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Abstract
Objective—To evaluate the association between early hypocarbia and 18-22 month outcome
among neonates with hypoxic-ischemic encephalopathy (HIE).

Study design—Data from the NICHD NRN randomized controlled trial of whole body
hypothermia for neonatal HIE were used for this secondary observational study. Infants (n=204)
had multiple blood gases recorded from birth-12h of study intervention (hypothermia vs. intensive
care alone). The relationship between hypocarbia and outcome (death/disability at 18-22 months)
was evaluated by unadjusted and adjusted analyses examining minimum PCO2 and cumulative
exposure to PCO2 <35 mmHg. The relationship between cumulative PCO2 <35 mmHg (calculated
as the difference between 35mmHg and the sampled PCO2 multiplied by the duration of time
spent <35 mmHg) and outcome was evaluated by level of exposure (none-high) using a multiple
logistic regression analysis with adjustments for pH, level of encephalopathy, treatment group (±
hypothermia), time to spontaneous respiration and ventilator days; results were expressed as OR
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and 95% confidence intervals. Alternative models of CO2 concentration were explored to account
for fluctuations in CO2.

Results—Both minimum PCO2 and cumulative PCO2 <35mmHg were associated with poor
outcome (P<0.05). Moreover, death/disability increased with greater cumulative exposure to PCO2
<35mmHg.

Conclusion—Hypocarbia is associated with poor outcome following HIE.

Keywords
hypocarbia; hypoxic ischemic encephalopathy; whole body hypothermia; outcome;
neurodevelopmental impairment

Both pH and PCO2 affect vascular tone, cerebral blood flow, cerebral oxygenation1 and may
thereby modulate neuronal injury in neonates with hypoxic-ischemic encephalopathy (HIE).
Experimental evidence suggests that low PCO2 concentrations mediated by hyperventilation
in brain injured patients may restore cerebral autoregulation2 and compensate for metabolic
acidosis thus preventing further damage. Yet hypocarbia also reportedly contributes to
detrimental effects: cerebral vasoconstriction, decreased partial pressure of arterial oxygen,
decreased oxygen release from hemoglobin1,3 and excessive neuronal excitability due to
increased oxygen demands4. Moreover, animal models of hypocarbia demonstrate nuclear
DNA fragmentation5,6, decreased levels of high energy phosphates as well as neuronal7 and
mitochondrial8 alterations that lead to apoptotic cell death. In the preterm infant, hypocarbia
has been associated with periventricular leukomalacia9,10, cerebral palsy and
neurodevelopmental deficits11. Klinger et al reported that episodic hyperoxia and
hypocarbia within the first two hours of life are associated with an increased risk of brain
injury after HIE12. They postulated that aggressive early management and resuscitation may
be contributory. Hypocarbia, in the context of HIE, also may reflect the severity of neural
injury (decreased CO2 production) or the infant’s own respiratory drive and ability to
correct metabolic acidosis. Moreover, hypocarbia may be impacted by cooling13;
hypothermia decreases the rate of brain energy utilization by 5.3% for every 1°C reduction
in brain temperature below 38.2°C14 and decreases the basal metabolic rate by 25-30% at
33°C15. So the initial ventilator minute volume required to maintain normocarbia may be
significantly lower for infants undergoing whole body cooling. We hypothesized that infants
exposed to early hypocarbia following HIE may be at increased risk for death or disability.
The present study examines the association between isolated severe hypocarbia (minimum
PCO2) and cumulative exposure to PCO2 <35mmHg in the first 16 hours of life and adverse
18-22 month outcome (death or moderate to severe disability) among the participants of the
NICHD Neonatal Research Network trial of whole body cooling for neonatal HIE16.

METHODS
This is a secondary study to the NICHD randomized trial of whole body cooling16 in
encephalopathic ≥ 36 weeks gestational age infants admitted to the hospital within 6 hours
of life with either severe acidosis or perinatal complications and resuscitation at birth. The
study was performed in the participating centers of the Eunice Kennedy Shriver NICHD
Neonatal Research Network and was approved by the Institutional Review Board of each of
the participating centers. Written informed consent was obtained from the parents or
guardians of each of the participants.

The infants had multiple blood gases recorded prospectively: pre-randomization,
randomization, four, eight and twelve hours of intervention. Subsequent blood gases were
obtained as per clinical care and were recorded once daily during study intervention. The
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blood gases were temperature corrected to 37°C via the blood gas analyzers for the
hypothermia group. During hypothermia, the pH increases and the partial pressure of CO2
decreases compared with measurements made at normal temperatures. So a pH of 7.4 and a
pCO2 of 40.0 mmHg at 37°C in a healthy infant will correspond with a pH of 7.5 and a
pCO2 of 34mmHg at 33°C13. Most studies on temperature correction of blood gases have
been performed in hypothermic patients undergoing cardiopulmonary bypass surgery. With
temperature correction (i.e., pH-stat management), mechanical ventilation and CO2
retention are externally controlled to maintain normal pH and pCO2 of the temperature
corrected values. This management was adopted for this trial. Centers treated infants as per
usual care at each site regarding further ventilator management; the protocol did not dictate
other ventilatory parameters.

Minimum PCO2 and cumulative exposure to PCO2 <35 mmHg (calculated as the difference
between 35 mmHg and the sampled PCO2 multiplied by the duration of time spent below 35
mmHg10) were the focus of this study. Cumulative exposure to hypocarbia was calculated
based only on recorded blood gas values for the relevant time period; for the few cases of
missing blood gas values, we did not interpolate the missing value from earlier or
surrounding values as we felt it was unwarranted to extend the period of hypocarbia.
Alternative measures of CO2 concentrations were examined to account for variability in
CO2 concentrations over time. Fluctuations in PCO2 were addressed by calculating the
difference between maximum and minimum PCO2 and SD of PCO2

17. Also, hypercarbia
(maximum PCO2) and cumulative exposure to hypercarbia (the difference between the
sampled PCO2 and 50 mmHg multiplied by the duration of time spent above 50 mmHg
summed from birth-12h of intervention) were examined as hypercarbia has been
independently associated with neurological outcome18,19.

The neurodevelopmental outcome of the study participants was assessed at 18 to 22 months
of age and included data on growth, vision, audiometric testing and standardized
neurodevelopmental assessments performed by trained examiners masked to hypocarbia and
treatment group status16. The neurodevelopmental evaluation included an assessment of
cerebral palsy, functional disability (according to the modified gross motor function
classification system (GMFCS) of Palisano)20 and the Bayley Scales of Infant Development,
second edition21. Disability was graded as moderate or severe. Severe disability was defined
as any of the following: a Bayley Mental Developmental Index score more than two
standard deviations below the mean (i.e., below 70), a GMFCS grade of level 3 to 5, hearing
impairment requiring hearing aids or blindness (<20/200 vision). Moderate disability was
defined as a Mental Developmental Index score one to two SD below the mean score (i.e.,
70 to 84) in addition to one or more of the following: a GMFCS grade of level 2, hearing
impairment with no amplification, or a persistent seizure disorder at the time of follow-up.

The maternal and neonatal clinical characteristics between infants with and without
hypocarbia were compared by t-tests for continuous variables and chi-square tests for
categorical variables. The unadjusted associations between minimum PCO2, maximum
PCO2, difference between minimum and maximum PCO2, and SD of PCO2 and outcome (as
described by Fabres et al 17) were analyzed using the Wilcoxon rank sum test. Multiple
logistic regression analysis was used to evaluate the relationship between these variables of
CO2 concentrations and death/disability. In addition, the relationship between cumulative
exposure to moderate hypocarbia (PCO2 <35mmHg) and death/disability was evaluated as a
5-level variable (quartiles of lowest to highest exposure and none) using multiple logistic
regression analysis, adjusting for the following variables: systemic pH at randomization,
initial level of encephalopathy, treatment group (± hypothermia), time to spontaneous
respiration >10 minutes and days on mechanical ventilation. Adjustment for pH was deemed
important as this varied significantly between infants with and without hypocarbia;
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moreover, given the known relationship between systemic pH and PCO2 concentration, we
wanted to make sure that hypocarbia was not merely a surrogate marker for more severe
initial acidosis with respiratory compensation. We are aware that systemic pH is not a good
indicator of brain stem pH which may regulate respiratory effort and subsequent PCO2. To
control for treatment effects and the initial severity of injury, we also examined the
following variables: treatment group (± hypothermia), center, initial level of
encephalopathy, presence of clinical seizures, time to spontaneous respiration and days on
mechanical ventilation. All variables significantly associated with outcome were included in
the final multivariate model. Goodness-of-fit between models was compared by the area-
under-the-curve (AUC) c-statistic. In addition, subgroup analyses were performed to assess
the relationship between hypocarbia and adverse outcome for the hypothermia group and
intensive care alone group separately. Also, subgroup analyses were performed to assess the
interaction between hypocarbia and hyperoxia (PaO2 >100 mmHg or 200 mmHg) and the
association between hyperoxia and death/disability.

RESULTS
The average age at randomization was 4.3 hours and the average age at cooling was five
hours (i.e., 35.5 minutes after randomization). Detailed blood gas analyses were available
during the first 12 hours of study intervention, corresponding to the first 16.9±2.2 hours of
life (mean ± SD) for 204 of 208 infants. Primary outcome data were available for all 204
infants. The source of the blood gas was recorded for the first postnatal blood gas (150
arterial samples, 39 venous, 12 capillary and 3 unknown). The number of participants with
outcome and blood gas data available at each point in time was 199 between birth and
randomization, 201 at randomization, 180 at 4 hours, 180 at 8 hours and 173 at 12 hours.
There was one early death for which the cumulative exposure to hypocarbia needed to be
truncated.

The median PCO2 (and interquartile range (IQR)) of the first postnatal blood gas was 33
mmHg (IQR 27mmHg); it was 32 mmHg at randomization (IQR 12mmHg), 32 mmHg at 4
hours (IQR 14.5mmHg), 35 mmHg at 8 hours (IQR 12mmHg), and 34 mmHg at 12 hours of
study intervention (IQR 12mmHg). 181 neonates had at least one PCO2 concentration below
35 mmHg, and 100 neonates had at least one PCO2 concentration below 25 mmHg from
birth to 12 hours of intervention (~16.9 hours of age(mean)). The characteristics of infants
with and without cumulative hypocarbia (<35 mmHg) are shown in Table I. Infants with
hypocarbia >50th percentile had a significantly lower cord pH and birth weight and a
significantly higher likelihood of seizures compared with infants with hypocarbia <50th

percentile or no hypocarbia. In addition, infants with cumulative hypocarbia >50th percentile
were more likely to be transferred and to have a higher base deficit compared with infants
with a cumulative exposure <50th percentile. They also had a lower 10 minute apgar score
and required a longer time to spontaneous respiration relative to infants with no hypocarbia.

The respiratory support of the study participants is outlined below: at randomization, 18
infants were treated with high frequency oscillatory ventilation (HFOV), 165 infants were
treated with intermittent mandatory ventilation (IMV), five with CPAP and eight with
supplemental oxygen by hood or cannula. By 24 hours of age, the ventilatory support was
reduced in 50 infants: 18 infants with HFOV, 115 infants with IMV, eight with CPAP, 22
with supplemental oxygen and 34 with no assistance. Ventilator settings at randomization
included: an FiO2 of 0.70 ± 0.31 (mean ± SD), rate of 36 ± 15 (mean ± SD), PIP of 22 ± 6
(mean ± SD) and MAP of 9 ± 4 cm H20 (mean ± SD). Among infants on IMV at
randomization, infants with severe hypocarbia (minimum PCO2<25mmHg) had higher
ventilator settings than those without: rate of 40±16 vs. 34±14 (P=0.03) and product of rate
× (PIP-PEEP) of 744±458 vs. 585±345 (P=0.06).
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The median PCO2 values throughout the first 12 hours of study intervention for infants with
moderate hypocarbia (any PCO2 <35 mmHg) were 26 mmHg pre-randomization, 27 mmHg
at randomization, 27 mmHg at 4h, 28 mmHg at 8h and 29 mmHg at 12 hours. The duration
of time spent with a PCO2 <35 mmHg, was 8.3 ± 5.7 hours (mean ± SD, range 0-21.3hrs);
whereas the duration of time spent with a PCO2 <25 mmHg was 2.5 ± 3.7 hours (mean ±
SD, range 0-18.3h). The mean exposure to cumulative hypocarbia (<35mmHg) ± SD of each
of the quartiles is shown in Table II. Hypercarbia (PCO2 >50mmHg) was less frequent: 28%
of infants had hypercarbia on the first postnatal pre-randomization blood gas and 5.8% to
7.4% of infants had hypercarbia on subsequent blood gases.

Death or moderate/severe disability at 18-22 months occurred in 108 of the 204 infants with
outcome data: there were 62 deaths (24 in the hypothermia group and 38 in the control
group), 43 severely disabled (18 hypothermia and 25 control) and 3 moderately disabled (2
hypothermia and 1 control). Infants with poor outcome had significantly lower minimum
PCO2 concentrations (median 22 vs. 26 mmHg) and greater fluctuations in PCO2
concentrations (difference in maximum and minimum PCO2, SD of PCO2) (Table III).
Multiple logistic regression analysis performed to estimate the relationship between
minimum, maximum PCO2 and fluctuations in PCO2 and death/disability revealed that only
minimum PCO2 was a significant predictor of outcome, odds ratio 2.0 (95% CI 1.1-3.4)
(P=0.015); this model fit the data well (AUC=0.856). Cumulative exposure to moderate
hypocarbia (PCO2 <35mmHg) also was associated with the combined outcome of death or
disability (Table III). Death or disability increased with greater cumulative hypocarbia (35%
among neonates with no exposure to 64% in the highest exposure group) (Figure). Adding
birth weight to the model did not change the significance of the results (data not shown).
Time to spontaneous respiration > 10 minutes was significantly associated with death or
disability (P<0.001), as was the number of ventilator days (P=0.009), pH (P=0.005), and
cumulative hypocarbia (P=0.049). The “presence of clinical seizures” was not significantly
associated with death or disability. Moreover, the relationship between hypocarbia and
death/disability was not affected when “presence of clinical seizures” was included in the
multiple regression model. Cumulative exposure to hypercarbia also was evaluated;
hypercarbia was not a significant predictor of death or disability (data not shown).

The relationship between hypocarbia and adverse outcome was examined for the
hypothermia group of participants and the intensive care alone group separately. There was
no significant association between hypocarbia and poor outcome. Though the odds of higher
death/disability tended to increase with increasing exposure to hypocarbia, the results were
statistically not significant for both the hypothermia (P=0.18) and the intensive care alone
groups (P=0.42). The minimum PCO2 among infants treated with hypothermia was 24.3
mmHg compared with 26.2 mmHg in infants treated with intensive care alone (P=0.004).
Interestingly, minimum PCO2 was associated with poor outcome in infants treated with
intensive care alone [OR 2.19 (95% CI 1.04-4.63) (P=0.04)], but not among infants treated
with hypothermia [OR 1.64 (95% CI 0.71-3.78) (P=0.25)].

In addition, we examined the relationship between hyperoxia and hypocarbia, and between
hyperoxia and death or disability for a subset of infants with arterial blood gases (n=150).
This sub-group analysis is limited by the fact that the source of the blood gas was available
only for the first postnatal gas. Several measures of severe and moderate hyperoxia were
assessed (PaO2 >200mmHg and >100 mmHg respectively): any hyperoxia, cumulative
hyperoxia, number of hours of hyperoxia and cumulative hours of hyperoxia. We found low
correlation between the hyperoxia measures and cumulative hypocarbia (of at most, rho=
-0.366 for cumulative hours of PaO2 >200mmHg and rho= -0.383 for cumulative hours of
PaO2 >100mmHg). No hyperoxia measure was associated with outcome significantly; thus
hyperoxia was not used as a covariate in the multivariate analysis.
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DISCUSSION
We report an association between hypocarbia soon after birth in neonates with hypoxic
ischemic encephalopathy and poor outcome. Low PCO2 concentrations within the first 16
hours of life were associated with an increased risk of death or disability directly related to
the degree and severity of hypocarbia. Both minimum PCO2 and cumulative PCO2
<35mmHg were associated with poor outcome at 18-22 months of age. Whether hypocarbia
is an early marker or a risk factor for poor neurodevelopmental outcome remains to be
determined. Even though non-ventilated infants or infants on minimal ventilatory support
can develop hypocarbia, they rarely have PCO2 concentrations <25 mmHg22. Indeed, other
studies have reported a much lower incidence and severity of hypocarbia among neonates
with HIE22,23. These reports focus on infants with milder encephalopathy and milder
respiratory depression (less mechanical ventilation). The majority of infants in our study
received significant ventilatory assistance and resuscitation at birth, so early management
may have contributed to hypocarbia. Other mediating factors may have contributed as well.
Low PCO2 concentrations may have been produced by the combined effects of the
intervention, the severity of brain injury (decreased CO2 production), and the infant’s own
respiratory drive and ability to correct metabolic acidosis. An important consideration is
whether avoidance of hypocarbia is possible in the first 16 hours of life (coincident with the
putative reperfusion period in many animal models of HIE) and whether this will lead to
improved outcomes. In other words, is hypocarbia a modifiable risk factor or simply a
marker of poor outcome?

Klinger et al reported that hyperoxia in addition to hypocarbia may be detrimental following
HIE12. In a retrospective cohort study of 218 infants born between 1985 and 1995 treated at
the Hospital for Sick Children Toronto, hypocarbia and hyperoxia within two hours of life
were associated with an increased risk of death or disability, with risk of death/disability
being highest among infants with both hypocarbia and hyperoxia. Our study found no
association between hyperoxia and death or disability; however time to spontaneous
respiration (often closely linked to oxygen exposure) was strongly associated with poor
outcome.

The blood gases in our study were temperature-corrected for the hypothermia group which
may have influenced our results. Temperature correction of blood gases for mild therapeutic
hypothermia in neonatal HIE is controversial13. Recent studies comparing alpha-stat
management (no correction) with pH-stat management (PCO2 corrected to the patient’s
actual body temperature) in animal models of deep hypothermia report a significant increase
in tissue oxygenation and cortical blood flow and a decrease in infarct volume and cerebral
edema in studies using temperature correction24,25. However, results are inconsistent in
human studies26,27,28; and the effects of alpha-stat vs. pH stat management may vary with
the degree of hypothermia (mild to moderate hypothermia vs. deep hypothermia) and the
timing of management (e.g., early reperfusion vs. later management)29. The partial pressure
of PCO2 in blood decreases with decreasing temperatures; so had alpha-stat management
been employed in our study, a greater degree of ventilator-dependent hyperventilation may
have been observed in the hypothermia group (in an attempt to maintain PCO2 concentration
in the apparently normal range). Moreover, PaO2 concentrations would have appeared
considerably higher than values during normothermia, potentially impacting oxygen use.
Data favoring temperature correction vs. no correction in neonatal HIE are limited15; further
investigation is needed.

This study raises important issues regarding the complexity of the early postnatal ventilatory
management of neonates with HIE. There is biological plausibility for hypocarbia to
exacerbate brain injury: low carbon dioxide tension may impact cerebral perfusion,
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restoration of cellular energy metabolism, oxygen transport, oxygen extraction and removal
of potentially neurotoxic metabolites 1,4,5,30. Important questions to consider include
whether alpha-stat or pH-stat management is better for neonatal hypothermia for HIE.
Second, should cooled infants be started on lower initial ventilator settings or weaned more
rapidly in view of their lower metabolic rate (and consequent lower CO2 production)? Third,
will avoidance of hypocarbia improve outcome; and lastly, will hypercarbia and
oxygenation impact outcome?

Neither maximum pCO2 nor cumulative exposure to hypercarbia (the difference between the
sampled PCO2 and 50 mmHg multiplied by the duration of time spent above 50 mmHg
summed from birth-12h of intervention) were associated with outcome in our study.
However, these results should be interpreted with caution as few infants had hypercarbia
during this brief and very early time interval. Hypercarbia may have ensued later in the
course of HIE or following extubation, and this was not examined in our study. Hypercarbia
has been associated with altered risk of neurological outcome18-19.

There are some additional limitations to our data. Our study is underpowered to answer the
question of whether there is an interaction between hypocarbia and outcome in neonates
treated with therapeutic hypothermia versus those treated with intensive care alone.
Moreover, we evaluated a very brief period of time (study randomization to 12 hours of
intervention) and utilized intermittent blood gas sampling from a combination of arterial,
venous and capillary blood samples. It is clearly simplistic to assume that a single blood gas
sample can accurately represent a four hour period of ventilator delivered breaths or that
only the first 12 hours of intervention are important. Moreover, infants with significant brain
injury may have patterns of both spontaneous hyperventilation and hypoventilation which
may lead to significant intermittent fluctuations in pCO2 between blood gas measurements.
Continuous sampling of pCO2 may be a better measurement of this phenomenon, but such
sampling is technically difficult for cooled infants. Current transcutaneous monitoring
techniques are not feasible with whole body cooling, and continuous end tidal CO2
monitoring lacks adequate precision.

The PCO2 values in our study were obtained from a combination of arterial, venous and
capillary blood samples and may have underestimated the overall degree of hypocarbia. In
addition, the severity of hypocarbia may have been affected by our clinical strategy to
temperature correct the blood gases for the hypothermia group alone; the ventilatory
management of cooled infants targeted normal values for temperature corrected blood gas
samples. Arterial samples from all participants and a consistent strategy of temperature
correction of blood gases for all participants would have been preferable. Arterial sampling
would have provided important information on oxygenation as well. The assumption that
infants with an initial arterial blood gas had subsequent gases drawn arterially may not have
been accurate. Finally, insight into the mechanism of injury is needed and may be addressed
in part with the aid of adjunctive cerebral monitoring, cerebral blood flow studies and
neuroimaging. These considerations may guide future prospective studies in neonates with
hypoxic ischemic encephalopathy.
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Figure 1.
Rate of Primary Outcome with Increasing Cumulative Exposure to Hypocarbia (PCO2 <
35mmHg)
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