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Abstract

Background: The intensive care unit (ICU) length of stay (LOS) of patients undergoing cardiac surgery may vary
considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a
cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a
predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in
the computerized medical record of these patients with Gaussian processes (GP), a machine learning technique.

Methods: Non-interventional study. Predictive modeling, separate development (n = 461) and validation (n = 499)
cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification
task), and to predict the day of ICU discharge as a discrete variable (regression task). GP predictions were
compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC
for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression
task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF) ((actual-
predicted)/actual) and calculating root mean squared relative errors (RMSRE).

Results: Median (P25-P75) ICU length of stay was 3 (2-5) days. For classification, the GP model showed an aROC of
0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians.
The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For
regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%), which was
significantly better than the EuroSCORE (p < 0.001) and nurses (p = 0.044) but equivalent to physicians. GP had the
lowest RMSRE (0.408) of all predictive models.

Conclusions: A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult
cardiac surgery patients was able to predict discharge from the ICU as a classification as well as a regression task.
The GP model demonstrated a significantly better discriminative power than the EuroSCORE and the ICU nurses,
and at least as good as predictions done by ICU physicians. The GP model was the only well calibrated model.

Background

The intensive care unit (ICU) length of stay (LOS) of
patients undergoing cardiac surgery may vary consider-
ably. It is often difficult to predict, within the first few
hours after admission, which patients will be discharged
fast, and which will have a more prolonged ICU stay.
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This is problematic, not only for counseling patients or
their relatives on the expected ICU LOS, but also with
regards to bed and resource management in the ICU.
Cardiac surgery risk stratification [1] models, as well as
general ICU scoring systems [2] have shown to correlate
with LOS. These models are based on pre- and post-
operative risk factors, such as increasing age, impaired
left ventricular function/ejection fraction, type of surgery,
emergency vs. elective surgery, or the presence of pul-
monary disease. Evidently, more complex surgery on a
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high risk patient has a higher probability for a prolonged
LOS. The European System for Cardiac Operative Risk
Evaluation (EuroSCORE) [3], Society of Thoracic
Surgeons Score [4], the Parsonnet score [5], Cleveland
Clinic Model [6], the Bayes model [7], and the Northern
New England Score [8] are the most widely used systems
[9]. EuroSCORE is considered to be the European “gold
standard” regarding benchmarking, and has been shown
to be predictive for LOS as a dichotomous variable
[10-15].

Computerization in the ICU is on the rise [16]. A Patient
Data Management System (PDMS) is a computerized ICU
medical record that includes automatic registration of data
from monitors and therapeutic devices, clinical observa-
tions, laboratory parameters, and drug therapy [17]. This
large amount of data, including time series of some of
these signals, is stored in a large relational database.
Machine learning techniques can be used to analyze such
a database in an automatic way [18]. In retrospective data-
base analysis in a surgical ICU population, they have been
shown to predict ICU LOS [19].

The goal of this study was to develop and validate a
model that predicts ICU discharge of non-emergency
adult cardiac surgery patients, by analyzing PDMS data
from these patients. Predictions were made as early as pos-
sible after admission, by using data known upon admission
of the patient, and trend analysis of vital parameters dur-
ing 4 hours (which is the shortest interval that allows
dynamic time series analysis). Machine learning methods
were used to develop predictive models for a classification
task, to predict the probability of ICU discharge the day
after surgery (further referred to as ‘second day of dis-
charge prediction’), and for a regression task, to predict
the day of ICU dischargeas a discrete variable (further
referred to as ‘day of discharge prediction’). Models were
developed in one patient cohort; the predictive perfor-
mance was evaluated in a separate and previously unseen
validation cohort. The performance of the models was
compared against the performance of the EuroSCORE,
and against predictions done by the ICU nurses and physi-
cians in the validation cohort, in order to have an indica-
tion whether in the future they could have a possible
added value as clinical decision support tools.

Methods

Setting

At the Leuven university hospitals, all cardiac surgery
patients are admitted postoperatively to the 56 beds surgi-
cal ICU, of which 22 beds are dedicated to the care of
these patients. Decisions regarding patient discharge are
made by the senior ICU medical staff. Once the decision is
made that a patient is or will be ready for discharge, a bed
on the cardiac surgery ward is always made available on
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the same day. For reasons of nursing staff on the regular
cardiac surgery ward, discharge takes place between 11.00
AM and 19.00 PM. Therefore LOS, or day of discharge, is
a discrete and not a continuous variable, and the mini-
mum LOS is 1 day (admission day). The minimum criteria
for ICU discharge after cardiac surgery are summarized in
table 1.

Patients

The electronic medical records of scheduled adult (> 18
years) cardiac surgery patients, admitted to the ICU,
were used for predictive modeling. Surgery was defined
as ‘scheduled’ when the patient was called from home to
undergo surgery. Heart transplant patients, pulmonary
thrombendarteriectomy patients, patients on a left or
right ventricular assist device or on extracorporeal
membrane oxygenation, were excluded. The goal of the
study was to predict ICU discharge to a normal ward,
but death in the ICU was also regarded as discharge.
The data of patients discharged to another ICU or to an
intermediate care unit were not used.

The study protocol was approved by the hospital’s
ethical committee ("Commissie Medische Ethiekvan de
Universitaire Ziekenhuizen KULeuven”, Belgian refer-
ence number B3222006749), and the need for informed
consent was waived.

In the medical literature, prospective validation of pre-
dictive models in a previously unseen dataset is the
most generally accepted method [20]. Therefore, two
cohorts of patients were selected: a development cohort
of 461 consecutive, scheduled cardiac surgery patients,
admitted to the ICU between the 18th of January and
the 4th of December 2007, and a separate validation
cohort of 499 consecutive patients, admitted between
the 4™ of March 2008 and the 8™ of January 2009. Over
the two time periods, there were no changes in surgical
techniques, postoperative management, or in the cardiac
surgical and ICU senior medical staff.

The baseline characteristics of validation and test
cohorts are presented in table 2. Besides a significantly
larger proportion of patients that underwent repeat car-
diac surgery in the validation cohort (development: 27
patients (5.8%), validation 49 patients (9.8%), p = 0.023),
there was no difference between the two cohorts.

Database setup and input data

For the purpose of this study, a copy of the MetaVi-
sion® (iMD-Soft®, Needham, MA, USA) PDMS database
(Microsoft® SQL) was made, and all data referring to
the identity of the patients were removed from this
copy. This included the patient’s name, address, hospital
identification number, and also all free text fields -
because information potentially revealing the identity of
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Table 1 Guidelines for ICU discharge after cardiac surgery at the university hospitals Leuven

1. Respiratory criteria  The patient is extubated and weaned from mechanical ventilation or other forms of mechanical respiratory support.
His oxygenation is good, or at least comparable to his pre-operative situation. To accomplish this, 3-4 liters of nasal oxygen

supplementation is allowed.

The patient has an adequate cough reflex and is able to maintain a safe upper airway.

2. Hemodynamic Inotropic support and vasopressor therapy have to be stopped upon discharge.

criteria No major arrhythmias compromising hemodynamic stability should be present.
Atrial fibrillation is no contra-indication for discharge, provided an adequate rate control.
Patients, who are depending on external epicardial pacing after surgery, where no background rhythm or implanted
pacemaker is present, cannot be discharged to the nursing ward.

3. Neurologic criteria  Patient is awake, capable of communication and has sufficient pain control with his current analgesic therapy regimen.

4. Bleeding No major bleeding, defined as a persistent need of transfusion of more than 2 units of packed cells per day.
5. Other organ No vital threats to other organ systems (such as the kidneys, the central nervous system,..) are present
systems

the patient could be present in these fields. There were
5 parameter categories:

o Admission data: data that were known upon ICU
admission, including the patient’s history and pre-
operative medical condition, the day of the week,
and demographic data. Details regarding the type of
surgery, when not available in MetaVision™, were
taken from the Hospital Information System (HIS)
or the ICU departmental database (FileMaker Pro®,
Santa Clara, CA, USA). Missing numerical data were
substituted by the population mean for that para-
meter. Missing categorical data were replaced by the
value for that parameter that corresponded to a nor-
mal healthy condition.

o Medication data: type and cumulative dosage of
drugs, intravenous fluids and blood products used
during the first 4 hours in the ICU.

o Laboratory data of the first 4 hours in the ICU.
The values of the laboratory parameters, and the
‘count’ as well as the ‘trend’ for repeated lab analyses

Table 2 Baseline characteristics

were used. ‘Count’ is defined as the number of times
a parameter is registered. Trend is a nominal vari-
able, with three categories: when comparing conse-
cutive values, does the value increase, decrease or
remains the same within one standard deviation
(SD).

« Physiological data: monitoring data (Merlin®, Phi-
lips®, Eindhoven, The Netherlands), mechanical ven-
tilator data (Evita 2, 4, and XL, Dréger®, Libeck,
Germany) blood loss, and urine output, registered
during the first 4 hours in the ICU. Monitoring and
mechanical ventilation data are automatically stored
in the database, at a resolution of 1 datapoint per
minute. This way, 240 datapoints were present for
these parameters. Blood loss and urine output were
manually registered by the nurses, at least once
every hour. Mean and variance of the monitoring
data, and cumulative blood loss and urine output
were used.

o Dynamic data: A 4 hours time series of 5 monitor-
ing signals (systolic arterial blood pressure, pulse

Test cohort Validation cohort p-value
(n = 462) (n = 499)
ICU length of stay in days (continuous): median (P25-P75) 19 (1.2-3.6) 2.0 (1.2-39) 0277
ICU length of stay in days (discrete): median (P25-P75) 3 (2-5) 3 (2-5) 0.360
Patients discharged on the day after surgery: n (%) 147 (31.8) 149 (29.9) 0511
ICU mortality: n (%) 8(1.7) 1122 0.599
Hospital mortality: n (%) 15 (3.2) 16 (3.2) 0.972
EuroSCORE (additive): median (P25-P75) 5(3-7) 5 (3-7) 0.202
EuroSCORE (logistic)%: median (P25-P75) 39 (2.1-74) 45 (2.2-8.1) 0.828
Type of surgery
Isolated OPCAB: n (%) 190 (41.1) 179 (35.9) 0.094
Isolated on-pump CAB: n (%) 1(0.2) 0(0) 0.298
Valvular surgery (single, multiple and/or combined with CAB or other surgery): 250 (54.1) 298 (59.7) 0.079
n (%)
Other cardiac surgery (congenital, aorta ascendens, myxoma ..): n (%) 21 (46) 22 (44) 0919
Repeat cardiac surgery: n (%) 27 (5.8) 49 (9.8) 0.023
Surgery post-endocarditis: n (%) 7 (1.5) 7 (14) 0.885
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oxymeter arterial saturation (SpOz), heart rate, cen-
tral blood temperature, and systolic pulmonary
artery pressure) was analyzed. The length of this
interval was chosen in order to have enough infor-
mation on the dynamic evolution of the patients
during their first hours in ICU. Artifacts were
removed from the time series using a peak shaving
algorithm, values exceeding 2 times the SD of the
time series were removed. Missing values were line-
arly interpolated between two consecutive adjacent
known values. Again, mean and variance were deter-
mined, but the time series was divided into 6 inter-
vals of 40 minutes. This 40 minutes interval was
chosen because by cross-validation in the develop-
ment cohort, it provided the best predictive results,
over a 30 or 60 minutes interval. Approximate
Entropy (ApEn) was determined for the 4 hours
time series of SpO,, systolic arterial blood pressure,
and heart rate [21]. ApEn is a regularity statistic that
quantifies the unpredictability of fluctuations in a
time series. The 6 mean and 6 variance values for
each of the 5 parameters, together with the 3 ApEn
values, were used.

Overall, in the development cohort database 5.18% of
data were missing; in the validation cohort the proportion
of missing data was 5.74%. Variables with the largest
amount of missing data were mainly related to pre-admis-
sion assessment of the patients, such as the pre-operative
spirometry and pulmonary function tests (31-87% missing),
pre-admission heart rate (35% missing), pre-admission
blood pressure (27% missing). Intra-operative blood loss
was not entered in the database in 50% of the patients.

Predictive modeling
ICU discharge after scheduled cardiac surgery was
predicted in two ways.

« Classification task: predict the probability of dis-
charge on the day after surgery (‘second day dis-
charge prediction’)

«» Regression task: predict the day of discharge, which
is a discrete variable (day 2, 3 ...) (‘day of discharge
prediction’).

MatLab® (The MathWorks, Natick, MA, USA) was
used to build the predictive models.

Models were built for each parameter category sepa-
rately, and integrated into a single predictive model. In a
preparatory phase of the study, a logistic regression (LR)
model and several ML models were developed for second
day discharge prediction: decision trees (DT), Random
Forest (RF), Support Vector Machines (SVM), and Gaus-
sian Processes (GP). A review of the used methods can
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be found in [18]. The best model was selected by internal
cross-validation in the development cohort.

The discriminatory power of the LR and DT models was
unacceptably low, and GP proved to be the most perfor-
mant of all models (results not shown). In addition to
being highly performant, GP have a number of theoretical
advantages such as the ability to deal with very complex
datasets, and the possibility to identify the predictive vari-
ables (as opposed to black box models such as artificial
neural networks) [22]. When making predictions, a model
or mathematical function is applied to certain inputs to
obtain an estimate of a certain output. In contrast to con-
sidering a single or a few optimal functions, GP give a
prior probability to every possible function, with higher
probabilities for the functions that are more likely, given
the input data. In other words, GP are a distribution over
functions and a natural generalization of a Gaussian Prob-
ability Distribution. This predicted distribution is obtained
by taking into account non-linear interactions between the
predictive variables to evaluate the similarity between the
instances of the dataset. The obtained distribution assigns
similar predictions to patients with similar values for their
predictive variables, a behavior that reflects clinical intui-
tion. GP were implemented according to the algorithms
described by Rasmussen and Williams [23].

Validation of the models

The developed models were tested in a previously unseen
validation cohort. The performance of the second day
discharge prediction task was evaluated by means of the
area under the receiver operator characteristic curve
(aROC) for discrimination. In advance, an aROC of
above 0.70 was considered to be adequate [24]. The Brier
score (BS) [25] (the average squared difference between
the predicted probability and the true occurrence of a
binary outcome), and the Brier score scaled (BSS) (a ver-
sion of the BS that will give a more robust comparability
of the accuracy of a model because it is not depending on
population differences of the outcome), were also calcu-
lated. A Brier score should be as close to 0 as possible,
with 0.25 as acceptable upper cut-off [26]. Reliability dia-
grams, where the predicted and observed relative fre-
quencies are plotted against each other, were drawn [27].
These diagrams give a clear visual overview of the cali-
bration or ‘fit’. Finally, Hosmer-Lemeshow U-statistic was
calculated as a measure of fit, with a p-value larger than
0.05 as an acceptable cut-off.

The performance of the day of discharge prediction task
was assessed in several ways. First, predicted and actual
median LOS were compared. Second, a loss penalty func-
tion (LPF), was calculated, which is the difference
between the actual day of discharge (D,,1) and the pre-
dicted day of discharge (Dpredicted), divided by the actual
day of discharge.
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LPF = (Dactual - Dpredicted)/ Dactual

This way, the relative error gets a less severe ‘penalty’
the further in the future this error is made. The LPF
will take positive values if the predicted LOS is shorter
than the actual LOS and negative values when the pre-
dicted LOS is longer than the actual LOS. Third, a pre-
valence plot was drawn, representing the actual and
predicted numbers of patients discharged on each day.
Fourth, root mean squared relative errors (RMSRE)
were determined, with a value closer to 0 indicating a
higher accuracy.

Comparison with EuroSCORE

The additive EuroSCORE was calculated for every
patient in the validation cohort using the research calcu-
lator available online [28]. The 17 EuroSCORE items
were taken from the preoperative anesthesia record,
available in the HIS. EuroSCORE was used for second
day discharge prediction. For the day of discharge pre-
diction task, we plotted EuroSCORE against LOS in the
development cohort. The linear correlation equation
obtained was then used to predict LOS in the validation
cohort.

Comparison with ICU clinicians

In the validation cohort, the ICU nurse and ICU physi-
cian caring for that patient were asked to perform the
same two predictive tasks. Their predictions were col-
lected prospectively and recorded in MetaVision®, by the
Event Manager™. A pop-up window was programmed to
appear 4 hours after admission to the first nurse and phy-
sician logging in to the patient’s PDMS file, with the fol-
lowing questions. First, “What is the probability that this
patient will leave the intensive care unit tomorrow, on
the day after surgery?” The answer to this question is a
probability between 0% (certainly not discharged on the
day after admission) and 100% (certainly discharged on
the day after admission). Second, “According to you, on
what day will this patient be able to leave the ICU?” The
answer to this question is a date. In order not to interfere
with the clinical work, the pop-up could be overruled,
but was repeated every 15 minutes. In advance, we deter-
mined that when the predictions were made later than 6
hours after admission, these results would not be used to
compare with the GP models, as this would give the clini-
cians an unacceptable advantage of more than 2 hours of
observation over the computer.

Statistical analyses

Comparison of the baseline characteristics between the
development and validation cohort was performed using
Stat View® 5.0.1 for Windows (SAS Institute, Cary, NC,
USA). A Chi-square test was used to compare between
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nominal variables, a Student t-test was used for the nor-
mally distributed, and the Mann-Whitney-U test for non-
normally distributed continuous variables. Two sided
p-values of less than 0.05 were considered significant.

For the second day discharge prediction task, aROC’s
and Brier Scores were calculated, and reliability dia-
grams were drawn. In order to compare between the
aROC’s, the DeLong method was used [29]. The Brier
Scores were compared using a bootstrapping technique
[26,30]. For the regression task, the Mann-Whitney-U
test was used to compare LOS and LPF. Matlab® was
used as statistical software for the comparisons between
the different models.

Results

The GP models are accessible at http://www.kuleuven.
be/licm/ml/gpdischargel. The tables contain the input
variables of the two predictive tasks and the coefficients,
learned by GP, in order of their learned relative impor-
tance within each category.

Second day discharge prediction
The validation results are summarized in table 3.

In the validation set of 499 patients, the aROC values
of the GP submodels built on the different data cate-
gories were 0.730 for the admission data, 0.690 for the
medication data, 0.640 for the laboratory data, 0.710 for
the physiological data and 0.670 for the dynamic data.
The integrated GP model had an aROC of 0.758, a Brier
Score of 0.179 and a Brier Score Scaled of 11%. The
EuroSCORE had an aROC of 0.726, (p = 0.286 as com-
pared to GP) but a Brier score of 0.324 and BSS of 0%.
The GP model showed good calibration with a Hosmer-
Lemeshow goodness of fit statistic (U-statistic) p-value
of 0.382; EuroSCORE had a poor calibration, Hosmer-
Lemeshow goodness of fit statistic (U-statistic) p-value
was very low (p-value < 0.001).

In 396 of the 499 patients in the validation cohort, the
nurses predicted discharge within 6 hours after admis-
sion. In this subgroup, the nurses’ predictions revealed
an aROC of 0.695 (p = 0.018 as compared to GP) and a
Brier Score of 0.245. The aROC of the EuroSCORE
model was not significantly different from the nurses’
predictions (p = 0.379).

Only in 159 of the 499 patients a prediction by the
ICU physicians was obtained within 6 hours after admis-
sion. In this small subgroup, the aROC for the physi-
cian’s predictions was 0.758 (p = 0.719 as compared to
GP, and p = 0.593 as compared with EuroSCORE), with
a Brier Score of 0.216.

The Brier scores of the GP predictions were signifi-
cantly lower (better) (p < 0.001) than those of the other
predictions, except as compared with the physicians
(p = 0.055). U-statistic was adequate for the GP models


http://www.kuleuven.be/licm/ml/gpdischarge1
http://www.kuleuven.be/licm/ml/gpdischarge1

Table 3 Classification task

GP (4 h) EuroSCORE (4 h) EuroSCORE vs. GP Nurses (6 h) Nurses vs. GP ICU physicians (6 h) ICU physicians vs. GP

Validation cohort, n = 499

aROC 0.758 0.726 p = 0.286 X X X X

Brier Score 0.179 0324 p < 0.001 X X X X

Brier Score Scaled 1% 0% p < 0.001 X X X X

Hosmer Lemeshow p-value 0.382 < 0.001 X X X X X
Nurses answer < 6 h, n = 396

aROC 0.769 0.726 p=0124 0.695 p = 0018 X X

Brier Score 0.177 0.326 p < 0.001 0.245 p < 0.001 X X

Brier Score Scaled 13% 0% p < 0.001 1.35% p < 0.001 X X

Hosmer Lemeshow p-value 0405 < 0.001 X < 0.001 X X X
Physicians answer < 6 h, n = 159

aROC 0.777 0.726 p =0334 X X 0.758 p=0719

Brier Score 0.166 0328 p < 0.001 X X 0216 p = 0.055

Brier Score Scaled 14.2% 0% p < 0.001 X X 12.5% p < 0.001

Hosmer Lemeshow p-value 0.696 < 0.001 X X X < 0.001 X

The interpretation of the different validation measures can be found in the methodology section.
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(p = 0.405), the EuroSCORE’s, nurses’ and physicians’
predictions were poorly calibrated (p < 0.001).

The aROC’s are depicted in Figure 1. Figure 2 shows
the reliability diagrams.

Day of discharge prediction
The results are summarized in table 4.

In the validation cohort of 499 patients, the actual
median (P25-P75) LOS was 3 (2-5) days. Median (P25-
P75) LOS predicted by the GP models was 3 (2-3) days
(p < 0.001), median (P25-P75) predicted LOS by the
EuroSCORE was 4 (3-5) days (p < 0.001). The GP pre-
dicted day of discharge was significantly different from
that predicted by the EuroSCORE (p < 0.001). The med-
ian (P25-P75) LPF of the GP model was 0 (0-0.4), in
40% of the patients the day of discharge was predicted
correctly as indicated by an LPF of 0. The EuroSCORE
had a significantly worse median (P25-P75) LPF ((-0.3
(-0.5-0), p < 0.001), and a significantly lower proportion
of patients with LPF = 0 (19%, p < 0.001). Figure 3 is a
visualization of the distributions of the predictions by
the different models, as compared with the true day of
discharge.

The nurses predicted a median (P25-P75) LOS of 3
(2-3) days in the 396 patients where they predicted
within 6 hours, which was significantly different from
the actual median (P25-P75) LOS in this cohort (3 (2-4)
days) (p < 0.001). There was a significant difference
between the predictions by the nurses and the predic-
tions by GP (3 (2-3) days, p = 0.012) and EuroSCORE
(4 (3-5) days, p < 0.001).

The median LPF of the prediction of the nurses and
the GP model was not significantly different (p = 0.567),
but the proportion of patients with an LPF = 0 was sig-
nificantly lower (46% for the GP model, 38% for the
nurses’ predictions, p = 0.044).

In the 159 patients where the physicians made a pre-
diction within 6 hours after admission, the actual med-
ian LOS was 3 (2-5) days, the physicians predicted a
median LOS of 3 (2-3) days (p < 0.001), GP predicted 3
(2-3) days (p < 0.001), and EuroSCORE predicted 4 (4-
5) days (p < 0.001). There was no significant difference
between the predicted LOS by physicians and GP (p =
0.578), but EuroSCORE LOS prediction was significantly
different (p < 0.001). There was no significant difference
in median LPF or in the proportion of patients with LPF
= 0 between GP and physicians.

In comparison to all other predictions, the GP model
had the lowest RMSRE: 0.408 for GP compared to 0.643
for EuroSCORE in the 499 patients validation cohort;
0.389 for GP, 0.635 for EuroSCORE, and 0.522 for the
nurses in the 396 patients cohort, and 0.439 for GP,
0.631 for EuroSCORE and 0.612 for physicians in the
159 patients cohort.
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Figure 1 ROC of the classification task. Panel A. Validation cohort
of 499 patients. ROC of the GP model (aROC = 0.758) (dark
interrupted line), with a circle indicating the cutoff for best
discrimination and calibration. ROC of the EuroSCORE (aROC =
0.726) (grey dotted line), with a star indicating the cutoff for best
discrimination and calibration. There was no statistically significant
difference between GP and EuroSCORE (p = 0.286). Panel B.
Validation subcohort of 396 patients. ROC of the GP model (@ROC =
0.769) (dark interrupted line), with a circle indicating the cutoff for
best discrimination and calibration. ROC of the EuroSCORE (aROC =
0.726) (grey dotted line), with a star indicating the cutoff for best
discrimination and calibration. ROC of the predictions by nurses
(aROC = 0.695) (black uninterrupted line), with a triangle indicating
the cutoff for best discrimination and calibration. The aROC of the
predictions by nurses was significantly lower than the GP model (p
= 0.018). Panel C. Validation subcohort of 159 patients. ROC of the
GP model (aROC = 0.777) (dark interrupted line), with a circle
indicating the cutoff for best discrimination and calibration. ROC of
the EuroSCORE (aROC = 0.726) (grey dotted line), with a star
indicating the cutoff for best discrimination and calibration. ROC of
the predictions by ICU physicians (aROC = 0.758) (black
uninterrupted line), with a triangle indicating the cutoff for best
discrimination and calibration. The aROC of the predictions by ICU
physicians was not significantly different from the GP model (p =
0.719).
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Figure 2 Reliability diagrams of the classification task. The reliability curve plots the observed fraction of positives against the predicted
fraction of positives. The diagonal indicates a perfect reliability. The dotted horizontal line is the no resolution line, indicating the mean
prevalence of the outcome in the population. The Brier score can be expressed as the sum of three terms related to the components of a
reliability diagram.

BS = reliability — resolution + uncertainty

K K
1 1
BS = N E me(pr — ok)z—ﬁ E (0 —s)2 +5(1 —s)2
K=1 K=1

The first term, reliability, is the mean squared difference of the reliability curve to the diagonal. The second term, resolution, is the mean
squared difference of the reliability curve to the no resolution line. The third term is a measure of uncertainty. N is the number of instances,
s is the fraction of positives in the dataset, and for the kth bin, ny is the number of examples, py is the predicted probability, and oy is the
fraction of positives. Upper right panel. Validation cohort, 499 patients. Brier score and reliability diagram of the GP model. Upper left panel.
Validation cohort, 499 patients. Brier score and reliability diagram of the EuroSCORE. Brier score was above the threshold of 0.25, and
significantly higher (worse) than the GP models (p < 0.001). Lower right panel. Validation subcohort, 396 patients. Brier score and reliability
diagram of the predictions by ICU nurses. Brier score was significantly higher (worse) than the GP models (p < 0.001). Lower left panel.
Validation subcohort, 159 patients. Brier score and reliability diagram of the predictions by ICU doctors. Brier score was not significantly
higher (worse) than the GP models (p = 0.055).




Table 4 Regression task

Actual GP (4 h) EuroSCORE (4 h) EuroSCORE vs. GP Nurses (6 h) Nurses vs. GP ICU physicians (6 h) ICU physicians vs. GP

Validation cohort, n = 499

LOS: Median (P25-P75)(days) 3 (2-5) 3 (2-3)* 4 (3-5)* p < 0.001 X X X X

LPF: Median (P25-P75) 0 (0-04) -0.3 (-0.5-0) p = 0.003 X X X X

Patients with LPF = 0: n(%) X 200 (40) 94 (19) P < 0.001 X X X X

RMSRE X 0.408 0643 X X X X
Nurses answer < 6 h, n = 396

LOS: Median (P25-P75)(days) 3 (24 3 (2-3)* 4 (3-5)* p < 0.001 3(2-3)* p =0012 X X

LPF: Median (P25-P75) 0 (0-04) -0.3 (-0.5-0) p = 0.002 0 (0-0.3) p = 0567 X X

Patients with LPF = 0: n(%) X 181 (46) 86 (22) P < 0.001 152 (38) P = 0044 X X

RMSRE X 0.389 0.635 0522 X X
Physicians answer < 6 h, n = 159

LOS: Median (P25-P75)(days) 3 (2-5 3 (2-3)* 4 (4-5)* p < 0.001 X X 3 (2-3)* p = 0578

LPF: Median (P25-P75) X 0.2 (0-0.5) -0.25 (-0.5-0.2) p < 0001 X X 0.2 (0-04) p = 0.755

Patients with LPF = 0: n(%) X 59 (37) 27 (17) p < 0.001 X X 49 (31) P =0234

RMSRE 0439 0.631 X X 0612

*p-value < 0.001 (as compared to actual LOS)
LOS= Length of stay

LPF= Loss Penalty Function

RMSRE= Root Mean Squared Relative Error

The interpretation of the different validation measures can be found in the methodology section.
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Figure 3 Distribution of the predictions of the regression task (validation cohort, 499 patients. GP versus EuroSCORE). The black bar
indicates the actual number of patients discharged on each discrete day. Day 1 is the day of surgery (no patients were discharged on day 1),
day 2 is the day after surgery, and so on. The other bars indicate the number of patients predicted to be discharged on that day. The
subdivision in these bars indicates the number of true positives (predicted and actually discharged on that day).
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Discussion

A GP model that used patient data of the first 4 hours
after ICU admission, stored in a PDMS, was able to
make accurate predictions on the probability of ICU dis-
charge on the day after surgery, and was able to predict
the day of discharge. The GP models were constructed
in a development cohort, and tested in a previously
unseen validation cohort. The GP model showed a sig-
nificantly better discrimination than EuroSCORE and
the ICU nurses, and was at least as discriminative as the
ICU physicians. GP models were the best calibrated
models, whereas the EuroSCORE, ICU nurses and phy-
sician’s predictions showed overfitting.

In this era of computerized medical files, a large
amount of patient information in the ICU has become
available in an assessable format. Until now, only a few
applications fully exploited the data-rich environment of
intensive care, with its several information sources. Ana-
lyzing such large quantity of information, and using it for
research purposes, remains a major challenge [18]. Since
ICU clinicians use the data for vital decision making
every day, it can be assumed that PDMS databases are
important sources of information on the condition of
ICU patients. A clinical PDMS database contains vali-
dated laboratory data, as well as clinical observations
which are observer dependent, validated and unvalidated
raw monitoring data, with artifacts and missing values.
Several methods exist for inputting missing data; each of
them has specific drawbacks. Replacing missing numeri-
cal data by the population mean for that value, as was
done in the present study, might lead to regression
towards the mean. Nevertheless, when a different

imputation method was used, such as replacing missings
by values corresponding to a normal healthy condition,
the results did not change significantly (data not shown).
For categorical data, the value that corresponds to a nor-
mal healthy condition was used to replace a missing
value, which might have introduced some additional bias.
Time series analysis in the present study was done after
applying several low pass filters on the signal that have
removed all high frequency components. We have done
this under the assumption that the trend of a time series
is more predictive for outcome than high frequency
variability, very similar to the way doctors look at contin-
uous parameters.

Although not set up to perform predictions, our
results show that a GP model derived from these data
was able to predict ICU discharge. At the population
level, calibration and accuracy of the second day dis-
charge predictions was good, with aROC well above and
Brier score well below the predefined thresholds. At the
individual level, the GP models showed to be the only
well calibrated models. This is extremely important in
clinical practice, when using the models for patient
counseling. The exact day of discharge could be pre-
dicted in 40% of the patients, and the GP model showed
the lowest RMSRE. Figure 3 shows that the GP tended
to overestimate the number of patients discharged on
the day after surgery, and underestimated the LOS in
the longer staying patients. The relatively lower number
of longer staying patients in the development cohort,
upon which the GP models were learned, explains the
higher uncertainty when predicting discharge in these
patients.
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This is the first study describing the use of GP for the
prediction of length of stay in the field of medicine and
intensive care. Currently, outcome prediction in the car-
diac ICU is based on scoring systems that were developed
and validated in large multicentre patient databases, such
as EuroSCORE for a cardiac surgery patients [3], or
APACHE for ICU patients [31]. These risk scores have
been designed as benchmarking tools in order to com-
pare different patient groups rather than for individual
outcome prediction. APACHE IV uses data of the first 24
hours in ICU, and in cardiovascular surgery patients,
there was no significant difference between mean pre-
dicted and observed ICU LOS, but aROC or calibration
were not reported in this subgroup [32]. When using the
additive EuroSCORE for the prediction of prolonged
LOS, aROC’s were 0.76, 0.72 and 0.67 when predicting a
LOS of > 7 days, > 5 days and > 2 days respectively [14].
In the present study, the locally developed GP model out-
performed the European gold standard risk stratification
model, the EuroSCORE. In the classification task, this
was demonstrated by the Brier score, which was unaccep-
tably high in the case of EuroSCORE. In the regression
task, EuroSCORE predicted a too long median LOS. It is
well known that the EuroSCORE tends to overestimate
the operative risk, especially in high risk patients. Euro-
SCORE was developed more than two decades ago, and
in the case of mortality prediction, several authors have
already proposed a recalibration [33,34]. Because the GP
model was built on the local ICU database, it lacks the
generalizability of the severity of illness scoring systems.
Nevertheless, any computerized ICU could use the same
methodology to build customized predictive models.
Furthermore, such models can be systematically recali-
brated over time, by relearning the models on an updated
development cohort with more recent patients.

The GP models predicted better than the ICU nurses in
the classification and the regression task. Although there
was a trend towards a better performance than the ICU
physicians, this was not statistically significant. When
comparing the GP model with ICU nurses and physi-
cians, one should realize that the clinicians had a few
major advantages over the computer model. First, we did
not obtain predictions within 6 hours in all 499 validation
patients. This way, we lost statistical power. On the other
hand, not being able to predict within time might be
regarded as an extra evaluation criterion, as opposed to
the GP model which was able to generate a prediction in
every patient. Second, the predictions by physicians and
nurses might have been biased in a sense that they could
have postponed their predictions in the more difficult to
predict patients whereas the GP models have always
delivered a prediction within the allotted time, regardless
of the uncertainty. Third, nurses and ICU physicians had
an advantage of up to 2 hours of data over the GP model.
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In practice, it turned out to be impossible to respond
immediately to the first pop-up window 4 hours after
admission. Fourth, nurses and physicians will always have
more information at their disposal than is present in the
computerized chart of the patient.

A locally derived risk prediction model will not replace
or compete with the validated scoring systems with
regards to generalizability and benchmarking. Neverthe-
less, these locally developed models, based on the analysis
of the computerized patient chart with machine learning
techniques, have the potential to support the clinician in
the care for critically ill patients. First, they could be the
basis of an early warning monitor, which alerts the clini-
cian when a patient deviates from the expected path with
regards to his outcome. Second, in the same sense, they
could be of use for the clinician when counseling a
patient or his relatives to offer a realistic estimate of the
expected clinical course of a particular patient. Third, the
ICU LOS of a patient following cardiac surgery has,
besides its medical and clinical relevance, also impor-
tance on the management level. ICU bed capacity is in
many hospitals the bottleneck when planning cardiac
surgery. In order to make optimal use of the available
capacity, and in order to avoid an excessive number of
patients that will die while awaiting cardiac surgery, a
locally derived predictive model could be the basis of an
ICU capacity planner. GP can take full advantage of the
different information sources available in ICU, both static
and dynamic, including therapy and the response to ther-
apy. Although the discriminative power of the GP models
is not significantly higher than the physicians, they can be
of added value because they will deliver their predictions
in a more reliable and consistent way (not postponing
the predictions in the most difficult cases as the physi-
cians probably did in the present study). In theory, each
ICU could build its own predictive models based on its
own patient database, because this methodology is able
to take into account the specific local situation, and can
be adapted and recalibrated over time. The results from
this study should first be confirmed in other centers, and
preferably in databases from multiple centers.

Conclusions

Gaussian processes, a machine learning technique, are
able to fully exploit a PDMS database and use all avail-
able data to build a predictive model for ICU discharge
after cardiac surgery. This locally learned predictive
model performed better than an existing scoring system
(EuroSCORE), and better than ICU doctors and nurses.
Machine learning offers a general method to learn the
most performant predictive model for a specific context,
database, or ICU. The predictive models, the used para-
meters and the weighed coefficients will be different in
a different setting.
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