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Summary
We consider structural measurement error models for a binary response. We show that likelihood-
based estimators obtained from fitting structural measurement error models with pooled binary
responses can be far more robust to covariate measurement error in the presence of latent-variable
model misspecification than the corresponding estimators from individual responses. Furthermore,
despite the loss in information, pooling can provide improved parameter estimators in terms of
mean-squared error. Based on these and other findings, we create a new diagnostic method to
detect latent-variable model misspecification in structural measurement error models with
individual binary response. We use simulation and data from the Framingham Heart Study to
illustrate our methods.
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1. Introduction
Covariate measurement error is a problem commonly encountered in epidemiological
investigations (Carroll, 2005). One popular study, cited by numerous authors in the
measurement error literature, is the Framingham Heart Study (Kannel et al., 1986), a study
where one of the primary goals is to characterize the relationship between the risk of
coronary heart disease and long-term systolic blood pressure. The true predictor in this
application, long-term systolic blood pressure, can not be observed. Instead, systolic blood
pressure readings are collected at periodic clinic visits for each subject and are viewed as
error-contaminated versions of the true predictor.

In this paper, we consider structural measurement error models for a binary response Y, e.g.,
whether or not evidence of heart disease is detected. In a structural measurement error
model, the true predictor can be viewed as a latent variable with its own distribution.
Likelihood-based inference subsequently depends on this assumed latent-variable model,
and its misspecification can adversely affect inference (Carroll et al. 2006, §5.6.3). This
problem is exacerbated by the fact that diagnosing latent-variable model misspecification
with the observed data directly is not possible. To address this issue, Huang, Stefanski, and
Davidian (2006) developed simulation-based remeasurement methods to diagnose latent-
variable model misspecification in structural measurement error models. Their methods
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provide a general framework to assess the adequacy of an assumed latent-variable model
and the robustness of a target estimator to measurement error.

This research expands on the study presented in Huang et al. (2006) in the context of binary
response. First, we extend the methods proposed in Huang et al. (2006) to investigate the
effects of latent-variable model misspecification on likelihood-based estimators in structural
measurement error models with pooled binary response. We show that using pooled binary
response in place of individual binary response can result in better regression parameter
estimates, and it lends to likelihood-based inference that is much less sensitive to covariate
measurement error when the latent-variable model is misspecified. Second, using the pooled
responses, we propose a new diagnostic method to detect latent-variable model
misspecification with individual response data. This method possesses attractive properties
and avoids the time-consuming remeasurement technique proposed by Huang et al. (2006).

2. Structural Measurement Error Models
We first define the structural measurement error model for individual response, as in Huang
et al. (2006), and then extend its utility to pooled response.

2.1 Individual Response
For the ith individual, let Yi, Wi, and Xi denote the binary response, the observed predictor
value, and the true predictor value, respectively, for i = 1, 2,…, n. A structural measurement
error model consists of three component models. The first component model is a generalized
linear model for Yi, conditional on Xi, given by Pr(Yi = 1∣Xi) = h(β0 + β1Xi), where h(·) is a
known inverse link function. Inference on the regression parameters θ = (β0, β1)T is of
central interest. The second component model is the classical measurement error model
given by Wi = Xi + Ui, where Ui is the nondifferential measurement error (Carroll et al.,

2006, § 2.5) and . It follows that . The nondifferentiality of
the measurement error implies that given Xi, Yi is independent of Wi. The third component

model is the assumed model for X, with density denoted by , where τ is a parameter
vector of length t. For individual i, the joint density of the observed datum, (Yi, Wi), is given
by

(1)

where , and
ϕ(·) denotes the N(0, 1) probability density function. We assume throughout that the n
individuals are independent so that the loglikelihood of the observed data is

(2)

The appearance of the primary regression model fY∣X(Yi∣x; θ) and the assumed latent-variable

model  within the integrand in (1) suggests that the choice of the assumed model for
X can affect inference for θ based on (2).
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2.2 Pooled Response
Suppose that G pools are formed from the n individuals, and let ng denote the pool size for

pool g, g = 1, 2, …, G, so that . Denote the individual binary responses in pool g
by (Yg1, Yg2, …, Ygng)T and the corresponding pooled binary response by

. Denote the observed and true predictor values in pool g by

 and , respectively, and assume, as before,

that Wgj = Xgj + Ugj, where  for all g and j. The major difference in the
structural measurement error model for pooled response is in the first component model; i.e.,
the primary regression model. Here, the primary regression model relates the pooled
response to the associated true predictors and is given by

(3)

Our derivation shows that the joint density of the observed data for pool g, , can be
written as

Assuming that the G pools are independent, the loglikelihood of the observed data based on
the pooled responses is

(4)

Unless otherwise stated, we assume that  is known. In practice,  can be estimated when
there are replicate surrogate measurements for each X, and it is straightforward to revise our
approach (see Section 6). For either data structure, individual or pooled, it is worth
emphasizing that if the first two component models in the structural measurement error
model are correct, likelihood-based inference is consistent if the latent-variable model is

correctly specified or if . In the absence of measurement error, Vansteelandt, Goetghe-
beur, and Verstraeten (2000) considered regression models of the form in (3) for modeling
the prevalence of hiv using pooled responses from group testing. In such applications,
forming pools is a natural and commonly-used technique to reduce testing costs. Our use of
pooling in this paper is more general and is not restricted to applications in group testing.

3. Empirical Methods for Assessing Robustness
Huang et al. (2006) use remeasurement-based methods to assess the robustness of target
estimators to measurement error in structural measurement error models. We summarize the
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salient aspects of this approach with models for individual binary response and then extend
this technique to models for pooled response.

3.1 Individual Response
The remeasurement method involves further contaminating the observed covariate W. We
call the further contaminated data the λ-remeasured data, where λ is a prespecified positive
constant that controls the degree of further contamination. Specifically, for a chosen λ > 0,
we first generate B sets of n independent random errors from a standard normal distribution,

, and form the λ-remeasured data defined by

(5)

for b = 1, 2,…, B and i = 1, 2,…, n. Note that, by this construction, the measurement error

variance associated with Wbi(λ) is equal to  for all b and i.

Let Ω = (θT, τT)T denote the r × 1 vector of unknown parameters, where r = 2+t, and
suppose that Ω is to be estimated by solving the vector-valued estimating equation

(6)

in the absence of further contamination. For example, if the maximum likelihood estimator

(MLE) of Ω is desired, then . In general, denote
the estimator that solves (6) by Ω̂(0) = {θ ̂(0)T, τ̂(0)T}T. Based on (6), we construct the
vector-valued estimating equation evaluated at the λ-remeasured data as

(7)

Where  and

. Solving (7) yields the same type of estimator as Ω̂(0) based on the λ-
remeasured data; we denote this estimator by Ω̂(0) = {θ ̂(0)T, τ̂(0)T}T. Plotting one
component of Ω̂(λ) versus λ, for λ ≥ 0, produces the simulation extrapolation, SIMEX, plot
for that estimate (Cook and Stefanski, 1994; Stefanski and Cook, 1995). A constant or
nearly constant SIMEX plot suggests that the considered estimator is robust to measurement
error under the assumed model for X. A substantial deviation from constancy indicates that
the estimator is sensitive to measurement error under the presumed model for X and that the
estimator is biased, with the magnitude of bias depending on the size of measurement error
variance.

In addition to the graphical SIMEX diagnostic, Huang et al. (2006) provide a quantitative
assessment of robustness in the form of the test statistic

Huang and Tebbs Page 4

Biometrics. Author manuscript; available in PMC 2011 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where γ is an element in Ω, γ ̂(·) is the target estimator for γ, and  is an estimator for var{γ ̂
(λ) − γ ̂(0)}. The derivation of an estimator for var{γ ̂(λ) − γ ̂(0)} is provided in Web Appendix
A. The statistic  evaluates the amount of change in the estimate as the measurement

error variance increases from  to  after adjusting for background noise. If 
deviates significantly from zero, one may conclude that the estimator is not robust to
measurement error under the assumed latent-variable model. The operating characteristics of

 are studied in Huang et al. (2006).

There is a delicate difference between the remeasurement method described above and the
method described in Huang et al. (2006) in computing Ω̂(λ) at λ > 0. In Huang et al. (2006),
when λ > 0, Ω is estimated B times, each time based on one set of λ-remeasured data of size
n, and the final Ω̂(λ) is defined as the average of these B estimates. The modification here is
to compute Ω̂(λ) only once based on all B sets of λ-remeasured data, which are combined in
one vector-valued estimating equation (7). The solution to (7) is asymptotically equivalent to
the older version of Ω̂(λ), but is far less cumbersome to compute.

3.2 Pooled Response
Generating the remeasured data in Section 3.1 does not involve the binary response Y.
Therefore, the same data generation step applies when pooled responses are considered.
Suppose that the target estimator for Ω, based on the data with pooled response, solves the
vector-valued estimating equation

(8)

Analogously to the construction of (7), the estimator for Ω of the same type, based on the λ-
remeasured data with pooled response, is obtained by solving

(9)

Where ,

, for b = 1, 2,…, B, and , for g = 1, 2,…, G.
Denote by g = 1, 2,…, G, Ω̂(0) = {θ ̂(0)T, τ̂(0)T}T. and Ω̂(0) = {θ ̂(0)T, τ̂(0)T}T the solutions
to (8) and (9), respectively. As with individual response, the SIMEX plot of one component
of Ω̂*(λ) can provide evidence of robustness or lack thereof. Furthermore, assuming
independent pools, the construction of  based on the solutions to (8) and (9) is identical
to that based on individual response. As described in Web Appendix A, the variance
estimator  in this case is changed to reflect the fact that pools are the experimental units;
not the individuals.
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4. Robustness Findings
We now apply the previously outlined diagnostic methods to assess the robustness of target
estimators resulting from data with different types of binary response.

4.1 Random versus Homogeneous Pooling
In studying the structural measurement error models with pooled responses, we consider two
pooling strategies. The first strategy is to form the pools randomly, so that the composition
of pools is independent of the individual covariate information. We henceforth refer to this
as random pooling. The second pooling strategy we consider is motivated by Vansteelandt et
al. (2000), who showed that, in the absence of covariate measurement error, a more precise
estimator of  results when one pools individuals with similarly observed
covariates, that is, when Xg1, Xg2, …, Xgng are as homogeneous as possible. We refer to this
as homogeneous pooling. In the presence of measurement error, the best homogeneous
composition one can hope for is to pool individuals with similar W values. To implement
this strategy, one can sort and partition the ordered W's into G pools, so that the datum for

the first pool, say, is , where W(1), W(2),
…, W(n1) are the first n1 order statistics of W1, W2, …, Wn. When generating λ-remeasured
data, regardless of pool composition, we always contaminate the unsorted observed data W1,
W2, …, Wn with the unsorted random noise  to obtain

.

A complication with homogeneous pooling is that it renders a small amount of dependence
among the pools due to the ordering of the observed covariates. Therefore, the MLE of Ω
based on the homogeneous-pooling responses is not obtained by maximizing (4) as (4) is
derived under the assumption of independent pools. In fact, we have found that maximizing
the true loglikelihood from homogeneous pooling is practically infeasible. To estimate Ω in
this situation, a sensible solution is to first estimate τ by maximizing the loglikelihood of W
= (W1, W2, …, Wn)T given by

This provides a consistent estimator for τ since the ordering does not enter at this level. We
then estimate θ by maximizing (4) with τ fixed at its estimate. This simplifies the objective
function to be optimized by assuming pools to be independent and yields a pseudo MLE for
θ, which is biased, but much less so when compared to the estimator for θ resulting from
maximizing (4) with respect to τ and θ simultaneously. The vector-valued estimating
equation evaluated at the observed data corresponding to this two-stage approach is

Another small complication with homogeneous pooling relates to the variance estimator for
the pseudo MLE of Ω and the variance estimator  in . Both estimators are initially
derived under the assumption of independent experimental units, which, in the case of
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pooled response, corresponds to independent pools. For the reasons previously outlined,
these estimators are not appropriate for use with homogeneous pooling. To obviate this
difficulty, we use the bootstrap to estimate these variances when homogeneous pooling is
used.

4.2 Simulation Evidence
We conducted several simulations to evaluate the merit of pooling in structural measurement
error models. For illustration, we take h(β0 + β1X) = Φ(β0 + β1X), where Φ(·) is the N(0, 1)
distribution function, θ = (β0, β1)T = (−2, 1)T, and the true model for X to be the two-

component mixture , where f1(x) and f2(x) denote the N(2.35,
0.41) and N(−0.26, 0.38) density functions, respectively. The two normal components are
chosen to produce a bimodal distribution with mean 0, variance 1, skewness 1.3, and
kurtosis 2. A random sample of size n = 2000 is generated from the structural measurement

error model for individual data defined in § 2.1 with , so that the reliability ratio

 (Carroll et al. 2006, § 3.2.1). For both pooling protocols, we set ng = 10,
for g = 1, 2,…, G, yielding G = 200 pools. Thus, in the results which follow, the MLEs from
the data with individual responses are based on 2000 responses while the estimates from the
data with pooled response are based on only 200. The assumed models for X we consider are
(a) a normal distribution, representing the situation wherein one misspecifies the latent-
variable model and (b) a two-component mixture normal distribution, representing the
situation in which one serendipitously chooses the correct parametric model. The estimators
resulting from (b) serve as gold standards with which the estimators from (a) are compared.
In the remeasurement method, we set B = 50 and take λ = 1.

For λ ≥ 0, denote by , , and  the MLEs for θ from the data with
individual response, the data with random-pooling response, and the pseudo MLE for θ from
data with homogeneous-pooling response, respectively, when the assumed model for X is

normal, and by , , and  the corresponding estimates when the assumed

model for X is mixture normal. From the SIMEX plots in Figure 1, it is evident that  is

more robust to measurement error than either  or , despite the fact that the

latent-variable model is misspecified and  is a pseudo MLE. For this simulation, all
three estimates for θ under correct modeling do not appear to be sensitive to measurement
error. To provide an overall assessment, we repeated the same simulation 300 times to
observe the average pattern exhibited by the SIMEX plots in the setting described above.

The averages of the 300 sets of , , and , as well as , , and

, are plotted in Figure 2, and the values of these averages for λ = 0, 1 are given in
Table 1. The observations from Figure 2 and Table 1 reconcile the patterns observed from
the one Monte Carlo replicate depicted in Figure 1.

4.3 Interpretation
Our overall simulation results indicate that, in the presence of latent-model misspecification,
estimates computed from data with homogeneous-pooling response can be more robust to
measurement error than those from data with individual response or with random-pooling
response. An interesting related observation is given in Weinberg and Umbach (1999), who
used pooled exposure assessments to improve the efficiency in case-control studies. Unlike
our use of pooling, these authors pool the exposure covariates instead. When the exposure
assessment is obtained from an error-prone assay, the authors show that the attenuation
effect of measurement error on the naive MLEs (that is, estimators which ignore
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measurement error) can be magnified when the pooled exposure assessments are used in
place of the individual exposure assessments. The authors reached this conclusion by
showing that the reliability ratio of the pooled exposure data is lower than that of the
individual exposure data.

Our use of pooling, which can lead to more robust estimators, involves the responses based
on the sorted observed predictor values and is thus structurally different from the approach
taken by Weinberg and Umbach (1999). However, the gains in robustness from
homogeneous pooling can also be explained by the change in the reliability ratio. When we
form pooled responses based on homogeneous covariates, the variation in the true predictor
among the pools is usually larger than the variation in the true predictor based on the
individuals. This is true so long as the reliability ratio of the individual data is not too small,
that is, as long as the process of sorting the W data also approximately sorts the X's. Higher
between-pool variance of the true predictor yields a higher reliability ratio for the pooled
data. In this light, homogeneous pooling can alleviate the effect of measurement error.

Our findings are especially encouraging when group testing is used for cost concerns,
because one may be able to realize large gains in robustness to measurement error in the
presence of latent-model misspecification at a small fraction of the testing cost. One might
naturally conjecture that using pooled responses in place of individual responses would
cause a notable loss in precision when estimating θ. However, we have found that this may
not be true. Inference based on the pooled responses can actually be more efficient than
inference based on the individual responses when the between-pool variance of X is large
and the pool sizes ng are not so large that the pools conceal too much information. In fact, in
our presented simulation study, with ng = 10, we found that the mean-squared errors

associated with  are generally much higher than the mean-squared errors associated

with  (see Table 1). The reduction in bias due to measurement error in  can
again be explained by the increase in the variance of the true predictor among the
experimental units after forming homogeneous pools, which in turn increases the reliability
ratio.

5. New Diagnostic Method
The statistic  proposed by Huang et al. (2006) is designed to test the hypothesis H01:
γ(0) = γ(λ), where γ is one of the elements in Ω, and where γ(0) and γ(λ) are the probability
limits of the target estimators for γ based on the observed data and the λ-remeasured data,
respectively. In the context herein, it is understood to mean that asymptotic results apply
when the number of experimental units grows large without bound; that is, n for individual-
response data and G for pooled-response data. Rejecting H01 implies that the considered
estimator for γ is not robust to measurement error. As nonrobustness can be a consequence
of misspecifying the latent-variable model, rejection of H01 can suggest latent-variable
model misspecification. Because the model parameters are re-estimated based on the noisier
data sets in the remeasurement method, computing  can be time-consuming. We
propose a new test statistic for diagnosing model misspecification that does not require
generating remeasured data or re-estimation based on noisier data.

The creation of our new statistic is motivated by the fact that when the latent-variable model
is correctly specified, θ ̂I and θ ̂R are in close agreement, but that they can differ largely when
the latent-variable model is misspecified (see Figures 1 and 2). This occurs because if the
latent-variable model is correctly specified, so that the likelihood of the data with individual
response and with random-pooling response are both correct, 0I and 0R are both consistent
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estimators of 0. However, close agreement between θ ̂I and θ ̂R is not guaranteed when the
latent-variable model is misspecified.

5.1 Test statistic
For G > r, the new test statistic is defined by

where Ω̂(·)(0) is the MLE of Ω = (θT, τT)T, subscripts I and R denote individual response and
random-pooling response, respectively, and Σ̂ is an estimator of the variance-covariance
matrix of Ω̂R(0) − Ω̂I(0), derived in Web Appendix B. Also shown in Web Appendix B,

 is a Hotelling's T2-type statistic; thus,  follows an F(r, G−r)
distribution under H02. Structurally different from  the statistic  tests the null
hypothesis H02 : ΩR(0) = ΩI(0), where ΩR(0) and ΩI(0) are the probability limits of Ω̂R(0)
and Ω̂I(0), respectively. It is worth noting that  does not depend on the remeasured data, so
it is far easier to compute than .

5.2 Simulation Evidence

To examine the performance of the test statistics, we first computed  and  using the
simulated data from Figure 1 with n = 2000, G = 200 and ng = 10. Table 2 displays the
results. The variance estimate , in the case of homogeneous pooling, is computed using
100 bootstrap resamples. Using 1.96 as a large-sample critical value, the values of  in
Table 2 reinforce the visual findings revealed in Figure 1. That is, when the model for X is
misspecified as normal, θ ̂H is more robust to measurement error than θ ̂I and θ ̂R.
Furthermore, when the model for X is correctly specified, none of the three values of 
provide sufficient evidence to conclude that the estimates are sensitive to measurement error
or that the latent-variable model has been misspecified. Similarly, when the latent-variable
model is misspecified as normal, the small probability values associated with , computed
with respect to the F(4, 196) reference distribution, provide strong evidence of model
misspecification. When the latent-variable model is correct,  does not indicate significant
disagreement between Ω̂R(0) and Ω̂I(0), as seen through the large probability values,
computed with respect to the F(7, 193) distribution.

To explore the power and size properties of the two statistics, we repeated the same
simulation using 300 Monte Carlo replicates and recorded the proportion of times that H01
and H02 are rejected. Table 3 summarizes the results. Under correct modeling, our findings
suggest that both test statistics have nearly-nominal size characteristics. In addition, the
quantile-quantile plot of the 300 values of  (not shown) strongly supports the limiting F
distribution when the latent-variable model is correct. When the assumed latent-variable
model is incorrect, the power of  under homogeneous pooling is low. This finding
reinforces our robustness discovery.

Under incorrect modeling, although high, the power of  is slightly lower than that of 
based on the individual responses. This is not totally unexpected, given the fact that 
and  detect latent-model misspecification in very different ways. When the latent-variable
model is misspecified in a way that compromises likelihood-based inference,  reveals
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nonrobustness of a single target estimator γ ̂ to measurement error as the noise level increases
for the same data type, whereas  detects the discrepancy between estimators of Ω resulting
from different data types at a fixed level of noise. When the analyst has misspecified the true
latent-variable model, Ω̂R(0) and Ω̂I(0) may be affected similarly, making misspecification
difficult to detect (see Section 6). However, we have found that when n and G are large
enough to produce reasonably precise estimates, the power of  is often above 80% when
the pool size ng ≥ 4, making its use attractive because of computational ease. In practice, we
recommend choosing G so that sê(β ̂0)/β ̂0 and sê(β ̂1)/β ̂1 are both small. Here, sê(·) denotes the
estimated standard error, which we compute using the sandwich formula.

6. Application to Framingham Heart Study
We now apply the remeasurement method and the new testing procedure with data from the
Framingham Heart Study. Our data set consists of 1615 male subjects who are followed for
the development of coronary heart disease over six examination periods. At each of the
second and third examination periods, each subject's systolic blood pressure is measured
twice during two clinic visits. Additionally, the first evidence of coronary heart disease
within the eight-year follow-up period from the second examination period is recorded for
each subject. Define Y as the binary indicator of the first evidence of coronary heart disease
within this follow-up period and the explanatory variable X as the long-term systolic blood
pressure. The true predictor X is unobserved, and the two systolic blood pressure readings
collected during the clinic visits can be viewed as error-contaminated versions of X.

In our analysis, we do not view X as time-dependent, and we take the average of the two
systolic blood pressure readings measured in the second examination period as the value of
the observed predictor, denoted by W. We use the average of the two systolic blood pressure
readings measured in the third examination period as a replicate measurement of X so that

we can estimate the measurement error variance , as in Carroll et al. (§5.4.2.1, 2006).

Because  is estimated, we stack an additional estimating equation associated with  on
top of the estimating equations in (6), (7), (8), and (9); in addition, σu in (5) is replaced with
its estimate σ̂u. To relate Y to X, we posit the probit model, Pr(Y = 1∣X) = Φ(β0 + β1X). For
the assumed latent model for X, we choose a normal distribution and a two-component
mixture normal distribution, assumptions under which we compute the statistics  and .
For illustration, we set ng = 5, for g = 1, 2, …, 323. For the remeasurement method, we take
B = 50 and λ = 1.

Values of  and  for the Framingham data are listed in Table 4. Using these values, one
can not find sufficient evidence of misspecification when the assumed latent-variable model
is mixture normal. Under the normal model assumption, the statistic  based on
individual response and  suggest different conclusions, but this is not necessarily
contradictory for the reasons noted in Section 5.2. At the current contamination level of the
raw data (λ = 0), θ ̂R and θ ̂I are affected similarly by measurement error under the normal
assumption. More importantly, our methods reveal a novel finding for these data; namely, if
one prefers a simpler assumed latent-variable model, such as the normal, the pseudo MLE
based on homogeneous-pooling responses is less sensitive to measurement error when
compared to the MLE based on individual responses.

7. Discussion
When compared to individual binary response, we have shown that likelihood-based
inference in structural measurement error models for pooled binary response can be more
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robust to covariate measurement error when the latent-variable model is misspecified.
Moreover, pooling can improve efficiency in estimation. Pooled binary responses do arise
naturally in group testing (Gastwirth and Johnson, 1994; Vansteelandt et al., 2000), and our
findings suggest that latent-model misspecification may be less of a concern in this setting,
so long as pools are composed homogeneously. However, as we have illustrated herein, our
use of pooling is not restricted to group testing. Furthermore, including multiple covariates
would not pose methodological challenges beyond those seen here. If, in addition to the
mismeasured X, the analyst also uses V, measured without error, then the issue of model
misspecification is only relevant to the model of X given V, and all of our techniques apply

with  being replaced by an assumed conditional model. If the primary regression
model depends on a multivariate error-prone covariate X, homogeneous pools can be formed
by sorting the observed W data by the least noisiest covariate first. The rationale for this is
to achieve the largest possible between-pool variance of X, noting that sorting the observed
covariate associated with a heavily error-prone predictor may not change the between-pool
variance of this predictor significantly.

We have also proposed a new test statistic  for diagnosing model misspecification. The
rationale for using  and  as indicators of model misspecification are different, yet, they
are united by a common, almost-counterintuitive theme. The construction of both statistics
involves some form of information reduction, that is, one either adds more noise to the
observed W to compute , or one conceals the individual responses to compute . In the
context of structural measurement error models for binary response, the fact that one can
learn more from the data by reducing information is intriguing. In fact, we feel that this
general idea could prove to be useful when examining model selection in a broader context.

It is important to remember that robustness does not guarantee consistency, yet, robustness
is still a desirable property for an estimator to possess when measurement error exists. We
do not suggest that estimates from pooled analyses should blindly replace those from the
individual data. In fact, because the pseudo MLE is biased, we recommend using the MLE
based on the original individual responses when there is insufficient evidence of latent-
variable model misspecification. However, if there is a genuine uncertainty about the form
of the true latent-variable model and one desires an estimator that is less sensitive to
measurement error, the pseudo MLE based on homogeneous pooling is preferred.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
SIMEX plots for regression parameter estimates. The horizontal dot-dashed line is a reference
line placed at the true parameter values. The left (right) panel depicts the estimates under a
normal (mixture normal) assumption for X. The solid line, dashed line, and dotted line
correspond to θ ̂I, θ ̂R, and θ ̂H, respectively.

Huang and Tebbs Page 13

Biometrics. Author manuscript; available in PMC 2011 December 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
SIMEX plots averaged over 300 Monte-Carlo replications. The horizontal dot-dashed line is a
reference line placed at the true parameter values. The left (right) panel depicts the estimates
under a normal (mixture normal) assumption for X. The solid line, dashed line, and dotted
line correspond to θ ̂I, θ ̂R, and θ ̂H, respectively.
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Table 1
Mean regression parameter estimates from 300 Monte-Carlo replications under the
normal and mixture normal latent-variable assumption with β0 = −2, β1 = 1, and λ = 0, 1.
Monte-Carlo mean-squared errors are in parentheses. IND, RP, and HP represent
individual response, random-pooling response, and homogeneous-pooling response,
respectively

Normal

IND −2.25 (0.064) −2.54 (0.295) 1.26 (0.068) 1.53 (0.283)

RP −2.37 (0.135) −2.92 (0.846) 1.35 (0.126) 1.83 (0.691)

HP −2.12 (0.015) −2.19 (0.035) 0.97 (0.001) 1.03 (0.001)

Mixture normal

IND −2.01 (< 0.001) −2.01 (< 0.001) 1.01 (< 0.001) 1.01 (< 0.001)

RP −2.02 (< 0.001) −2.02 (< 0.001) 1.01 (< 0.001) 1.01 (< 0.001)

HP −2.03 (0.001) −2.02 (< 0.001) 1.05 (0.002) 1.03 (0.001)
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