regression is based upon the key observation that, if the linearity condition is
satisfied, which states that E(X|  X) is a linear function of  X with  denoting a basis of

, then φ(Y) ∈ . The linearity condition is satisfied when X is multivariate normally
distributed. Furthermore, Hall and Li (1993) proved that linear combinations of the
predictors are approximately normally distributed when p → ∞ as n → ∞, which assures
that the linearity condition is satisfied asymptotically. It is also interesting to note that this
condition is imposed only on the marginal distribution of X, rather than the conditional
distribution Y|X. For this reason, SIR is viewed as a model-free estimator of the central
subspace.

For any function f(Y) satisfying E{f(Y)}= 0, following Yin and Cook (2002) one can show
that

(2.1)

under the linearity condition. Consequently, one can choose a series of transformation
functions of the response variable, f1(Y), …, fh(Y), where h is a pre-specified number, and
obtain the least squares estimates of regressing fk(Y) on X, i.e.,

(2.2)

Write , then Span(B0) ⊆  by (2.1). By following the usual
protocol in the literature of sufficient dimension reduction, we take one step further by
assuming the coverage condition Span(B0) =  whenever Span(B0) ⊆ . This condition
often holds in practice; see Cook and Ni (2006) for a discussion.

There are various choices for the transformation functions fk(Y). The original SIR
corresponds to choosing the slice indicator function fk(Y) = 1 if Y is in slice k, and 0
otherwise, where the response Y is assumed to take h distinctive values {1, …, h}. Since
E{fk(Y)φ(Y)} = P (Y = k)Σ−1E(X|Y = k), k = 1, …, h, we have Span(β1, …, βh) =
Σ−1Span(E(X|Y = 1), …, E(X|Y = h)), and thus it is equivalent to the traditional SIR
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estimator. Fung et al. (2002) suggested choosing the normalized B-spline basis functions for
fk(Y); Yin and Cook (2002) suggested the normalized polynomial transformation fk(Y) = Yk

up to power h; Cook and Ni (2006) recommended choosing fk(Y) = Y if Y is in slice k, and 0
otherwise. We do not address which choice of the transformation function is the “best”; we
focus on the asymptotic properties of this family of estimators in general. Moreover, the
number of the transformation functions h is a tuning parameter, and although its value
matters, it is generally recognized that methods based on inverse means alone are not overly
sensitive to the choice of h as long as h > d (Li (1991, Remark 4.3), Cook and Ni (2006, p.
71)). Since h usually takes a pre-specified small value in practice, we treat h(> d) as fixed in
our asymptotic investigations.

Throughout, we assume that we have n i.i.d. realizations of the data, {(Xi, Yi), i = 1, …, n},
and h pre-specified transformation functions f1(·), …, fh(·) whose forms do not depend on
the data. We then solve the least squares optimization

(2.3)

We construct the p × h matrix B̂ = (β ̂1, …, β ̂h), obtain the first d eigenvectors (υ̂1, …, υ̂d) of
the matrix h−1B̂B̂T, and take Span(υ̂1, …, υ̂d) as an estimate of the targeted central subspace.
The structure dimension d = dim( ) of the central subspace can be estimated by an
asymptotic test (Li (1991)), a permutation test (Cook and Yin (2001)), or an information
criterion (Zhu, Miao, and Peng (2006)), and as such d is treated as known in our
investigation of reduction basis estimation.

2.2. Asymptotic properties
We now study the asymptotic properties of our estimator of the central subspace. We begin
with a lemma that is a key for our main asymptotic result in Theorem 1.

Lemma 1—Suppose Conditions (i), (ii), and (iii) of Appendix A hold. When p(log n)/n →
0, there exists a constant a*> 0 such that

Proof of Lemma 1—For n i.i.d. standard normal errors εi, i = 1, …, n, we construct
artificial data {(Xi, Ỹi), i = 1, …, n}, where  for some fixed β̃ ∈ IRp. The desired
result follows by applying Lemma 3.1 of Portnoy (1984) with ψ(t) = t.

For any function f(·) satisfying that E{f(Y)} = 0, let

(2.4)
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(2.5)

Theorem 1—Suppose Conditions (i)–(vii) of Appendix A hold. If p(log n)/n → 0, β ̂ is a

consistent estimator for β0 with .

The proof of this theorem is given in Appendix B. It serves as a basis for our consistency
result for estimating the central subspace.

Corollary 1—Consider a set of response transformation functions, {f1(·), …, fh(·)}, each of
which satisfies Conditions (vi) and (vii) of Appendix A. Under Conditions (i)–(v) of

Appendix A, we have , B0 and B̂ as at (2.2) and (2.3).

Proof of Corollary 1—Note first that we assume h is finite and fixed. Consequently ||B0||
= O(1). Theorem 1implies that the Frobenius norm of B̂ − B0 satisfies

. Therefore,

Remark 1—Zhu, Miao, and Peng (2006) studied the asymptotics of the original SIR
estimator when p diverges. In their study, they fixed the number of sample points in each
slice while letting the number of slices h → ∞ as n → ∞. In our study, this notion of fixed
number of observations per slice no longer applies for a choice of transformation functions
other than the indicator function. Besides, since in practice h is pre-determined, we choose
to treat h as fixed in our asymptotic investigations. For these reasons, our consistency rate is
not directly comparable to that obtained by Zhu, Miao, and Peng (2006) for the original SIR,
while our result goes beyond SIR and applies to the entire family of SDR estimators based
on the first inverse moment φ(Y), as discussed in Section 2.1.

We can further bound estimation error of the first d eigenvectors of h−1B̂B̂T when the first d
eigenvalues of  are distinct. Let , Â = h−1B̂B̂T, and E = Â − A0.
Denote the eigenvalues and eigenvectors of A0 by {λj, υj}, j = 1, …, p.

Theorem 2—Suppose λ1, …, λd are unique. Under the conditions of Corollary 1, the
estimated eigenvectors υ̂js satisfy
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Proof of Theorem 2—For j = 1, …, d, we rearrange the order of the first d elements and
write Qj = (υj, υj+1, …, υd, υ1, υ2, …, υj−1, υd+1, υd+2, …, υp) = (υj, Qj2). Then

. Next write

 and aj = minj≠i |λi − λj| > 0. Note that  due to
Corollary 1. By applying Theorem 8.1.12 of Golub and van Loan (1996), there exists pj ∈

IRp−1 satisfying ||pj|| ≤ 4||εj||/aj such that  is a unit eigenvector of

Â = A0+E. Furthermore, . Since

, the result follows.

3. Variable Selection
3.1. Regularization via the SCAD max penalty

When the number of predictors p is large in a regression analysis, regularization is often
employed to add numerical stability, to improve statistical robustness, and to achieve
variable selection. In the context of model-based variable selection, there has been an
extensive literature on model selection via regularization for the Lasso (Tibshirani (1996)),
the SCAD (Fan and Li (2001)), the nonnegative garrote (Breiman (1995)), and the adaptive
Lasso (Zou (2006)), among many others. In particular, Fan and Li (2001) first demonstrated
that the SCAD penalty possesses the oracle properties in the sense that the regularized
estimator correctly selects predictors with nonzero coefficients in the model, excludes those
with zero coefficients with probability approaching one, and estimates those nonzero
coefficients with the asymptotic distribution they would have if all the zero coefficients were
known in advance. Fan and Peng (2004) established these properties of the SCAD for linear
models, and Zhu and Zhu (2009b) employed the SCAD for variable selection in single-index
models, both with a diverging p. Here we adopt the SCAD max penalty for the purpose of
variable selection when p tends to infinity, but we do not impose any parametric or semi-
parametric models.

Before pursuing variable selection in the framework of sufficient dimension reduction, we
first note that the notions of relevant and irrelevant variables need to be clearly defined,
since in SDR estimation no parametric model is imposed. Toward that end, Cook (2004) and
Bondell and Li (2009) showed that, as long as the central subspace  exists, there exists a

unique partition of the predictors , X+ ∈ IRq×1, and X− ∈ IR(p−q)×1, such that

(3.1)

Thus the regression of Y on X only relies on the set of predictors X+, which we call the
relevant variables, while X− is irrelevant. Without loss of generality, we assume that X+
consists of the first q predictors. Moreover we assume the number of relevant predictors q is
fixed as p → ∞. That is, we regard all regression information as concentrated on a fixed
number of predictors with the rest of additional variables as nuisance information. We think
this condition reasonable, based upon the belief that, in many real applications, increasing
the number of predictors after a certain stage does not necessarily induce an increasing
amount of useful information. We then have a well-defined population target for the purpose
of variable selection in the absence of a traditional model.
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Predictor partition as in (3.1) can be directly connected with the basis  of the central
subspace; that is, the last p − q rows of  must all be zeros (Cook and Ni (2006, Prop. 1)). It
also leads to the following lemma in our context of least squares estimation of the central
subspace.

Lemma 2—For β0 at (2.4), we have  at (3.1), where

 when the linearity condition is satisfied.

Proof of Lemma 2—Under the linearity condition, we have β0 ∈  so that β0 can be
written as a linear combination of the columns of the central subspace basis . Since the last
p − q rows of  must all be zeros, the result follows.

The class of SDR estimators studied in Section 2 yield linear combinations of all the original
predictors and thus perform no variable selection. We introduce a non-concave penalty to
achieve selection of relevant predictors. For a set of transformation functions, f1, …, fh,
define the negative pseudo loglikelihood function

Applying the max-type penalty, we propose to minimize

(3.2)

over B = (β1, …, βh), where βjk is the j-th element of βk ∈ IRp×1, j = 1, …, p, k = 1, …, h.
Here pλ (θ) is a general penalty function indexed by a regularization parameter λ. For now
we simply assume pλ is symmetric, singular at the origin, and non-decreasing and concave
on [0, ∞). Later in this section, we introduce a specific non-concave form, the SCAD
penalty function, for pλ (θ).

Two observations are noteworthy here. First, the minimization in (3.2) is over the entire p×h
matrix B, since the penalty is imposed on the maximum over each row of B. This is different
from the dimension reduction basis estimation without regularization as discussed in Section
2.1, where the minimization is carried over each column βk of B individually. Second,
variable selection achieved through (3.2) requires no dimension reduction basis estimation
as a preprocessing step, and thus requires no knowledge of the structural dimension d either.
For this reason, the penalty term in (3.2) has ph parameters rather than pd parameters.
Selection is done essentially in one step instead of two steps, which to some degree
mitigates the dependency of variable selection on the accuracy of reduction basis estimation,
and can be particularly useful if model-free variable selection is the sole purpose of the
study.

With a slight abuse of notation, we denote the minimizer of (3.2) as B̂ = (β ^1, …, β ̂h), and

denote the minimizer of the corresponding population version  as
. We use  to denote the submatrix of B̂ that consists of its
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first q rows, and similarly denote the first q rows of B0 as . We next aim to

show that  as n → ∞, and that the j-th element β ̂jk of β ̂k satisfies P(β ̂jk = 0) → 1
for j > q, k = 1, …, h.

3.2. Asymptotic properties
Let λ = λn. For a general non-concave penalty function pλn(·), let

 and , where  is the j-th

element of , and  and  denote the first and second order derivative, respectively.

Lemma 3—Suppose X satisfies Conditions (iv) and (v), and that each of the response
transformation functions f1(·), …, fh(·), satisfies Conditions (vi) and (vii) in Appendix A. If p
= o(n1/4), and the penalty function pλn(·) has  and bn = o(1), then there exists a

local minimizer B̂ = (β ̂1, …, β ̂h) of Q(B) in (3.2) such that , k =
1, 2, …, h.

Lemma 4—Suppose that each of the response transformation functions, f1(·), …, fh(·),
satisfies Conditions (vi) and (vii) in Appendix A, and that pλn satisfies

. If λn → 0, , and p = o(n1/4) as n → ∞, then for

any given q × h submatrix B+ = (β1+, …, βh+) satisfying , k = 1, …,

h, and any (p − q) × h submatrix B− = (β1−, …, βh−) satisfying that  for a
constant C, k = 1, …, h, with probability tending to one,

The proofs of these two lemmas are given in Appendix B.

Theorem 3—Under the conditions of Lemmas 3 and 4, with probability tending to one, the
-consistent local minimizer of Q(B) satisfies

i. β ̂jk = 0 for j > q and 1 ≤ k ≤ h;

ii. β ̂jk for 1 ≤ j ≤ q and 1 ≤ k ≤ h have the same asymptotic distribution as the
minimizers of

over B+ = (β1+, …, βh+), where βjk is the j-th element of βk+ ∈ IRq×1, j = 1, …, q, k
= 1, …, h, and Xi+ is the i-th observation of X+.

Proof of Theorem 3—By Lemma 3, there exists a -consistent local minimizer B̂ of

Q(B). Part (1) holds by Lemma 4, that is,  with probability tending to one.
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Consequently, with probability tending to one, we are in effect minimizing Q ̃(·). Then part
(2) follows.

Remark 2—The asymptotic distributional result is given in a way similar to that in Knight
and Fu (2000). For a non-concave max penalty, in general, the explicit asymptotic normality
result, as in Fan and Li (2001) and Fan and Peng (2004), is not available because there may

exist a tie  for some 1 ≤ j ≤ q and k ≠ k′. For some specific non-concave max
penalty, the asymptotic normality result is possible, as we discuss next.

We introduce a specific form of a non-concave penalty function, the SCAD penalty first
proposed by Fan and Li (2001). Define a penalty function pλn(θ) through its first derivative

(3.3)

where a is an additional parameter. It is easy to see that this function satisfies the non-
concave penalty condition. Note that pλn(θ) flattens out for |θ| > aλn. Consequently, an = 0

and bn = 0 as long as . This feature enables us to refine the result of
Theorem 3, and leads to the following corollary.

Corollary 2—For the SCAD penalty, an = 0 and bn = 0 when .
Then under the conditions of Lemmas 3 and 4, with probability tending to one, the -
consistent local minimizer of Q(B) satisfies

i. β ̂jk = 0 for j > q and 1 ≤ k ≤ h;

ii.
 for k =1, …, h, where Σ+ =Cov (X+) and

Σk+ = Var {fk(Y)X+}.

Proof of Corollary 2—It is straightforward to verify that the SCAD penalty satisfies all
the penalty-related conditions in Theorem 3. Since β ̂k+, k = 1, …, h, are consistent, and

 asymptotically, we are optimizing Q ̃ (B+) in a neighborhood of
(β1+, …, βh+) satisfying max1≤k≤h |βjk| > aλ for j = 1, …, q. Correspondingly, pλn (max1≤k≤h

|βjk|) reduces to , which does not depend on βk+, k = 1, …, h. As such,

is the same as

The desired result follows.
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Remark 3—Corollary 2 is a special case of Theorem 3 since the SCAD penalty function is
a special case of the general non-concave penalty function. This refined result is possible
because that the SCAD function is flat when its argument is larger than aλ in magnitude.
Consequently there is no asymptotic bias in using B̂+ to estimate B+. This is in a similar
spirit as the result of Theorem 2 of Fan and Li (2001).

Remark 4—We obtain the -rate for dimension reduction basis estimation after variable
selection because the number of truly relevant predictors q is assumed fixed. Consequently,
with the SCAD regularized estimator selecting all truly relevant predictors and excluding all
irrelevant ones with probability one, the basis estimation based on those relevant predictors
achieves a -rate.

Remark 5—Our results differ from those of Fan and Li (2001) and Fan and Peng (2004), in
that they require a parametric linear model and all results hinge on the model being correctly
specified. By contrast, our approach does not require a traditional model, and our technical
proofs are based on the pseudo-likelihood function.

3.3. Optimization algorithm
We propose an algorithm to minimize Q(B) in (3.2). Note that the SCAD type penalty is
non-concave, and thus it requires some specially designed optimization algorithm. In the
literature, there exist a number of such algorithms, including local quadratic approximation
(Fan and Li (2001)), the minorize-maximize algorithm (Hunter and Li (2005)), local linear
approximation (Zou and Li (2008)), and the difference convex algorithm (DC, An and Tao
(1997) Wu and Liu (2009). For our problem, we employ the DC algorithm, that solves a
non-concave optimization problem via a sequence of convex optimizations by decomposing
the non-concave objective function as the difference of two convex functions.

For the SCAD penalty, we note that its first derivative as given in (3.3) can be decomposed

as , where  is a constant and

 is a decreasing function on the range θ > 0.
Accordingly, the SCAD penalty function can be decomposed as pλ (θ) = pλ1(θ) − pλ2(θ),

where both pλ1(·) and pλ2(·) are convex, with  and  as the derivative,
respectively. Figure 1 illustrates such a decomposition for a SCAD function with a particular
set of parameters, a = 3.7 and λ = 2, where the left panel plots pλ1(θ), the central panel
pλ2(θ), and the right panel pλ(θ) = pλ1(θ) − pλ2(θ).

We next decompose the objective function in (3.2) as Q(B) = Qvex(B) + Qcav(B), where

We initialize B = B(0) and then update B iteratively. At the (t+1)-th step, the DC algorithm

uses a linear function –  to

approximate the concave part Qcav(B), where  denotes the (j, k)-th element of the solution
B(t) from the t-th step. Then minimizing Q(B) amounts to solving
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(3.4)

Optimization in (3.4) can be further formulated as a quadratic programming problem by

letting , then minimizing

over B = (β1, …, βh) subject to ξj ≥ βjk and ξj ≥ −βjk, j = 1, …, p, k = 1, …, h. Existing
software is available to solve this quadratic programming problem.

Hunter and Li (2005) studied the convergence property of their minorize-maximize (MM)
algorithm for the SCAD penalty. Our DC solution can also be viewed as an instance of their
MM algorithm, since we replace the concave part Qcav(B) by its affine minorization at each
iteration. As the objective function Q(B) is nonnegative, by the descent property of the MM
algorithm, our DC algorithm is bound to converge to an ε-local minimizer in finite steps.

Practically, we deem the algorithm convergent if  is sufficient small,
e.g., less than 10−4.

4. Numerical Studies
In this section, we examine the finite sample performance of the proposed method using
both simulations and a data example. We employed the BIC type criterion to select the

tuning parameter λ for the SCAD penalty, , where

 denotes the number of active predictors at λ. The BIC criterion
has been commonly used in regularized variable selection, e.g., Wang, Li and Tsai (2007).
For transformation functions, we implemented the slice indicator function that gives the
usual SIR estimate, and the B-spline basis function suggested in Fung et al. (2002). For the
former, we fixed the number of slices at h = 5 and, for the latter, we used a linear spline with
three inner knots, which also yields h = 5.

4.1. Simulations
For Examples 4.1 and 4.2, we generated independent Xj from the standard normal. We also
considered correlated predictors with Corr(Xi, Xj) = 0.5|i−j|, 1 ≤ i, j ≤ p.

Example 4.1—Here

where ε ~ Normal(0, 1) is independent of X. In this model the structural dimension d = 2.
We chose β1 = (1, 1, 0, …, 0)T and β2 = (0, 0, 1, 1, 0, …, 0)T. We considered n = 400, p = 20
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and n = 800, p = 40. We employed the vector correlation coefficient (Hotelling (1936)) to
evaluate the accuracy of the dimension reduction basis estimation, and it ranges between 0
and 1 with a larger value indicating a better estimate. Results based on 100 data replications
are reported in Table 1 (left half), where the mean and standard deviation (in parentheses) of
the vector correlations between the true and the estimated central subspace basis are shown.
We compared the usual SDR estimator without penalty and the one with the SCAD max
penalty. Due to the sparse nature of the central subspace basis, the penalized SDR estimator
achieved a better estimation accuracy. To evaluate the performance in terms of variable
selection, we employ the true positive rate and the false positive rate, a pair of criteria that
are commonly used in biomedical research. Table 2 (left half) reports the average results of
the penalized SDR estimator. It is clearly seen that all truly relevant predictors were
selected, while the false positive rate was low. Moreover, two choices of transformation
functions had similar empirical performance in this example.

Example 4.2—Here Y = sign(XT β1) log |XT β2 + 5| + XT β3 + 0.2ε, where ε ~ Normal(0, 1)
is independent of X. In this example, the structural dimension d is 3. We chose β1 = (1, 1, 0,
…, 0)T, β2 = (0, 0, 1, 1, 0, …, 0)T, and β3 = (0, 0, 0, 0, 1, 1, 0, …, 0)T, where n = 600, p = 20
and n = 1,200, p = 40. Results of reduction basis estimation are reported in Table 1 (right
half), and results of variable selection are reported in Table 2 (right half). Again, the
proposed SDR estimator with the SCAD max penalty achieved a good performance in terms
of both basis estimation and variable selection.

We next consider the performance with correlated predictors. Table 3 reports the results of
reduction basis estimation and variable selection when p = 40. It is seen from the table that
correlation among the predictors had some bearing on the method, but the overall
performance resembled the results for the case without correlation: the penalized SDR
estimator improved the estimation accuracy in terms of reduction basis estimation, and
achieved a high true positive rate and a low false positive rate.

4.2. A data example
We briefly analyze the motif discovery data of Zhong et al. (2005) to illustrate the proposed
method, though our analysis is by no means comprehensive. The goal here is to identify a
subset of transcription factor binding motifs that affect the gene expression values. The
response variable is the expression value obtained by DNA microarray experiments, the
predictors are the motif-matching scores of p̃ = 414 candidate motifs, and the data consist of
n = 5,970 genes as the sample observations. To bring the number of candidate predictors to
the order of , we employed univariate regression for an initial screening, following the
spirit of Fan and Lv (2008). We set the cutoff p-value at 0.05, and obtained p = 118 motifs
for subsequent analysis. Zhong et al. (2005) suggested that the central subspace is two-
dimensional and that the predictors affect the response in some nonlinear fashion. We
applied our variable selection method to these data. The slicing transformation selected 16
motifs, whereas the spline transformation selected 9 motifs, that form a subset of the 16.

5. Discussion
There are a number of ways to extend this work. First, in our current development, we have
treated the number of transformations h as fixed since it usually takes a pre-specified small
value, and it helps simplify the technical derivations. For some particular transformation
choices, a fixed h may result in an estimate of a proper subspace of the central subspace. As
such it is of interest to extend our results to a diverging h. We speculate that the results of
Corollary 1 would be modified accordingly, with the convergence rate of h−1B̂B̂T at

, while a rigorous conclusion needs more careful study. Second, the SDR
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estimators discussed in Section 2.1 rely on the first inverse moment E(X|Y). When E(X|Y) =
0, the estimated subspace obtained may be a proper subspace of the central subspace. There
have been proposals of SDR estimators that take advantage of the second or higher inverse
moments, for instance, Cook and Weisberg (1991), Yin and Cook (2003), Li, Zha, and
Chiaromonte (2005), and Li and Wang (2007). It is of interest to investigate the asymptotics
of those SDR estimators with a diverging p. Finally, in many recent microarray and genetics
studies, the number of predictors exceeds the number of observational units. Asymptotic
properties of both dimension reduction and variable selection with p > n remain to be
explored. Full investigations of those extensions are to be our future research.
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Appendix A: Technical Conditions
i. There are constants a*> 0 and C > 0 such that, for all β with ||β|| = 1,
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where .

ii. For any ε > 0, there exists a constant C > 0 such that, for all β with ||β|| = 1,

iii. There is a constant C such that P(maxi=1, …,n ||Xi||2 ≤ Cn2) → 1 as n → ∞.

iv.  for some constant C > 0, j = 1, …, p.

v. Σ = Cov (X) is positive definite with all its eigenvalues bounded between c and c̄, 0
< c < c̄ < ∞, for all p = pn.

vi. E{f(Y)} = 0 and Var {f(Y) − XT β0} < ∞.

vii. The eigenvalues of the pseudo-Fisher information matrix I(β0) of β0(f) are bounded
for all p = pn:

where, up to a constant,

Remark 6
The regularity Conditions (i), (ii), and (iii) are simplified versions of Conditions X1, X2, and
X3 of Portnoy (1984). Portnoy (1984) showed that these conditions hold in probability if
{X1, X2, …, Xn} are i.i.d. according to a distribution satisfying his (4.3). As our Conditions
(i), (ii), and (iii) are weaker, the same result applies.

Appendix B: Proofs

Proof of Theorem 1

Let  with α ∈ IRp×1. Due to the convexity of the
squared loss and the fact that β ̂ = β0+α ̂, it suffices to show that there is a root α ̂ of F(α)
satisfying ||α ̂||2 = Op(p/n). According to 6.3.4 of Ortega and Rheinboldt (1970), it in turn
suffices to show that αT F(α) < 0 for ||α||2 = Bp/n for some B > 0. Toward that end, write

.

For A2, we have  in probability for
some constant a* > 0, due to Lemma 1.

For A1, we have that . Then,
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where . The last inequality is true because β0 = argmin E{f(Y) −
XT β}2, which implies that E(XT X)β0 = E{f(Y)X}, and thus for any 1≤ j ≤ p,

, so Eij = 0. Then by Chebychev’s inequality, for any ε > 0,

there is a constant B* such that .

Combining the above two results, we have

Set B = (2B*/a*)2 and ||α||2 = Bp/n. Then we have

Our desired result then follows from Ortega and Rheinboldt (1970).

Proof of Lemma 3

Let . We need to show that for any ε > 0 there exists a constant C > 0
such that

Note that

We decompose D1 and D2, respectively, as D1 = D11 + D12 and D2 = D21 + D22, where
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For D11, by Condition (vii), the eigenvalues of the pseudo-Fisher Information matrix 
are bounded away from both zero and infinity. Therefore we have

(B.1)

Then

For D12, we note that

As in the proof of Lemma 8 of Fan and Peng (2004), by Chebyshev’s inequality, for any ε >
0 we have

where σij is the (i, j)-element of Σ. Thus we can write

We have
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Combining the above results, D12 is asymptotically positive and dominates other terms.

Setting  large enough, the desired result follows.

Proof of Lemma 4
It suffices to show that with probability tending to one as v n → ∞, for any given {βk+, k =

1, …, h} satisfying  and any constant C, for j = q + 1, …, p,

where  and  denote the left and right hand partial derivative, respectively.

By a Taylor expansion,

Due to (B.1), we have . Next we decompose E2 as

For E21, we have
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where the second to last equality comes from the moment Condition (iv) and the fact that all
the eigenvalues of Σ are bounded away from both 0 and ∞ by Condition (v).

For E22, by Cauchy-Schwarz inequality and ,

where σij is the (i, j)-element of Σ, and the last equality comes from the fact that

 which is ensured by Conditions (iv) and (v).

Combining the above two results, we have .

Finally, note that  and . When ,
we have

In both cases, the first term dominates the second. Thus the result of Lemma 4 follows.
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Figure 1.
Decomposition of the SCAD penalty as pλ(θ) = pλ1(θ) − pλ2(θ), with parameters λ = 2 and a
= 3.7
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Table 1

Evaluation of dimension reduction basis estimation for Examples 4.1 and 4.2. Reported are the mean and
standard deviation (in parentheses) of the vector correlation coefficients.

Example 4.1 with d = 2 Example 4.2 with d = 3

Slicing Spline Slicing Spline

p = 20, n = 400 p = 20, n = 600

w/o penalty 0.92 (0.03) 0.88 (0.04) 0.88 (0.03) 0.85 (0.06)

SCAD 0.98 (0.02) 0.92 (0.11) 0.96 (0.03) 0.96 (0.04)

p = 40, n = 800 p = 40, n = 1, 200

w/o penalty 0.92 (0.02) 0.87 (0.03) 0.87 (0.02) 0.84 (0.04)

SCAD 0.99 (0.01) 0.99 (0.01) 0.98 (0.01) 0.98 (0.01)
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Table 2

Evaluation of variable selection for Examples 4.1 and 4.2. Reported are the mean and standard deviation (in
parentheses) of true positive rate (TPR) and false positive rate (FPR).

Example 4.1 with d = 2 Example 4.2 with d = 3

Slicing Spline Slicing Spline

p = 20, n = 400 p = 20, n = 600

TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FPR 0.04 (0.05) 0.01 (0.02) 0.02 (0.05) 0.04 (0.04)

p = 40, n = 800 p = 40, n = 1, 200

TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FPR 0.00 (0.00) 0.02 (0.02) 0.06 (0.04) 0.00 (0.01)
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Table 3

Evaluation of dimension reduction basis estimation and variable selection for Examples 4.1 and 4.2 with
correlated predictors.

Example 4.1 with d = 2 Example 4.2 with d = 3

Slicing Spline Slicing Spline

p = 40, n = 800 p = 40, n = 1, 200

w/o penalty 0.77 (0.05) 0.73 (0.06) 0.77 (0.03) 0.74 (0.05)

SCAD 0.95 (0.04) 0.86 (0.13) 0.95 (0.03) 0.96 (0.03)

TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FPR 0.00 (0.01) 0.01 (0.01) 0.04 (0.04) 0.00 (0.01)
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