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Abstract

Maraviroc (MVC) gels are effective at protecting rhesus macaques from vaginal SHIV transmission, but breakthrough
infections can occur. To determine the effects of a vaginal MVC gel on infecting SHIV populations in a macaque model, we
analyzed plasma samples from three rhesus macaques that received a MVC vaginal gel (day 0) but became infected after
high-dose SHIV-162P3 vaginal challenge. Two infected macaques that received a placebo gel served as controls. The
infecting SHIV-162P3 stock had an overall mean genetic distance of 0.29460.027%; limited entropy changes were noted
across the envelope (gp160). No envelope mutations were observed consistently in viruses isolated from infected macaques
at days 14–21, the time of first detectable viremia, nor selected at later time points, days 42–70. No statistically significant
differences in MVC susceptibilities were observed between the SHIV inoculum (50% inhibitory concentration [IC50] 1.87 nM)
and virus isolated from the three MVC-treated macaques (MVC IC50 1.18 nM, 1.69 nM, and 1.53 nM, respectively).
Highlighter plot analyses suggested that infection was established in each MVC-treated animal by one founder virus
genotype. The expected Poisson distribution of pairwise Hamming Distance frequency counts was observed and a
phylogenetic analysis did not identify infections with distinct lineages from the challenge stock. These data suggest that
breakthrough infections most likely result from incomplete viral inhibition and not the selection of MVC-resistant variants.
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Introduction

Vaginal intercourse is now the most common mode of HIV-1

transmission worldwide [1,2]. Microbicide gels containing anti-

retroviral compounds (ARVs) applied vaginally constitute one

plausible intervention strategy [3,4]. Proof-of-concept for this

method of prophylaxis has been obtained in animal models using

various ARVs, and a tenofovir-based microbicide gel has shown

protective efficacy in women [5–10]. However, breakthrough

infections can occur in animals and humans for one of several

reasons, including non-adherence (in humans), the presumed

inadequate delivery of the active drug to its site of action, and the

presence of viral variants resistant to the ARV. Tenofovir-related

resistance mutations were not detected by standard clinical HIV-1

genotype testing on plasma viral isolates from women who became

HIV-infected while using a tenofovir vaginal gel [9]. Nonetheless,

it remains relevant to understand what selective effects a vaginal

microbicide prophylaxis regimen may have on the infecting

viral quasispecies because of general concerns about the spread

of drug-resistant variants [3,4,11,12]. Naturally occurring CCR5

antagonist-insensitive virus variants have been reported prior to

drug challenge [13–15].

HIV transmission most commonly involves viruses that use the

CCR5 coreceptor for entry into cells [16,17]. Accordingly, specific

inhibitors that bind to CCR5 can prevent infections of rhesus

macaques with CCR5-using viruses, such as SHIV-162P3 [5,6].

Maraviroc (MVC) is the only CCR5 antagonist approved for

treatment of HIV-1 infection [18,19]. A maraviroc (MVC) vaginal

microbicide protected macaques in a dose- and time-dependent

manner from high-dose SHIV-162P3 vaginal challenge [10].

However, some breakthrough infections did occur even when

MVC was applied at high concentrations in the protective range

(gel concentrations of 0.6–5.8 mM) [10]. One explanation is that

an insufficient amount of MVC was present in the right place at

the right time (pharmacological failure), a second is that some

viruses present in the challenge virus stock were partially resistant

to MVC and were selected for by the gel (resistance failure).

We note that another CCR5 inhibitor, PSC-RANTES, was

reported to select for a resistant SHIV-162P3 variant when

applied vaginally to macaques, although this conclusion has since
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been questioned [20,21]. Here, we investigated whether SHIV-

162P3 variants infecting macaques in the presence of a MVC

vaginal gel have any genetic and phenotypic characteristics

indicative of resistant viruses.

Results

To characterize the SHIV-162P3 inoculum, we performed a

standard clonal analysis of 42 independent full-length env clones

isolated from the infecting stock. Standard PCR and cloning

provided similar measures of population diversity when compared

directly to single genome sequencing; sampling bias occurred with

either method [22]. A phylogenetic analysis was performed to

graphically represent SHIV-162P3 diversity and entropy calcula-

tions quantified sequence variation by nucleotide position (Fig. 1).

Minor sequence differences were present throughout gp160,

although several positions in gp120 and gp41 were invariant. An

entropy of approximately 0.1 corresponds to one nucleotide

difference at a given position in one sequence amongst all 42

SHIV sequences. A diversity estimate of the SHIV-162P3 stock

demonstrated an overall mean genetic distance of 0.29460.027%

(standard error), consistent with prior reports [23,24]. We

compared full-length env sequences from SHIV-162P3 stock

isolated by standard cloning with previously reported sequences

generated by single genome amplification (Fig. 2) [25]. Sequences

obtained by either method generated a SHIV-162P3 consensus

sequence that was identical at all nucleotide positions across the

length of gp160.

To investigate the characteristics of infecting SHIV populations,

we studied viral isolates from five rhesus macaques: Mac46,

Mac73, and Mac80 received a MVC-containing vaginal gel and

macaques CR02 and L375 received a placebo vaginal gel and

served as a comparator group. Two time points were assessed

for each animal: T1, the time of first detectable plasma viremia

(day 14 or 21), and T2, a later time point (days 56–70). Plasma

SHIV RNA levels were quantified over the study duration

(Table 1). The env genotypic changes that occurred in infected

macaques were studied by isolating and sequencing multiple

independent full-length plasma-derived env clones. A clonal full-

length env sequence analysis demonstrated that, compared to the

SHIV-162P3 inoculum, nearly homogeneous wild-type sequence

populations were present in the V3 region of gp120 and the gp41

fusion peptide of Mac46, Mac73, and Mac80 (Fig. 3). These two

envelope regions have been associated with CCR5 inhibitor

resistance [26–29]. Non-synonymous mutations were identified in

T1 plasma-derived full-length env from all animals; they resulted in

a maximum of three amino acid changes per clone, relative to the

consensus SHIV162-P3 sequence (data not shown). No consistent

amino acid changes in gp160 sequence outside V3 or the gp41

fusion peptide were noted in any of the five infected macaques.

To determine MVC susceptibility, we generated pseudoviruses

derived from the most prevalent full-length env clone present in T1

plasma from Mac46, Mac73, Mac80, and CR02 [30,31]. Two

additional clones from animals Mac46 and Mac80 that contained

sporadic gp160 mutations were also tested. Pseudoviruses that

incorporated population-derived env from SHIV-162P3 stock and

T1 CR02 were used to determine comparator MVC susceptibil-

ities. All the env-pseudotype viruses were fully inhibited by MVC,

with maximal percent inhibition (MPI) values of 99–100% (Fig. 4).

The observed IC50 values for the SHIV-162P3 stock and T1 CR02

control virus were 1.87 nM (95% confidence intervals [CI], 1.45–

2.41) and 1.30 nM (0.94–1.80), respectively. Viruses that incor-

porated the dominant T1 Mac46, Mac73, and Mac 80 env had

MVC IC50s of 1.18 nM (0.54–2.58), 1.69 nM (0.76–3.76), and

1.53 nM (0.56–4.2), respectively. The minority Mac46-20 and

Mac80-30 clones demonstrated MVC IC50s of 0.89 nM (0.49–

1.61) and 1.10 nM (0.71–1.69). No statistically significant

differences in MVC IC50s or MPIs were observed between any

tested viruses. Hence SHIV infection was established in each

macaque by CCR5-using virus; MVC susceptibilities did not differ

from the infecting SHIV stock or a placebo-treated animal.

We next investigated the effect of a MVC vaginal gel on the

number of SHIV viruses that established the initial infections

(Fig. 5) [32]. The phylogenetic estimates, supported by highlighter

plot analyses, suggest that SHIV-162P3 infections in Mac46,

Mac73, and Mac80 were established by a single, or a few very

closely related, viral genotype(s). We observed the expected

Poisson distribution of pairwise Hamming Distance frequency

counts, consistent with transmission of a single viral variant in each

animal [33].

Although the MVC gel did not affect the number of founder

viruses or their susceptibility to MVC, it remained possible that it

Figure 1. The diversity of the infecting SHIV-162P3 inoculum. (A) A maximum likelihood tree constructed with 42 independent full-length
clones isolated from the infecting SHIV-162P3 inoculum. An unrooted tree layout is displayed. The horizontal scale bar represents genetic distance.
(B) Entropy plot of inoculum diversity as a function of nucleotide position.
doi:10.1371/journal.pone.0028047.g001
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could have selected for particular transmitted lineages of the

SHIV-162P3 stock. To evaluate the genetic relatedness of the

infecting viruses in Mac46, Mac73 and Mac80, we constructed a

Neighbor Joining tree, rooted on the SHIV-162P3 consensus

sequence, that included full-length env sequences isolated at T2

(day 42) from the two control macaques, L375 and CR02, T1

sequences from CR02, and the SHIV-162P3 stock clones (Fig. 6).

T1 sequences from Mac46, Mac73, and Mac80 shared a

monophyletic cluster with clonal sequences from the SHIV-

162P3 challenge stock, macaques CR02 and L375, and the

derived SHIV consensus sequence. Some T2 env sequences

diverged from those obtained at T1. T2 sequences from Mac46

and Mac80 each formed distinct clusters that did not mix with

ones from other macaques; a subset of Mac80 T2 sequences were

placed in the shared monophyletic lineage. Evolution of Mac73 T2

sequences from T1 sequences was not observed. Overall, the

evolutionary relationships between the SHIV-162P3 stock and env

sequences isolated over 70 days of observation did not appreciably

differ between the MVC-exposed and control macaques.

Discussion

We investigated the genotypic and phenotypic properties of

SHIV-162P3 macaque infection in the presence of a MVC-

containing vaginal gel and found that infecting viral populations

closely resembled the stock inoculum. The above analyses imply

that the presence of an MVC-based vaginal microbicide gel did

not drive the selective transmission of MVC-insensitive variants to

SHIV-162P3-challenged macaques. That is an important finding,

given the uncertainty that surrounds the identification of a

Figure 2. The relationship between SHIV-162P3 stock full-length env obtained by standard cloning and single genome
amplification. (A) An unrooted maximum likelihood tree constructed with standard clones and 17 previously reported sequences generated by
single genome amplification. Blue circles, SGA clones; Yellow circles; standard clones. The horizontal bar represents genetic distance. (B) Highlighter
plot indicates the gp160 nucleotide variation between clones. Clones are numbered sequentially; SGA clones are depicted with ‘‘sga’’ after the clone
number. Adenine, green; Cytosine, aqua; Thymine, red; Guanine, orange. Grey bars indicate missing sequence.
doi:10.1371/journal.pone.0028047.g002

Table 1. SHIV Plasma Viral Loads in MVC-treated and comparator macaques.

SHIV RNA copies/mL on Day:

Animal Gel Treatment 0 7 14 21 42 56 70

CR02 Control - ,125 4,616,200 191,166 56,905 221 ,125

L375 Control ,125 ,125 2,357,700 94,787 10,540 - 3,809

Mac46 5.8 mM MVC ,165 ,165 1,861,200 2,875,900 22,205 25,657 5,443

Mac73 2.9 mM MVC - ,165 ,165 464,078 5,691 349 3,995

Mac80 0.6 mm MVC - ,165 80,116 5,609,100 143,598 19,980 3,739

doi:10.1371/journal.pone.0028047.t001
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transmitted SHIV-162P3 variant with apparent resistance to

vaginally administered PSC-RANTES [20,21]. The infections in

the three MVC recipients and the control animals were established

by a similarly limited number of variants, just as was seen in

untreated macaques challenged intra-vaginally with SIVmac251,

and in sexually infected women [25,34–39]. This finding is

particularly noteworthy given that the animals in this and another

recent study were treated with Depo-Provera to thin the vaginal

epithelium and facilitate vaginal transmission [25]. The small

number of HIV-1 variants that established infection in women

using a tenofovir-containing vaginal microbicide was also not

significantly different from control [40].

The relatively small number of sequences used to determine

founder virus lineage is a limitation of this analysis. Although 13–

15 SIV clones were sequenced from each macaque, there is at

best a 70–80% probability by Poisson calculations that we did not

miss a lineage present at 10% or less of the total transmitted viral

population. Reassuringly, the conclusions of founder virus

analyses have been confirmed when re-calculated with more

comprehensive deep sequencing data sets [41,42]. Within these

limitations, we found no evidence that a MVC-based microbicide

gel affects the types of genetic variants that ultimately establish

infection, and we also showed that infections in vaginally-

challenged macaques are established by one or a very few

variants. Given the small number of infected animals we had

available for study, animal and human participants in future trials

of microbicide candidates should be studied to assess the

generalizability of our findings.

Figure 3. Alignment of gp120 V3 and gp41 fusion peptide sequences obtained pre-challenge and from post-challenge time points
1 and 2. Independent clonal sequences isolated from three MVC-exposed, SHIV-162P3 infected macaques are shown. The pre-challenge sequences
are the same for each macaque as they were derived from the SHIV-162P3 challenge stock. Predicted amino acid differences are shown and
similarities indicated with dashes. The number of independent clones with the identical sequence is indicated to the left of each sequence. (A) Mac46,
(B) Mac73, (C) Mac80. FP, fusion peptide.
doi:10.1371/journal.pone.0028047.g003
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An additional caveat is that the quasispecies diversity of a

SHIV-162P3 challenge stock may not adequately mimic the

diversity involved in sexual exposure to HIV-1. Intra-host HIV-1

envelope and V3 loop sequence diversity can range from 4–10%, a

factor of 10 greater than the genetic distances observed in infecting

SHIV-162P3 inocula [43,44]. Under these circumstances, there

could be subtle selective effects of a microbicide (MVC or other)

on the infecting viral phenotype that we would not have detected

in the present study. As an extreme example, a CCR5 inhibitor

like MVC would inevitably not interfere with the transmissibility

of CXCR4-using HIV-1 variants present in semen.

We could not evaluate whether MVC-resistant SHIV variants

were locally selected under drug pressure and remained

compartmentalized in the lower female genital tract. Pharmaco-

kinetic studies have shown that plasma concentrations of MVC

peak 2 hours after intravaginal administration of a 6 mM MVC-

containing HEC gel at approximately 4 nM, a concentration at

least twice that of the observed IC50s of viral isolates from this

study [45]. MVC levels quickly decay thereafter and are

undetectable in plasma 24 hours after gel administration. Plasma

viremia is not detectable until days later, raising the possibility that

the drug concentrations are not high or sustained enough outside

the genital mucosa to select for viral resistance [10,46].

We believe that the explanation for why some animals became

infected despite the presence of a gel containing millimolar

concentrations of MVC most likely is rooted in the pharmacology

of inhibitor delivery (we note that 2 of the animals did receive sub-

optimal MVC concentrations). Leakage of the gel and its active

ingredient and/or a failure of the inhibitor to reach and occupy all

the CCR5 targets in the lower female genital tract are probably

responsible. While no protection will ever be 100% effective, the

value of vaginal microbicides to prevent HIV-1 infection is now

clear [9]. The development of better delivery systems and the use

of ARV combinations can only increase the chances that a

microbicide will eventually be of substantial value to populations

of women at risk for heterosexual HIV-1 infection.

Materials and Methods

Ethics Statement
The Institutional Animal Care and Use Committee (IACUC) of

Tulane University reviewed and approved all macaque procedures

described (protocol permit number 3501). This study was carried out

in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health (NIH) and with the recommendations of the Weatherall

report, ‘‘The use of non-human primates in research’’. All procedures

were performed under anesthesia using ketamine, and all efforts were

made to minimize suffering, improve housing conditions, and to

provide enrichment opportunities (e.g., objects to manipulate in cage,

varied food supplements, foraging and task-oriented feeding methods,

interaction with caregivers and research staff).

Macaque samples
We studied viral isolates from five rhesus macaques. Three

animals, designated macaque 46 (Mac46), macaque 73 (Mac73), and

Figure 4. Maraviroc susceptibilities of pseudoviruses with full-length T1 envelopes. In each graph, the percentages of inhibition relative
to the extent of virus replication in the no-MVC control at various MVC concentrations are shown. The MVC susceptibilities of the following clones are
shown: (A) Mac46–19, the most prevalent Mac46 day 14 env clone, (B) Mac463–20, a minority day 14 Mac46 env clone, (C) Mac73–34, the most
prevalent day 21 Mac73 env clone, (D) Mac803–28, the most prevalent day 14 Mac80 env clone, (E) Mac803–30, a minority day 14 Mac80 env clone,
(F) SHIV stock and CR02, the most prevalent env clones from the pre-infection SHIV-162P3 stock and day 14 control macaque CR02, respectively. Error
bars represent the standard errors of the means of results from at least two experiments, each performed in triplicate. Nonlinear regression with a
variable slope was used to estimate a fitted curve. MVC, maraviroc.
doi:10.1371/journal.pone.0028047.g004
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macaque 80 (Mac80), received hydroxylethyl cellulose (HEC)-based

vaginal gels containing 5.8 mM, 1.9 mM, and 0.6 mM of MVC,

respectively, 30 min before an intra-vaginal challenge with 500 50%

Tissue Culture Infectious Doses (TCID50) of SHIV162-P3, but

became infected. Two infected control macaques, L375 and CR02,

given an HEC placebo gel prior to SHIV-162P3 challenge, served as

sources of comparator sequences. Two plasma samples collected

from each macaque at an early time point (time 1, T1, days 14–21),

when viral RNA was first detected, and a later time point (time 2, T2,

days 42–70) after challenge were available for analysis.

Cells and cell culture
TZM-bl and U87-CD4-CCR5 cells were obtained from the NIH

AIDS Research and Reference Reagent Program (ARRRP). 293T

Figure 5. Neighbor-joining trees, Highlighter plots, and Hamming Distance frequency plots for independent T1 env clones. (A)
Mac46, (B) Mac73, (C) Mac80. Only near full-length sequences were used to construct NJ trees; fewer sequences are included than in Figure 1.
Highlighter plots indicate nucleotide variation from the consensus; a base mixture at a given position in the consensus sequence is indicated as a
variation in the highlighter plot, even if that base is present in the consensus mixture. The horizontal scale bars represent genetic distance. Adenine,
green; Cytosine, aqua; Thymine, red; Guanine, orange. Grey bars indicate missing sequence. Hamming Distance (HD) analyses removed APOBEC-
modified positions from all sequences; theoretical pairwise HD frequency counts are shown as a continuous red line. Numbers above histogram
columns denote the frequency observed for each HD.
doi:10.1371/journal.pone.0028047.g005
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cells were obtained from the American Type Culture Collection

(ATCC, Manassas, VA). TZM-bl and 293T cell lines were

maintained in Dulbecco modified Eagle medium with L-glutamine

(DMEM, Gibco, Invitrogen) supplemented with 10% fetal bovine

serum (Invitrogen), 100 U/ml penicillin and 100 mg/mL strepto-

mycin (Cellgro, Mediatech) that was referred to as DMEM complete

(DMEM-C). U87-CD4-CCR5 cells were grown in DMEM-C plus

300 mg/mL of geneticin (G418, Sigma) and 1 mg/mL puromycin

(MP Biomedicals) to maintain CD4 and CCR5 coreceptor expre-

ssion. All cell cultures were maintained at 37uC and 5% CO2.

Maraviroc and susceptibility testing
Maraviroc was obtained from the NIH ARRRP. Clonal

susceptibility testing was performed as previously described

[28,47].

HIV-1 env cloning
Viral RNA was extracted from macaque plasma (QIAamp viral

RNA mini kit, Qiagen) and env amplicons encoding gp160 were

generated by nested PCR as described [28]. To minimize any

potential founder effect, four independent RT reactions and PCR

amplifications were performed and combined for each time point.

These purified amplicons were then ligated into a TOPO- TA

vector (Invitrogen) and electroporated into TOP10 cells. Sub-

clones were isolated and sequenced by conventional (Sanger)

methods as described [28]. Between 15 and 42 clones were

sequenced per time point. All sequences were edited, aligned, and

compiled with Geneious Pro version 5.4.6 [32]. Envelope

sequences could not be amplified from L375 T1 plasma aliquots

using multiple well-validated primer sets; this time point was

excluded from further analyses.

Figure 6. Phylogenetic analysis of T1 and T2 gp160 env sequences. Composite tree of 169 complete gp160 sequences that includes
independent sequences isolated from the infecting SHIV-162P3 challenge stock and MVC-exposed and control macaques. Black star, SHIV-162P3
consensus env sequence; open stars, clonal SHIV-162P3 isolates; orange diamonds, day 14 Mac80; light green circles, day 21 Mac73; light blue
squares, day 14 Mac46; red diamonds, day 70 Mac80; dark green circles, day 42 Mac73; dark blue squares, day 56 Mac46; grey triangles, day 14 control
macaque CR02; black triangles, day 42 CR02; inverted black triangles, day 42 control macaque L375. Numerals indicate posterior probabilities of node
support. The horizontal scale bar represents genetic distance.
doi:10.1371/journal.pone.0028047.g006
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Sequence and Evolutionary analysis
The mean pairwise distance of 42 full-length env clones isolated

from the SHIV-162P3 stock were calculated using MEGA5 [48].

The Shannon entropy at each position of the SHIV-162P3 stock

inoculum aligned gp160 sequence data set were calculated with

Entropy-One (www.hiv.lanl.gov/content/sequence/ENTROPY/

entropy_one.html). Full-length env sequences were aligned, inspect-

ed with the Highlighter tool (http://www.hiv.lanl.gov/content/

sequence/HIGHLIGHT/highlighter.html), and used to construct

consensus neighbor-joining phylogenetic trees of the T1 sequen-

ces. Poisson-Fitter was used to calculate Pairwise Hamming Dis-

tance frequency counts (http://www.hiv.lanl.gov/content/sequence/

POISSON_FITTER/poisson_fitter.html).

Full-length gp160 sequences isolated from the infecting SHIV-

162P3 stock, control macaques L375 and CR02, and MVC

vaginal gel-treated Mac46, Mac73, and Mac80 were included in

phylogenetic analyses of env evolution. A FindModel analysis

(www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html)

selected the Tamura-Nei model as the most appropriate for

subsequent analyses [49]. Neighbor joining trees with a signifi-

cance cutoff of 70% and the SHIV-162P3 challenge virus consensus

env as an outgroup were constructed for gp160 sequences using

Geneious; trees were resampled in 1,000 bootstrapped replicates

[32]. An unrooted maximum likelihood tree of infecting clonal

SHIV-162P3 sequences was generated with the PhyML plug-in of

Geneious [50]. The ML tree was resampled in 1,000 bootstrapped

replicates and optimized for tree topology and branch length.

Virus construction
Recombinant virus that incorporated HIV-1 envelopes from

Mac46, Mac73, Mac80, CR02 and the SHIV-162P3 inoculum

were constructed by a modification of a previously described

method [30,31]. Briefly, the CMV promoter was amplified and

attached to a 265 base-pair segment of rev from pNL43 using

overlap PCR. A second overlap PCR was then performed to link

CMV-rev to the cloned or uncloned env amplicon of interest.

These CMV-rev-env amplicons were then co-transfected into

293T cells with an NL4-3 envelope-deleted vector [51].

To generate infectious virus, we transfected 293T cells with

CMV-rev-env amplicons together with the env-deleted NL4-3.

Briefly, 86106 293T cells were plated and cultured overnight at

37uC. On the day of transfection, culture media was double

washed with phosphate-buffered saline (PBS, Cellgro, Mediatech),

replaced by fresh phenol red-negative DMEM-C and warmed to

37uC. We used the Fugene 6 protocol (Roche Molecular

Biochemicals) to transfect cells as previously described [28,47].

Supernatants were collected 48 hours later, passed through a

0.45 mM filter, centrifuged at 72,000 g for 90 min at 4uC,

aliquoted and stored at 280uC until use. Viral titers were

determined by endpoint dilution as described.

Nucleotide sequence accession numbers
SHIV162-P3 env sequences were deposited in GenBank under

accession numbers JN979788-JN979955. SGA SHIV162-P3 env

sequences JN011407.1 - JN011423.1 were retrieved from

GenBank on October 14, 2011.
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