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Rat Prefrontal Cortical Neurons Selectively Code Strategy
Switches
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Multiple memory systems are distinguished by different sets of neuronal circuits and operating principles optimized to solve different
problems across mammalian species (Tulving and Schacter, 1994). When a rat selects an arm in a plus maze, for example, the choice can
be guided by distinct neural systems (White and Wise, 1999) that encode different relationships among perceived stimuli, actions, and
reward. Thus, egocentric or stimulus–response associations require striatal circuits, whereas spatial or episodic learning requires hip-
pocampal circuits (Packard et al., 1989). Although these memory systems function in parallel (Packard and McGaugh, 1996), they can also
interact competitively or synergistically (Kim and Ragozzino, 2005). The neuronal mechanisms that coordinate these multiple memory
systems are not fully known, but converging evidence suggests that the prefrontal cortex (PFC) is central.

The PFC is crucial for abstract, rule-guided behavior in primates and for switching rapidly between memory strategies in rats. We now
report that rat medial PFC neuronal activity predicts switching between hippocampus- and caudate-dependent memory strategies.
Prelimbic (PL) and infralimbic (IL) neuronal activity changed as rats switched memory strategies even as the rats performed identical
behaviors but did not change when rats learned new contingencies using the same strategy. PL dynamics anticipated learning perfor-
mance whereas IL lagged, suggesting that the two regions help initiate and establish new strategies, respectively. These neuronal dynam-
ics suggest that the PFC contributes to the coordination of memory strategies by integrating the predictive relationships among stimuli,
actions, and reward.

Introduction
Human cognition is organized by abstract rules that include sets
or strategies that organize relationships among actions and con-
tingencies (Fuster et al., 2000). Rule- or strategy-guided behavior
is demonstrated when identical stimuli elicit different responses
or different stimuli elicit the same response, as in the Wisconsin
card sorting task (Milner, 1982). Prefrontal cortex (PFC) damage
impairs normal rule learning in humans (Owen et al., 1991; Ger-
shberg and Shimamura, 1995; Levine et al., 1998; Bunge et al.,
2005) and disrupts rule-guided behavior in monkeys (Dias et al.,
1996; Bussey et al., 2001; Gaffan et al., 2002). Consistent with the
effects of lesions, monkey PFC neurons encode abstract rules
(Wise et al., 1996; White and Wise, 1999), categories (Freedman
et al., 2001), and strategies (Genovesio et al., 2005), so that neu-
ronal activity depends more on interpretation and goal than ei-
ther physical stimulus attributes or responses (White and Wise,
1999).

Although the structural homology of the rodent and primate
PFC remains controversial, strategy switching provides a com-
pelling functional homology: rats trained to use one rule to find
food (e.g., approach a place) adapt to changing task contingen-
cies and use a new rule (e.g., make a body turn). Strategy switch-

ing requires the animals to distinguish different relationships
among the same stimuli and responses to perform well and is
impaired by medial PFC (mPFC) inactivation (Ragozzino et al.,
1999; Rich and Shapiro, 2007). Because place and response strat-
egies are implemented by coactive and dissociable brain systems
that operate in parallel, strategy switching provides an important
model for investigating the neural mechanisms of PFC function
and its role in coordinating multiple memory systems. The neu-
ronal coding mechanisms that support strategy switching in ro-
dents remain unknown.

The present experiment recorded prelimbic (PL) and infral-
imbic (IL) neuronal activity while rats switched between place
and response strategies in a plus maze paradigm that was im-
paired by mPFC inactivation (Rich and Shapiro, 2007). The ex-
perimental design distinguished the influence of strategy from
other sensory– behavioral correlates by assessing neuronal activ-
ity as rats made the same consistent path from start to goal before,
during, and after switching (see Fig. 1). Thus, the path from the
south start arm to the east goal arm was identical in both the “go
east” spatial and the “turn right” response tasks. If PL/IL neurons
code task strategy rather than specific goals, rewards, or overt
behaviors, then their activity (1) should change when a new strat-
egy is adopted, even if the two strategies are expressed in identical
behavior, and (2) should be stable when the same strategy is
expressed by different behaviors. Both of these predictions were
met. Strategy coding predominated in the rat PL and IL and
predicted the time course of even while the rats performed iden-
tical behaviors. The results show that the rat mPFC, like primate
PFC, helps organize behavior by encoding abstract rules that de-

Received Dec. 18, 2008; revised April 6, 2009; accepted April 27, 2009.
This work was supported by National Institutes of Health Grants MH065658 and MH073689 and the Mount Sinai

School of Medicine.
Correspondence should be addressed to Matthew Shapiro, Fishberg Department of Neuroscience, Mount Sinai

School of Medicine, One Gustave Levy Place, Box 1065, New York, NY 10029. E-mail: matthew.shapiro@mssm.edu.
DOI:10.1523/JNEUROSCI.6068-08.2009

Copyright © 2009 Society for Neuroscience 0270-6474/09/297208-12$15.00/0

7208 • The Journal of Neuroscience, June 3, 2009 • 29(22):7208 –7219



scribe the higher-order relationships among percepts and ac-
tions, suggest that “rule coding” by prefrontal cortex may be
conserved across mammalian species, and that these rules can
influence multiple memory systems.

Materials and Methods
Animals
Four Long–Evans rats weighing 275–325 g at the beginning of the exper-
iment were housed individually in a colony room held on 12 h light/dark
cycle. After acclimating to the colony room for at least 5 d, rats were food
restricted to no less 85% of their ad libitum body weight and maintained
on a restricted diet for the duration of the experiment.

Recording equipment
Drive assemblies of 12 independently mobile tetrodes (Neuro-hyper-
drive; David Kopf Instruments) were constructed and implanted using
standard stereotaxic methods. Tetrodes were fabricated by twisting to-
gether four 12.7-�m-diameter nickel– chromium wires (RO-800; Kan-
thal Precision Technology). The Cheetah data acquisition system (Neu-
ralynx) recorded simultaneously from the 12 tetrodes, as well as the
animal’s location and heading as signaled by light-emitting diodes on the
drive assembly that were detected by an overhead video camera and
stored as time-stamped x–y coordinates (640 � 480 camera pixels, 16.7
ms/sample). Custom COM (Microsoft) programs running simulta-
neously with Cheetah acquisition software allowed the insertion of event
flags that signaled variables such as trial type, strategy, or correct versus
incorrect trials. Data were sorted offline according to these event flags.

Maze
An elevated plus maze was made of wood with four arms (65 cm long,
6.25 cm wide, with outside edges 2.5 cm high) meeting at 90° angles. Food
wells were drilled at the ends of all arms to hold cereal reward. The
bottoms of the wells were made of mesh screen, below which was an
inaccessible food reward to minimize the influence of odor cues in the
task. A waiting platform was placed next to the maze. The maze and
waiting platform were open to the testing room, which had several sta-
tionary visual cues on the walls. East (E) and west (W) maze arms were
designated “goal” arms, and north (N) and south (S) arms were desig-
nated “start” arms. Only one start arm was open on a given trial, and a
wooden block prevented access to the unused start arm. In each trial,
both goal arms were open but only one was baited.

Behavior analysis
In all tasks, the rat was placed on a start arm and trained to approach the
choice point and then enter a goal arm for food reward (half of a piece of
Froot Loops cereal; Kellogg’s). In “place” tasks, rats learned to approach
one of the two goal arms (east or west) from both start arms. In “re-
sponse” tasks, rats learned to make either a right or a left body turn on
every trial to enter the rewarded goal arm. Thus, in place tasks, rats
learned to find food by approaching the same location at the end of one
of two goal arms by turning in opposite directions from each of two
opposing start arms. In response tasks, rats learned to find food by turn-
ing in the same direction from each start arm and thus enter opposite
goal arms.

A key feature of strategy switching in the plus maze allowed dissocia-
tion of rule coding from other sensory– behavioral correlates: one “con-
sistent path” from start to goal always remained constant before, during,
and after switching. To clarify this important feature, “paths” (trajecto-
ries), “tasks” (contingencies), and “strategies” (abstract rules) were de-
fined as hierarchically related, increasingly abstract levels of behavior
organization in the plus maze (Fig. 1). Rats learned four possible paths,
specific trajectories through the maze from start to goal, e.g., north to
west (N-W), north to east (N-E), etc. Two paths together defined a task,
which stipulated stimulus–response–reward contingencies; for example,
N-E and S-E paths were rewarded in the “go east” task, and N-E and S-W
paths were rewarded in the “go left” task. In this experiment, tasks were
also guided by strategies, abstract rules that did not stipulate reward
contingencies but defined the cognitive approach relevant to solving a
task. Both “go east” and “go west” thus required spatial navigation and
described a place strategy, whereas “go left” and “go right” required

stereotyped body turns and described an egocentric response strategy.
Different paths could thereby serve the same strategy; for example, the
N-W and N-E paths could be guided by different “go west” and “go east”
tasks, but both required approaching a place. The key comparison was
provided by consistent paths that were shared by both place and response
strategies; for example, the N-W path was correct during both the “go
west” place task and the “turn right” response task.

At the start (�20 trials) of each session, task contingencies were un-
changed from the previous day (“before” phase), and performance levels
were high, demonstrating that rats recalled previous training (mean �
SE, 96.2 � 0.4% correct). Contingencies then changed without warning,
from a place task to a response task or vice versa during switches (e.g., “go
east” to “turn left”) or from one place task to the other during reversals
(e.g., “go east” to “go west”) (Fig. 2). When contingencies were changed,
the rats initially continued to follow the previous task and made errors
and then improved performance throughout the remainder of the ses-
sion. During switches, one path remained correct before and after the
switch (e.g., both “go west” and “turn right” both require N-W paths)
(Fig. 2e), so that 50% performance reflected correct choices on consistent
paths and errors on “changing paths”; during reversals, both paths
changed so that rats performed worse initially (0% correct). Rats learned
new tasks through trial and error within one continuous session. After
reaching criterion performance (eight consecutive correct trials), 20 –30
additional trials tested the newly acquired task (“after” phase). Rats
learned and followed new contingencies with proficiency equal to the
before phase in both switches and reversals (performance, 96.5 � 0.4%;
ANOVA; effect of training phase, F(1,30) � 0.08, p � 0.78; effect of session
type, F(1,30) � 2.106, p � 0.16; interaction of phase and session type,
F(1,30) � 0.186, p � 0.67) (Fig. 2d). Switch or reversal sessions were
separated by at least 2 d of stable performance (SP) sessions in which rats
performed the most recently learned task for 30 –50 trials (at �80%
correct).

Maze acclimation
Before surgery, all rats were handled and acclimated to the testing envi-
ronment by allowing them to forage for food randomly scattered on the
maze.

Surgery
Rats were anesthetized with continuous-flow isoflurane and mounted in
a stereotaxic frame. Rectal temperature was monitored, and core temper-
ature was maintained with a heating pad. The scalp was shaved, scrubbed

Figure 1. Organizing principles of plus maze behavior. Rats learned four possible paths from
start to goal, e.g., N-W, N-E, etc. (base of triangle). Two paths define a task, which stipulates
reward contingencies; for example, reward is always in the east arm in the “go east” task or
always turn left in the “go left” task (middle row). Tasks may also be guided by abstract strate-
gies, which do not stipulate reward contingencies but define the cognitive domain of the task;
for example, “go east” requires spatial navigation and thus a place strategy, whereas “go left”
requires an egocentric response strategy (triangle apex). Thus, paths, tasks, and strategies
reflect increasingly abstract descriptions of behavior in the plus maze.
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with Betadine, and incised. A single burr hole was drilled at stereotaxic
coordinates �3.2 mm anterior, �0.5 mm lateral from bregma. Dura was
removed, and the electrode bundle was lowered to the cortical surface.
Two ground wires were attached to skull screws, and the drive assembly
was affixed to the skull with dental acrylic. All electrodes were immedi-
ately lowered 1.27 mm into the cortex. Rats were allowed to recover for
5–10 d after surgery before beginning maze training.

During pretraining, tetrodes were lowered to their target depths. In
each rat, 6 of the 12 recording tetrodes were aimed at the PL region,
whereas the other 6 were aimed at IL. Because the tetrode bundle is large
(1 mm diameter), tetrodes aimed at each region were interspersed in the
bundle and counterbalanced across rats to avoid systematic differences in
mediolateral or anteroposterior positioning. Initially, tetrodes were low-
ered by �0.6 mm/d, in 0.3 mm increments. When tetrodes reached the
depth of the upper PL (�2.5 mm) or IL (�3.8 mm), they were adjusted
with fine movements until a stable signal was detected. Tetrodes were

lowered throughout the experiment to collect data from new cell popu-
lations but were not moved within 48 h before a switch or reversal.

Pretraining
After surgery, rats reacclimated to the maze with another foraging ses-
sion. The next day, cereal reward was placed only in the food cups on
both goal arms, and one start arm was blocked. Rats were placed on each
start arm twice and given access to both goal arms for four trials total. The
direction of their first turn was recorded for each trial, and three or more
turns in the same direction was noted as a turning bias. If a rat displayed
a turning bias, then the first response strategy that rat learned was oppo-
site to their turning bias.

Training
Each rat was assigned pseudorandomly to either “go east” or “go west” as
an initial task. In each trial, the rat was placed at the distal end of a start

Figure 2. Behavior in the plus maze. a, Schematics show correct paths (arrows) for tasks before and after a switch (“go east” to “turn left”), a reversal (“go east” to “go west”), and during SP (“go
east”). During switches, one path changed (dotted) whereas the consistent path did not (solid arrow); during reversals, both paths changed, and during SP, both paths were consistent. b, Learning
curves calculated probabilities of a correct choice (red line) as a function of trial number and upper and lower CIs for this probability (black lines) (Smith et al., 2004). Blue stars show correct (top) and
error (bottom) trials. Contingencies changed on trial 21 (“begin switch”). c, Learning curves were used to assign trials to 11 blocks and four phases (before, early, late, and after). Bars show
proportions of trials correct within each block, averaged across all switches � SEM. d, Performance (percentage � SEM correct) did not differ before (Bef) or after (Aft) switches or reversals. e,
Example paths taken by a rat while switching from response (“turn right”) to place (“go west”) strategies. Trials were parsed by learning phase, and position data (gray pixels) are displayed on a grid
(actual locations were fixed on the maze throughout, but paths are shown separately for illustration). The rat performed perfectly before the switch. After contingencies were changed, the rat
continued to perform perfectly on the consistent path (N-W) but erred on the changing path (S-E to S-W). No errors occurred after criterion was reached.
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arm (north or south) facing the center of the maze and allowed to enter
one goal arm (east or west). Rats were not allowed to correct errors; if
they attempted to backtrack at any point, the trial ended with no reward.
If the rat chose the correct arm, it was allowed to consume the food and
then placed on the waiting platform until the start of the next trial. If the
rat entered the incorrect arm, then it was returned to the waiting plat-
form with no reward. Intertrial intervals were �5– 8 s, and criterion
performance was eight consecutive correct trials.

During initial training, trials occurred from each of the two start arms,
alternating every two trials for up to 40 trials. If rats reached criterion on
the first day, training ended and the next day the same initial strategy and
task were performed in a session of 40 trials from pseudorandomly as-
signed start arms (such that no more than three consecutive trials oc-
curred from the same start arm). If rats did not reach criterion on the first
day, they were trained using the alternating pattern of start arms until
they reached criterion, and then they progressed to pseudorandom start
arm trials. Each rat performed 40 trials of the initial strategy from pseu-
dorandom start arms, achieving �80% correct trials for 2 d, and then
switch or reversal training began.

Rats performed multiple switches and reversals on the plus maze, each
over the course of �8 weeks. PL/IL activity is required to perform at least
three task switches but not spatial reversals (Rich and Shapiro, 2007).
Task contingencies were changed initially so that two rats learned a spa-
tial reversal, and two learned to switch from a spatial to a response task.
Each switch or reversal session started with a before phase in which rats
first performed a block of trials in their previously learned task, and start
arms were presented pseudorandomly. Then task contingencies changed
without warning or unusual delay between trials. The start arms were
interleaved with two trials from each start to ensure equal sampling of
both paths during the switch or reversal. When rats reached a criterion of
eight consecutive correct trials in the new task, they were required to
continue performing the newly acquired task, but start arms were again
presented pseudorandomly. All data included in the final analyses were
collected during switches or reversals acquired in one training session.

Twenty-four hours after a switch or reversal session, rats performed
the new task again for at least 40 trials, constituting a stable performance
session. All switches/reversals were separated by a minimum of two stable
performance sessions and therefore occurred at least 3 d apart (usually
7–10 d).

Sessions selected for analysis
Only spatial reversals were included in the analysis because rats did not
reliably learn response reversals within one training/recording session.
Stable performance sessions were only included after the task had been
performed above criterion for at least 1 d. Twelve switch, eight stable
performance, and five reversal sessions met all criteria for additional
analysis.

Recording
Data acquisition began for each trial when the rat was placed at the distal
end of a start arm. Recording was paused while rats consumed the reward
and were placed on the waiting platform.

Unit discrimination. Activity of multiple single cells (units) were re-
corded from tetrodes that provide more accurate discrimination of indi-
vidual cells than single-electrode recordings (Harris et al., 2000). To
assign waveforms to single units, custom computer programs calculated
parameters from digitized waveforms and displayed these parameter val-
ues as points in a multidimensional space, with each dimension defined
by one parameter (e.g., peak or valley time and amplitude, peak-to-valley
distance, valley-to-valley distance, etc). Points were assigned to clusters
offline with semi-automated, nonlinear elliptical cluster cutting soft-
ware. The software allows manual adjustment, which dramatically in-
creases accuracy of unit discrimination (Harris et al., 2000). All clearly
separated clusters were included for subsequent analysis. The same com-
puter program assessed potential drift by displaying sequential spike
waveforms in bins of spikes sampled throughout the trial and by calcu-
lating average waveforms for selected trial subsets (supplemental Section
1, supplemental Fig. 1, available at www.jneurosci.org as supplemental
material).

Behavior analysis. Learning curves were generated for each switch ses-
sion using an algorithm developed by Smith et al. (2004) that calculates
the probability of the rat making a correct choice as a function of trial
number. This approach takes the viewpoint of an ideal observer, such
that performance in the entire session is considered to calculate the prob-
ability of a correct trial at each point. The algorithm has been compared
with other methods (e.g., moving averages) and has been shown to be
more accurate for estimating learning (Smith et al., 2004). The algorithm
requires two constants to be specified. The initial probability (before
learning) of correct outcome ( p0) was set to 0.5 for switches and 0.0 for
reversal. This value was chosen because the rats initially followed a pre-
viously used task, which would result in 50% correct trials in the new
strategy during switches or 0% correct during reversals. The maximum
value for the data was specified as 1, because trial outcomes were coded as
follows: 0, incorrect; 1, correct. A conditional start flag estimated the
amount of bias in the initial conditions. Because rats had been trained
previously on a strategy, the value specifying the most bias (start flag, 2)
was used.

Blocks of trials were defined by the lower 95% confidence interval (CI)
for the probability of correct outcome as follows. For initial analysis, each
curve was divided into four blocks: before, early, late, and after. The
before phase included all trials before task contingencies changed. The
early phase included trials from the time the contingencies changed until
the learning curve showed improving performance (the lower CI sur-
passed 0.30 during switches and 0.10 during reversals). The late phase
included the remaining trials before performance reached criterion
(lower CI above 0.30 and below 0.60 for both switches and reversals). The
after phase included all trials after high performance was achieved in the
new task (lower CI �60%). Additional analysis of switches divided each
curve into 11 trial blocks. Before and after phases were each divided into
three blocks of trials, so that blocks 1–3 consisted of trials before the
switch and blocks 9 –11 consisted of trials after criterion performance
was reached. Blocks 4 (lower CI of 0.4 – 0.3) and 5 (lower CI �0.29)
quantified performance after contingencies changed and before the
learning curve began to increase; blocks 6 – 8 assessed improving perfor-
mance (block 6, lower CI of 0.3– 0.39; block 7, lower CI of 0.4 – 0.49;
block 8, lower CI of 0.5– 0.59). Average performance per block was cal-
culated as the proportion of correct trials within a defined block. All post
hoc comparisons with repeated-measures ANOVA assessed changes in
average performance across blocks. All post hoc comparisons used the
Bonferroni’s method, so that the corrected � � 0.05.

Spatial behavior analyses
Because the maze arms were narrow (6.25 cm wide), the rats’ movements
were primarily restricted to specific trajectories. In rare instances, a rat
failed to make a smooth trajectory through the maze during an individual
trial (e.g., pausing in the middle of a trial, leaning over the edge of the
maze, etc.). To exclude these aberrant behaviors and their potential in-
fluence on single-unit activity, each trial was replayed and observed on
the computer monitor. Any trial with aberrant behavior was excluded
from analysis.

To further ensure that overt behavior did not change during consistent
paths in two strategies, consistent path trials occurring before and after a
switch were parsed from the recording session and saved in separate
computer files. Custom software extracted and analyzed the rat’s posi-
tion data using location arrays. Because higher grid resolutions can reveal
smaller statistical differences than low resolution grids (larger n), we used
a relatively high-resolution, 50 � 50 grid (�5 cm 2/grid unit) to assess
behavior. To quantify behavior during these consistent path trials before
and after switches, the rat’s position, running speed, and direction of
movement were analyzed statistically. Position was quantified by the
number of visits to each �5 cm grid unit per trial, and correlation of these
values before and after switching assessed the spatial variability of the
rat’s movement across trial blocks. Similarly, the rat’s heading direction
and running speed in each visited grid unit was correlated across trial
blocks. Average running speed was also compared across trial blocks
using t tests. t tests assessed differences in the overall magnitude of speed,
whereas the correlations assessed the spatial distribution of those speeds.
The statistical analyses examined behavior on the whole maze and then
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separately examined the three critical subregions of the maze: the start
arm, choice point, and goal arm, defined by the grid units in these re-
gions. Separate t tests and correlations were performed for each subre-
gion as described above to ensure that unit activity was only assessed
during homogenous behavior.

To compare switches to identical behaviors during stable perfor-
mance, one of two paths was selected at random from each stable perfor-
mance session, and the first and last five trials of the selected path were
parsed from the session and analyzed as above.

Unit analysis. Behavioral correlates of unit activity were analyzed using
temporal (supplemental Section 2, supplemental Fig. 2, available at
www.jneurosci.org as supplemental material) and spatial tests, and the
same overall pattern of results was obtained in both. The initial analysis
examined changes in firing rate in the start and the goal arms by dividing
the maze into a 28 � 28 grid (�9.3 cm 2/grid unit) and calculating the
average firing rate in each grid unit. Sessions were divided into four
phases (before, early, late, and after; stable performance sessions were
divided into four equal trial blocks), each phase was separated into paths
originating from each start arm, and each path was separated into start
(six grid units) and goal (seven grid units) regions. The average on-maze
firing rate was calculated for each cell during each phase. “Silent cells”
with firing rates �.01 Hz during all four phases were excluded from
additional analysis. Phase � path � maze region ANOVAs were per-
formed for each neuron. Bonferroni’s-corrected post hoc comparisons
were performed for all phase-responsive cells, and cells were classified as
either persistently changing (if before and after phases differed) or tran-
siently changing (if there were differences in firing rates, but before and
after phases did not differ). To ensure that changes in firing rates ob-
served during switches were not attributable to movement of tetrodes
during recording, waveforms were monitored throughout recording ses-
sion, and average waveforms were compared statistically before and after
switching (supplemental Section 1, supplemental Fig. 1, available at
www.jneurosci.org as supplemental material).

To directly compare changes in neuron activity and behavior under
the same constraints, correct trials at the beginning (before) and end
(after) of switch, reversal, and stable performance sessions were divided
into paths originating from each start arm. The same high-resolution
grids (50 � 50) described above were used here to assess the same spatial
resolution in both unit activity and behavior. The mean firing rate of each
neuron was calculated for each grid unit excluding those never visited by
the rat. The resulting firing rate maps for each neuron recorded before
and after the switch were then compared with t tests to determine
whether cells significantly changed firing rates.

Temporal dynamics of neuron activity was analyzed during switches
by comparing the firing rates of persistently changing cells (those with a
main effect of phase by ANOVA and a significant before vs after post hoc
test, as described above), during consistent paths. Each session was di-
vided into 11 trial blocks (described above), and average firing rate per
grid unit was calculated for each block. For each neuron, the spatial
distribution of firing rates was standardized by calculating a z-score
based on the mean and SD of firing rates across all visited locations. This
normalization ensured that each cell in an array would contribute equally
to the population analysis independent of its mean firing rate. For each
cell, a vector of 22 z-scores was created by calculating the z-score of the
average grid unit per maze region per trial block (11 trial blocks � start
and goal regions). Each array of PL and IL neurons were submitted to
principal components analysis (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material) and correlation analyses.

Correlation matrices were analyzed by converting each Pearson’s r to
Fisher’s Z, which normalizes the distribution of r values (Fisher, 1924).
Because trials before the switch were divided into three trial blocks, the
first six values from each vector represent measures taken before the
switch (three trial blocks in start and goal regions), and the first six rows
(or columns) of the correlation matrix represent correlations of each
successive trial block with the before phase (supplemental Figs. 4, 5,
available at www.jneurosci.org as supplemental material). Therefore, the
values of the first six rows were compared across trial blocks (start and
goal pixels were included in the same trial block) using repeated-
measures ANOVA with a factor of brain region (PL or IL). Because the

correlation matrix is diagonally symmetric, some measures in the first six
rows repeat in the top left corner. For comparisons between groups, these
measures were excluded, so that correlations starting when the switch began
(trial block 4) through the end of matrix (trial block 11) were submitted to
analysis (supplemental Fig. 4, available at www.jneurosci.org as supplemen-
tal material). These calculations assessed the decay of the original code, rbe-

fore. The same procedure was followed for the last six rows of the correlation
matrices, which represent the population correlations with the phase after
the switch. Here, measures in the bottom right repeat and were excluded, so
that correlations starting at the beginning of the matrix (trial block 1)
through the end of the switch (trial block 8) were submitted to analysis.
These calculations assessed the development of the new code, rafter. Changes
across blocks within each population were also assessed using a repeated-
measures multivariate ANOVA (MANOVA) and orthogonal contrasts (Sys-
tat Software). For this analysis, the before block was defined by the unique
entries in the first six rows in the top left (i.e., start and goal arm blocks 1,2;
1,3; 2,3), and the after block was defined by the unique entries in the last six
rows (i.e., start and goal arm blocks 9,10; 9,11; 10,11). In this way, before was
compared with each block from 4 to 11, and after was compared with each
block from 1 to 8. All post hoc comparisons used the Bonferroni method so
that the corrected � � 0.05.

Results
Rats learned plus maze strategies with switches and reversals
Rats (n � 4) were trained to perform strategy switches and rever-
sals on a plus maze (Fig. 2a) (see Materials and Methods). Before
a switch or reversal, rats were pretrained in one task. On testing
days, rats performed a series of trials in the pretrained task (the
before phase), and then task contingencies changed without
warning and new contingencies were learned through trial and
error. In the same testing session, rats were then tested on a series
of trials using the new task (the after phase). Performance was
quantified by computing a learning curve for each switch or re-
versal using a state-space smoothing algorithm that calculates the
probability of a correct choice as a function of trial number
(Smith et al., 2004). To compare neuron activity during equiva-
lent learning epochs across rats and sessions, trials within each
session were grouped into performance-matched blocks for anal-
ysis (Fig. 2b,c). Performance was identical before and after
switching (Fig. 2c, compare blocks 1–3, 9 –11) but differed statis-
tically during the trial and error phase, when performance was
poor (blocks: repeated-measures ANOVA, F(10,110) � 25.26; p �
0.001). Performance improved measurably by block 7, when
mean performance was typically �70% correct.

PL/IL neurons encoded strategy switches
After initial training, the rats were implanted with 12 recording
tetrodes, six targeted to PL and six to IL (Fig. 3). A total of 374
neurons (208 PL and 166 IL) were analyzed: 184 from strategy
switches, 83 from reversals, and 107 from sessions in which one
task was performed consistently with no switch or reversal (stable
performance sessions). Similar proportions of PL and IL neurons
were recorded across the three session types (� 2

2df � 3.17; p �
0.20). The mean � SEM firing rate of PL/IL neurons was 1.34 �
0.18 Hz. PL and IL fired with similar rates overall (PL, 1.40 �
0.20; IL, 1.27�.33; t371df � 0.34; p � 0.73), and the average was
maintained during switches (1.44 � 0.31), reversals (1.28 �
0.31), and stable performance (1.00 � 0.23; ANOVA, F(2,371) �
0.55; p � 0.58).

Behavioral correlates of PL/IL activity resembled those re-
ported previously [e.g., many neurons fired during goal approach
(Jung et al., 1998; Pratt and Mizumori, 2001) (supplemental Fig.
2, available at www.jneurosci.org as supplemental material)]. The
most striking and new results emerged, however, when we ana-
lyzed single-unit activity changes during strategy switches. Dy-
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namic, strategy-related coding predominated in both PL and IL
when quantified by both perievent time histograms (supplemen-
tal Section 2, available at www.jneurosci.org as supplemental ma-
terial) and the spatial distribution of firing rates (below). In con-
trast, coding was essentially unchanged during stable
performance and reversal learning. Thus, mPFC neurons coded
switches among memory systems but not reversals within a single
system.

To quantify the influence of different task variables on single
units, three-way ANOVAs compared firing rates across four
learning phases (before, early, late, and after), two paths, and two
maze regions (start and goal arms) during switch, reversal, and
stable performance sessions (Table 1). More neurons responded
to learning phase (significant ANOVA effect at � � 0.01) during
strategy switches than either reversals or stable performance

(� 2
2df � 17.15; p � 0.001). Equal propor-

tions of PL and IL neurons were phase re-
sponsive during switches (z � 1.62; p �
0.10). Most phase-responsive neurons
were persistently changing cells (59.2%, 45
neurons), which fired with significantly
different rates before and after the switch
( post hoc tests, p � 0.05) (Figs. 4a, 5a,c).
Firing rates decreased in 62.5% (25) and
increased in another 37.5% (15) of persis-
tently changing neurons. Other phase-
sensitive cells (35.5%, 27 neurons)
changed transiently, firing differently dur-
ing early or late phases but similarly before
and after the switch. The remaining 5.3%
(four neurons) had only a main effect of
phase. Simultaneously recorded ensem-
bles obtained from individual sessions also
had higher proportions of phase-
responsive cells during switches than other
conditions (Fig. 4c) (proportion of cells
with ANOVA effect of session type, F(2,22)

� 8.77, p � 0.002; post hoc comparisons:
switch vs reversal, p � 0.05; switch vs sta-
ble performance, p � 0.002; reversal vs sta-
ble performance, p � 1.0). Thus, PL and IL
firing rates distinguished strategy switches
from stable performance and reversal
learning sessions by developing new codes
as rats acquired the switch.

Coding dynamics reflected strategy
switches during identical behaviors
If PL/IL coding dynamics specifically re-
flect switching memory strategies rather
than other behavioral variables, then cod-
ing should change when rats learn to use
different strategies even as overt behavior
remains identical. To test this, neuronal
activity recorded exclusively in correct
consistent paths throughout strategy
switching was parsed and analyzed (e.g.,
N-W paths as a rats switched from the “go
west” place task to the “turn right” re-
sponse task) (Fig. 5a). Because PL/IL neu-
rons can respond to running speed
(Poucet, 1997; Pratt and Mizumori, 2001)
or deviations in spatial trajectories (Euston

and McNaughton, 2006), we compared the reliability of behavior
statistically (see Materials and Methods), inspected trials re-
played offline, and removed those in which behavior varied (e.g.,
a pause in the middle of a trial or an initial turn toward the
incorrect goal). Behavior tended to be highly stereotyped, with
zero to one trials removed from most trial blocks (mean, 0.64 per
block). Among the remaining trials, position, running speed, and
movement direction never differed between before and after
phases (all p � 0.05) and were highly correlated across phases
(running speed, all r � 0.59, p � 0.001; spatial position, all r �
0.65, p � 0.001; direction, all r � 0.34, p � 0.005). To measure
behavior on a finer scale, the same variables were analyzed sepa-
rately in start, choice point, and goal subregions, and again be-
havior in the consistent path was indistinguishable before and

Figure 3. Tetrodes were located in PL and IL regions. Tetrode tips (arrows) were visualized by light microscope. Coronal
sections are shown, each with clear tracks from two tetrodes each: one in PL and one in IL (b), both in PL (c), or both in IL (d).

Table 1. ANOVA results

Percentage (and number) of cells significant

Switch Reversal SP �2 p

Phase 41.3 (76) 24.4 (20) 19.6 (21) 17.15 �0.001*
Path 23.9 (44) 14.6 (12) 18.9 (20) 3.27 0.20
Maze region 28.3 (52) 34.1 (28) 37.4 (40) 2.77 0.25
Phase � path 17.9 (33) 11.0 (9) 14.0 (15) 2.31 0.32
Phase � region 9.8 (18) 19.5 (16) 6.5 (7) 8.52 0.014
Path � region 17.9 (33) 14.6 (12) 17.8 (19) 0.47 0.79
Phase � path � region 9.2 (17) 12.2 (10) 10.3 (11) 0.54 0.76

Three-way ANOVAs were performed for each neuron. Percentage of all neurons with significant effects of each type were compared across switch, reversal,
and SP. Session types differed significantly in the proportion of phase-responsive neurons, with more neurons affected during switches. There was a trend
toward more phase � region effects during reversals, but this was not significant when corrected for multiple comparisons. The most commonly encoded
variables in all behaviors were maze region and phase.
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after switching (supplemental Section 3,
supplemental Figs. 6, 7, available at www.
jneurosci.org as supplemental material).

Coding changes were prominent dur-
ing strategy switches even in these highly
filtered data, with many neurons (22.9%,
40 of 175) firing at markedly different rates
(� � 0.01) before and after strategy
switches. By comparison, fewer neurons
fired differentially during consistent paths
at the beginning versus the end of stable
performance, when strategies were identi-
cal (12.6%, 13 of 103; � 2

1df � 4.4; p �
0.04) (Fig. 5b). Firing rate changes were
equally common in place-to-response and
response-to-place switches (z � 0.95; p �
0.34) and were equally rare when place or
response tasks were performed stably (z �
0.60; p � 0.55). Across conditions, similar
proportions of PL and IL neurons changed
firing rate (switches, z � 0.88, p � 0.38;
stable performance, z � 1.55, p � 0.12).
Thus, consistent with the previous analy-
sis, PL/IL neurons responded dynamically
to changing memory strategies even when behavior was identical
and responded relatively stably when abstract rules were
constant.

Neuronal coding was consistent in different behaviors guided
by the same strategy
If PL/IL neurons guide changing memory strategies rather than
changes to behavior or task contingencies, then different behav-
iors using the same rule should be coded similarly. To assess this
hypothesis, we compared different paths guided by the same
strategy before a switch (e.g., N-E vs S-E in the “go east” task).
Most neurons (91.3%, 157 of 172) active during this phase fired
with similar patterns even when rats used two different paths to
accomplish the same strategy, and only 8.5% (15 of 172) fired
differently (� � 0.01). In contrast, 22.6% (40 of 172 neurons) of
the same neuronal population had distinct codes when different
strategies guided the same path (� 2

1df � 13.5; p � 0.001). Overall,
the activity of 19.8% (35 of 172 neurons) distinguished strategies,
5.6% (10 of 172) distinguished paths, and 2.5% (5 of 172 neu-
rons) distinguished both path and strategy (Fig. 5d). These results
provide compelling evidence that PL/IL coding dynamics accom-
panied strategy switching between memory systems rather than
changes to overt behavior guided by the same memory system.

If PL/IL neurons encode switching memory strategies rather
than changing contingencies, then firing should be similar when
task contingencies change but the same strategy is followed, as in
reversal sessions. We therefore compared switches, in which task
contingencies and strategies changed, with reversals, in which
task contingencies changed but strategies did not. To ensure that
similar behavior dynamics were compared across sessions, only
changing paths were analyzed here. Proportionally fewer neurons
changed firing rates during reversals (10.8%, 9 of 83) than
switches (21%, 36 of 173; � 2

1df � 3.85; p � 0.05) (Fig. 5b,c).
Neither PL nor IL neurons were strongly affected by the reversal
(PL, 9.6%, n � 5; IL, 12.9%, n � 4; z � 0.46; p � 0.65). Further-
more, proportions of changing cells were similar during reversals
(10.8%) and stable performance (12.6%), suggesting that altered
contingencies alone had no more influence on PL/IL coding than
ongoing consistent behavior. Thus, PL/IL coding accompanied

changes in strategy from one memory system to another more
than changes in overt behavior or reward contingency guided by
the same memory system.

The different firing patterns observed across learning condi-
tions provides strong evidence that neither waveform instability
nor variance in maze running behavior can account for the selec-
tive changes in PL/IL coding during strategy switching. If, for
example, firing rate changes across phases were attributable to
tetrode movement or other sources of waveform instability, then
phase-sensitive neurons should be equally distributed across the
three behavioral treatments, but they were not. Similarly, if small
differences in maze running behavior altered firing rates across
learning phases, then firing in consistent paths should be more
similar than firing in changing paths, but they were not. Rather,
firing rate differed most when strategies were changed, indicating
that neither unit instability nor the details of maze behavior ac-
counted for PL/IL coding dynamics.

PL established new population codes before IL
The behavioral correlates of PL/IL activity above could either
influence or reflect more widely distributed strategy switching
mechanisms. If the neuronal dynamics contribute to switching
strategies, then neuronal activity changes should precede the on-
set of switching behavior; conversely, if the correlates reflect “up-
stream” mechanisms, then changes in behavior would be ex-
pected to precede those in neuronal activity. We therefore
analyzed the temporal pattern of population coding during
switching in persistently changing neurons, the best candidates
for coding abstract rules. Each recording session was divided into
11 performance-based trial blocks using learning curves (see Ma-
terials and Methods). The firing rate of each cell was normalized
to its session mean, and z-scores were computed for each trial
block in both the start and goal arms. Thus, the activity of each
neuron was represented by a vector of 22 z-scores (11 trial
blocks � start and goal arms). These vectors were grouped into
two arrays, one composed of PL and one of IL neurons, and a
correlation matrix was computed from each array (supplemental
Fig. 5, available at www.jneurosci.org as supplemental material).
Only correct consistent path trials were included to ensure that
changes in population activity were attributable to the strategy

Figure 4. PL/IL neurons responded to strategy switching with altered firing rates. Heat plots show two phase-responsive
neurons (a, b) with trials parsed by phase and path (top row, consistent paths; bottom row, changing paths during the same
phase). a, Firing rates (in hertz) decreased across phase on the entire maze. b, Firing rates increased in goal arms of both paths,
showing a phase by region interaction. c, Among simultaneously recorded ensembles, the average proportion of cells that
responded significantly to phase was highest during switches. Boxes represent median (midline), first and third quartiles (box
bottom, top), and minimum and maximum (bars) for proportions of cells per session that responded to phase (bars in Rev and SP
are masked by quartile boundaries). Rev, Reversal. *p � 0.05.
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switch and not other behavioral variables. Both PL and IL popu-
lation codes were stable from one trial block to the next when rats
performed well using one strategy, i.e., during stable perfor-
mance before and after switching (supplemental Fig. 5, available
at www.jneurosci.org as supplemental material), but the popula-
tion codes changed significantly as the switch was acquired.

To assess the dynamics of strategy-related population coding,

we measured (1) the decay of the original,
pre-switch activity patterns once the
switch was imposed, and (2) the emer-
gence of new codes as performance of the
new strategy improved (Fig. 6). We thus
calculated two curves for each population:
rbefore measured the average correlation
between activity before the switch and
each successive trial block and represented
the decay of pre-switch codes (Fig. 6); rafter

measured the average correlation between
activity after the switch and each succes-
sive block and represented the emergence
of new codes (Fig. 6). As shown by the
population matrices (supplemental Fig. 5,
available at www.jneurosci.org as supple-
mental material), PL and IL coding was
stable before switching and rbefore was

high. The initial PL and IL populations codes decayed rapidly
after contingencies were changed but with different dynamics
(rbefore interaction of population and trial blocks, F(7,154) �
0.4.17, p � 0.001; block 7, contrasts, p � 0.001) (Figs. 6, 7b)
(supplemental Fig. 8, available at www.jneurosci.org as supple-
mental material). The initial PL code decayed significantly from

Figure 5. Neuron activity changed with strategy, not path or task. a, c, Position data (gray) displayed on a maze grid assessed overt behavior during consistent paths at the beginning (before)
and end (after) of switches and SP. The radius of the colored circles is proportional to the number of spikes in each grid unit. Tetrode waveforms from the beginning and end of each session are shown
below each path. a, Overt behavior was identical during consistent paths of switches and SP. Activity of the neuron shown in green increased after the switch, and the one shown in red did not change
during SP. b, The proportion of neurons that changed firing rate when behavior was held constant (consistent paths) was higher during switches (black) than SP (white). Similarly, more neurons
changed firing rate in changing paths during switches (black) than reversals (gray). Error bars show SE for each proportion. *p � 0.05. c, Changing paths before and after switches and reversals.
Activity of the green neuron (also shown in a) increased after the switch; the neuron shown in yellow did not change during a reversal (bottom). d, The population of neurons recorded during
switches responded more robustly to changes in strategy when behavior was constant (a, top panel, Before compared with After) than changes in behavior when strategy was constant (a, top panel,
Before, compare with c, top panel, before). Among cells firing differentially to different strategies or paths (50 cells), 70% changed with strategy, 20% with path, and 10% with both.

Figure 6. PL population activity changed before IL. Transitions between activity states were quantified by average correlations
of each trial block with the before (rbefore: open circles, dashed lines) and after (rafter: filled circles, solid lines) phases. Graphs
display average Pearson’s r for each trial block (Fisher’s Z was used for statistics). For PL (a) and IL (b), population activity was
initially correlated with the before phase and inversely correlated with the after phase, and these correlations reversed over trial
blocks.
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block 5 onward, whereas IL did not decay significantly until block
7 (MANOVA of blocks before: PL, F(8,40) � 28.6, p � 0.001; IL,
F(8,40) � 9.4, p � 0.001; paired contrasts: PL, before vs blocks
5–11, all F(1,5) � 45.8, p � 0.05; IL, before vs blocks 7–11, all F(1,5)

� 17.1, p � 0.05). New PL codes emerged in block 5 and thus
anticipated switching performance (MANOVA of blocks after,
PL, F(8,40) � 18.8, p � 0.001; paired contrasts after vs blocks 5–11,
F(1,5) � 11.5, p � 0.1). Moreover, PL population codes for the
new strategy emerged faster than IL (Figs. 6, 7c) (supplemental
Figs. 2, 5, 8, available at www.jneurosci.org as supplemental ma-
terial) (rafter interaction of population and trial block, F(7,154) �
9.05, p � 0.001; PL vs IL blocks 1–3 vs 4 –7, rafter post hoc contrasts
for all blocks, F(1,22) � 7.3, p � 0.05). New IL codes emerged only
in block 8, after performance began improving (MANOVA of
blocks after: IL, F(8,40) � 10.9, p � 0.001; paired contrasts after vs
blocks 8 –1, F(1,5) � 14.9, p � 0.1). Because performance levels
began improving significantly at block 7 and reached an average
of 83.7% correct in block 8, new IL code emerged relatively late in
learning. The different dynamics suggest that PL and IL may
contribute differently to rule coding. PL population changes pre-
ceded switching, suggesting that these neurons contribute to
mechanisms that initiate strategy switching. In contrast, IL pop-
ulation codes only began to change after the onset of behavioral

switching, suggesting that these neurons do not initiate strategy
switches, although they may help to establish the persistence of
new memories strategies.

Discussion
PL/IL activity encodes strategy switches
By varying memory strategies while keeping behavior constant
and varying behavior or task contingencies while keeping strate-
gies constant, we found that PL/IL neurons respond specifically
when rats switch strategies in the plus maze. Five important re-
sults emerged. PL/IL coding was stable (1) when both behavior
and strategies were unchanged, (2) when the same strategy
guided different paths, and (3) when different tasks were adopted
during reversal learning. In contrast, PL/IL coding (4) changed
rapidly when rats changed strategies even when overt behavior
was identical. (5) PL coding changes anticipated the rats’ behav-
ioral adoption of the new strategy, whereas IL coding lagged.
Together, the results show that PL and IL neurons rapidly encode
strategy changes. We suggest that this coding facilitates coordi-
nation of multiple memory systems and extends Miller and Co-
hen’s (2001) guided activation theory to include the rodent PFC.

The present results dovetail with lesion and in inactivation
studies that show that PL/IL dysfunction selectively impairs strat-

Figure 7. Population changes in PL preceded changes in behavior whereas IL lagged. a, Learning curves for two switch sessions (top row) show probabilities of a correct trial ( y-axis) as a function
of trial number (x-axis). Ticks on the x-axis show numbered trial blocks based on each learning curve. Activity from two pairs of neurons (middle and bottom rows) is aligned by trial number. PL (light
gray) and IL (dark gray) cells were recorded simultaneously. Each histogram shows the proportion of total spikes during each trial of the recording session. Vertical dashed lines show the beginning
of trial block 7, in which average performance began to improve. The PL neuron on the left increased activity immediately after contingencies changed and remained elevated; the IL neuron
decreased activity only around trial block 7. The PL neuron on the right began to decrease soon after contingencies changed, whereas the simultaneously recorded IL neuron increased firing rate
gradually and stabilized by trial block 7. b, c, Average population correlations (left axis) superimposed on learning curves (right axis). b, After contingencies changed, both PL (black) and IL (gray)
population codes decayed rapidly from the before phase (rbefore). c, PL neurons approached the new code (the after phase, rafter) faster than IL. Although both populations begin with negative and
end with positive correlations, IL did not increase significantly until trial block 8, when average performance (gray bars) was �85%. PL correlations changed significantly by trial block 5, when
performance is �50%. *p � 0.05, PL vs IL comparisons, corrected.
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egy switching and set shifting but not initial task acquisition or
reversal learning (Ragozzino et al., 1999; Birrell and Brown,
2000). Similarly, mPFC activity (Mulder et al., 2003) or func-
tional connectivity (Baeg et al., 2007) changes during learning,
and tasks with different rules are coded differently by these neu-
rons (Jung et al., 1998). However, this investigation is the first to
directly compare learning-related changes between a task that
requires mPFC neurons (switching) and tasks that do not (SP and
reversals).

Previous experiments have shown that PL/IL neurons can be
especially sensitive to behavioral variability (Euston and Mc-
Naughton, 2006; Cowen and McNaughton, 2007). However, the
present results found neural activity to be remarkably stable when
the same strategy was used, even if behavior varied. Indeed, most
neurons (�90%) responded similarly even when the rat followed
different paths, as long as the paths were guided by the same
strategy (Fig. 5). That neurons were relatively insensitive to
changes in overt behavior compared with previous reports (Eus-
ton and McNaughton, 2006) may have resulted in part from
different cognitive demands. We recorded mPFC during strategy
switching exactly because inactivation of these neurons selec-
tively impaired this cognitive ability (Rich and Shapiro, 2007)
and predicted that PL/IL neurons would encode strategy-related
information. Indeed, when cognitive demands required the PL/
IL, the rules guiding goal-directed behavior were coded more
prominently than sensorimotor variables that distinguish differ-
ent paths or goal locations.

Population dynamics in PL and IL reflected strategy switch-
ing. Although both populations established new firing patterns
during strategy switching, new PL codes anticipated learning
whereas IL established new stable codes only after performance
was near proficient. The different dynamics imply that PL and IL
support related but distinct roles in strategy switching. Early re-
sponses in PL may contribute to switching mechanisms by pro-
moting new strategies, inhibiting old strategies, or both. Selective
PL lesions reduce behavioral flexibility in operant tasks when
reward values change (Killcross and Coutureau, 2003) and im-
pair the ability to resolve ambiguous situations based on previous
experience (Haddon and Killcross, 2006). In the plus maze, PL
neurons may facilitate switching by integrating multiple task
contingencies during goal-directed learning (Corbit and Bal-
leine, 2003), a process required to flexibly update abstract,
strategy-guided behavior. IL activity also changed prominently
during strategy switches, but the transition to the new stable state
occurred only as performance approached criterion. The corre-
lation between representational stability and switching perfor-
mance suggests that IL coding is important later in the learning
process, perhaps helping to establish the new strategy for future
selection. Indeed, IL dysfunction impairs the persistence of ex-
tinction in pavlovian tasks (Rhodes and Killcross, 2004) includ-
ing fear conditioning (Quirk et al., 2006) with the same temporal
pattern as described for task switching (Rich and Shapiro, 2007),
suggesting that this area helps establish new learning in both
tasks. The effects of selective PL and IL lesions on strategy switch-
ing in the plus maze remain unknown, and future experiments
are needed to determine their independent functions.

Among neurons responding to strategy switches, persistently
changing cells revealed a candidate mechanism for rule encoding,
because their firing patterns were stable within each strategy but
distinct between strategies. If PL/IL neurons encode rules per se,
then they should exhibit distinct, reliable, and predictable re-
sponses when rats switch repeatedly from one strategy to another.
Alternatively, the neurons may respond to transitions between

rules, so that reliable patterns of activity correlate with switching
to or away from a strategy. Finally, the activity may encode
switching per se, signaling that a new rule must be learned with-
out specifying any particular one. From this view, distinct pat-
terns of activity may not recur predictably with repeated rule
switching beyond the certainty that the pattern will change as a
new rule is learned. Experiments that record activity across mul-
tiple task changes [e.g., an ABA (applied behavioral analysis) de-
sign] should distinguish among these hypotheses.

PFC function in rodents and primates
The human PFC contributes to the use of rules and strategies of
varying levels of complexity (Owen et al., 1991; Gershberg and
Shimamura, 1995; Levine et al., 1998; Bunge et al., 2005). PFC
damage impairs tasks that require contextually appropriate rules
(Milner, 1982; Shallice and Burgess, 1991; Levine et al., 1998),
including the Wisconsin card sorting task (Grant and Berg,
1948). PFC activation is associated with maintenance of task-
setting contextual knowledge (MacDonald et al., 2000; Sakai and
Passingham, 2003) and with the presentation of cues indicating
task-solving strategies (Brass and von Cramon, 2004). The mon-
key prefrontal cortex is crucial for rapid acquisition and retention
of rules, and neuronal activity in the PFC reflects these functions
(Wise et al., 1996). The lateral PFC in primates, which may be
functionally homologous to the rat mPFC (Birrell and Brown,
2000; Brown and Bowman, 2002), is crucial for set shifting (Dias
et al., 1996) and self-ordered strategy selection tasks (Bussey et al.,
2001; Gaffan et al., 2002). Lateral PFC neurons encode learned
strategies or rules (White and Wise, 1999; Asaad et al., 2000;
Fuster et al., 2000; Wallis et al., 2001; Genovesio et al., 2005) and
perceptual categories (Freedman et al., 2001). The elaboration of
cortical circuitry and cognition is more complex in humans and
other primates than in rats, but the basic computations required
for “rule learning” may derive from PFC mechanisms common
across species.

Coordinating multiple memory systems
Strategy switching, set shifting, and reversal learning each require
behavior flexibility, are impaired by PFC disruption, and reveal
the role of PFC in cognitive control (Miller and Cohen, 2001). Set
shifting requires rats trained to discriminate one dimension of
complex stimuli (e.g., odor or texture) to discriminate a different
dimension of the same complex stimulus (Birrell and Brown,
2000). Reversal learning entails exchanging responses to two
stimuli. All three require recognizing contingency changes, with-
holding responses to old contingencies, and learning to follow
new contingencies through trial and error. Despite these similar-
ities, important biological differences exist. Set shifting and strat-
egy switching are impaired by mPFC disruption; reversal learning
is not. We observed relatively stable PL/IL activity during rever-
sals in the present experiment, and changing contingencies had
no more influence on PL/IL activity than stable performance of
one task (Fig. 5c). The dissociation between set shifting and strat-
egy switching on the one hand and reversal learning on the other
provides an important approach for investigating how coding
mechanisms across PFC regions and associated brain systems
support cognition (de Bruin et al., 1994; Ragozzino et al., 1999,
2003; Birrell and Brown, 2000; Rich and Shapiro, 2007). Reversal
learning is impaired by orbital PFC (OFC) inactivation (Kim and
Ragozzino, 2005), a treatment that does not impair strategy
switching. In contrast to the “memory strategy” coding described
here for mPFC neurons, rat OFC neurons signal “expected out-
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comes,” the affective valence associated with a given stimulus
(Schoenbaum et al., 2003).

The present results begin to show how mPFC coding mecha-
nisms may help coordinate interactions among memory systems.
Place and response-guided memory strategies have been doubly
dissociated in the plus maze (Packard and McGaugh, 1996). The
hippocampus- and caudate-based memory systems normally
function in parallel but can compete for the control of behavior in
the plus maze, as when hippocampal inactivation facilitates re-
sponse learning (Chang and Gold, 2003). We proposed that
mPFC activity during strategy switching selectively modulates
these different memory systems, so that when a rat is placed in a
familiar situation, the memory system that most recently pre-
dicted reward will guide behavior (Rich and Shapiro, 2007). By
recording mPFC neurons and distinguishing paths, tasks, and
strategies as hierarchically linked descriptions of behavior in the
plus maze, we can now extend this proposal. Changes in paths or
tasks can be guided by different representations within each
memory system. For example, hippocampal neurons fire differ-
ently during “go east” and “go west” trials in the plus maze, and
prospective coding in common start arms predicts memory
performance(Ferbinteanu and Shapiro, 2003). mPFC coding
changed minimally during such spatial reversals, which do not
entail changes between memory systems, although OFC neu-
rons are predicted to strongly code such reversal learning
(Schoenbaum et al., 2003). In contrast, mPFC activity changed
dramatically with shifts between memory systems, which in
this experiment are operationally identical to memory strate-
gies or abstract rules. From this view, the mPFC facilitates
switching among brain modules rather than switching be-
tween coding patterns within modules. This interpretation
predicts the following: (1) that other paradigms that involve
abstract rule learning (e.g., set shifting) require mPFC func-
tion because such learning requires representational shifts
among functional (as an example) cortical modules rather
than “remapping” within modules; (2) the same paradigms
will engage PL/IL neurons; and (3) paradigms that do not
require changes among functional modules will do neither.
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