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Abstract

In order to make quantitative statements regarding behavior patterns in animals, it is important to establish whether new
observations are statistically consistent with the animal’s equilibrium behavior. For example, traumatic stress from the
presence of a telemetry transmitter may modify the baseline behavior of an animal, which in turn can lead to a bias in
results. From the perspective of information theory such a bias can be interpreted as the amount of information gained
from a new measurement, relative to an existing equilibrium distribution. One important concept in information theory is
the relative entropy, from which we develop a framework for quantifying time-dependent differences between new
observations and equilibrium. We demonstrate the utility of the relative entropy by analyzing observed speed distributions
of Pacific bluefin tuna, recorded within a 48-hour time span after capture and release. When the observed and equilibrium
distributions are Gaussian, we show that the tuna’s behavior is modified by traumatic stress, and that the resulting
modification is dominated by the difference in central tendencies of the two distributions. Within a 95% confidence level,
we find that the tuna’s behavior is significantly altered for approximately 5 hours after release. Our analysis reveals a
periodic fluctuation in speed corresponding to the moment just before sunrise on each day, a phenomenon related to the
tuna’s daily diving pattern that occurs in response to changes in ambient light.
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Introduction

Understanding the movement patterns of animals is crucial for

their proper management and conservation. In particular, the

analysis of telemetry data provides valuable insight into the

movement, stock structure, and environmental preferences of

individually tagged animals. In order to properly understand the

relationship between an animal’s behavior and its environment, it

is essential that researchers determine the possible effects that

transmitter attachment and presence can have on equilibrium

behavior and physiology. For instance, the attachment of a

transmitter can induce stress in the animal, thereby interrupting its

normal foraging behavior. In such cases the speed of an animal

may be a good indicator of non-equilibrium behavior. Measure-

ments of speed distributions for newly tagged animals can be

significantly different from speed distributions under normal

behavior. However, mild stress may not always be reflected by

statistically significant changes in the speed, even though an

observer confidently asserts that the animal is not behaving

normally.

The key for a successful study of an animal’s behavior is to

ensure that any data used for analysis is indicative of its natural

behavior. Distress from capture, along with the physiological

impacts due to the attachment and presence of a transmitter, can

result in stress that modifies an animal’s baseline behavior [1], [2],

[3]. James et al. [4] suspected some temporally short-term tagging

effects on leatherback turtles at sea, and thus excluded from their

data all results from the first week of tagging. In order to ensure

that certain species of fish have properly recovered from the effects

of anesthetics, attachment procedure, and transmitter presence,

some studies have suggested that researchers would be well advised

to exercise caution when analyzing data collected within the first

twenty-four hours of transmitter attachment [5]. However, when it

comes to quantifying the effects of external stress on animal

behavior, no sophisticated or sufficiently quantitative methods

have yet been established. Thus we turn to the question: how can

one quantitatively distinguish the difference between stress-

induced, non-equilibrium distributions and those of normal

behavior ?

Often it is the case that an equilibrium (reference) distribution is

constructed from past records of observation. Upon making a new

measurement, one is generally interested in the amount of

information gained from the measured (observed) distribution.

However, when the newly observed distribution does not differ

significantly from the reference distribution, no meaningful

information is gained. In this case, the inaccessibility of new

information serves not as a statement about any inherent utility of

the newly measured distribution, but rather that the observed

distribution does not significantly differ from the reference

distribution.
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There are currently several test statistics which are used to

quantify the similarities between two distributions, including the t-

and F-tests for Gaussian distributions, and the Kolmogorov-

Smirnov test for generalized distributions [6]. Bayesian methods

often employ null hypothesis testing, an approach that has been

criticized for its inherent subjectivity and emphasis on decision-

making statistics [7].

The purpose of this paper is to introduce the readers to the use

of relative entropy techniques as a method of quantifying time-

dependent differences between observed data and equilibrium.

Relative entropy techniques are robust, compelling, and can be

applied to many physical situations. Since relative entropy is

sensitive to the higher-order moments of a distribution, and not

just changes in the mean and variance, it has the major advantage

of more completely capturing probabilistic information [8]. For

example, relative entropy techniques can be used to detect a

divergence between an observed distribution and equilibrium that

may not affect low-order moments, such as a time-skewness

introduced by difficulties in detection. Although the relative

entropy is not a true metric in the mathematical sense, another

useful property is that it can be intuited as an effective distance

between two probability distributions, in the sense that 1) it is

always positive, 2) it is zero if and only if the two distributions are

identical, and 3) it increases as the distributions diverge [9], [10].

Despite the concern raised by the increased use of telemetry

techniques, very little is known about the effects of tagging devices,

and even less is known about the effects on fishes [11], [12], [13],

[14], [15]. In this paper we introduce relative entropy techniques

as a method for assessing factors that can influence and modify

animal behavior. In the Methods section we define relative

entropy, give a brief overview of its properties as applied to

generalized probability distributions, then specialize the definition

for the case of Gaussian distributions. In the Results section we

analyze the effects that transmitter attachment and presence can

have on the behavior of Pacific bluefin tuna. In the final section we

conclude with a discussion of the results.

Methods

Relative Entropy
When performing a statistical data analysis, one often wishes to

know by how much two probability distributions differ from each

other. In information theory, the most common measure for doing

this is the relative entropy. Consider a random variable x with a

probability distribution function of Q(x). Following some

measurement, we revise our estimate from Q(x) to P(x). The

change in the probability function represents a measure of the

amount of information introduced as a result of the measurement.

The relative entropy D(PjQ) quantifies the change in information

as an effective distance between the two probability distributions,

given by

D(PjQ)~

ð?
{?

P(x):log
P(x)

Q(x)

� �
dx ð1Þ

There exist many excellent reviews of the relative entropy in

literature [10], [16], [17], [18]. Although this parameter, also

known as the Kullback-Leibler divergence, is not a true metric, it

serves as an effective distance between the distributions P(x) and

Q(x). The relative entropy is always non-negative, and vanishes if

and only if P = Q for all x. Although the relative entropy is not

symmetric under the exchange of P and Q, nor does it satisfy the

triangle inequality, these relations are satisfied to a good

approximation for P?Q.

A useful criterion in the analysis of empirical data is that the

results not be dependent on the coordinate system used to describe

a particular behavioral pattern, which often depends upon a

choice of metric. A powerful feature of the relative entropy is that

it is invariant under a change of coordinate systems. Consider a

smooth, invertible transformation from x to y described by

the function y~w(x). Since the relation D(p(x)jjq(x))~
D(pw(y)jjqw(y)) is always satisfied for such a re-parameterization,

the relative entropy remains invariant under coordinate transfor-

mations [8], [19]. Thus, we are guaranteed that the difference

between two probability distributions is always described by a

single measure, regardless of the coordinate system. We further

examine the significance of coordinate invariance as it applies

specifically to the case of telemetry data in the Discussion section.

Relative Entropy for Gaussian Distributions
An analytical expression may be obtained for the relative

entropy in the case that P(x) and Q(x) are Gaussian. Let us

assume that the first and second moments of these distributions are

denoted by mp, sp, mq, and sq, respectively. Given the standard

form of a Gaussian distribution [20], it is straightforward to show

that the relative entropy takes the form

D(PjjQ)~
1

2
log

sq

sp

� �2

z
sp

sq

� �2

{1

" #
z

1

2

(mp{mq)2

sq
2

ð2Þ

Notice that the relative entropy can be decomposed into a set of

uncorrelated components. The term in square brackets reflects any

difference in the variances between the two distributions, and is

often referred to as the dispersion component [8], [19]. When the

variance of the observed distribution is small compared to that of

the reference distribution, the relative entropy is dominated by this

first term. In this case, the dispersion represents the reduction in

uncertainty of the random variables as a result of the observation

process.

Alternatively, when the means of the two distributions are large

relative to the variance of the reference distribution, the relative

entropy is dominated by the last term, often referred to as the

signal component. The significance of the signal term can be

better understood with the help of concrete example. Suppose that

the mean speed for an oceanic bluefin tuna is 0.8 m/s, with a

variation of 0.1 m/s. A new observation yields a measured speed

of 1.2 m/s, with a variation of 0.1 m/s. Clearly, the utility of this

new observation derives not from any improvement in the

variation, since they are both equal to 0.1 m/s, but rather from

a shift in the mean value. Assuming that both distributions are

Gaussian, we can use Equation (2) to compute the relative entropy.

Since only the signal term contributes to the relative entropy in

this case, we can plug the given speeds and variance directly into

the second term to get a value of 8 nats (logarithmic units). Thus,

the distance between the two distributions is composed entirely by

the difference in their central tendencies.

Ethics Statement
This study (No. 2010-26) is conducted with approval by the

Faculty of Agriculture, Kinki University, located in Higashi-

Osaka, Japan. All experiments were conducted in accordance with

Japanese Governmental law (No. 105), as well as the guidelines

published by the Science Council of Japan concerning the

appropriate treatment of animals in life science research.
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Procedure
We use data collected from an experiment conducted in the

waters offshore of Kochi Prefecture, Japan. Three Pacific bluefin

tuna were captured within a submerged net-cage with a diameter

of 50 meters, then subsequently tagged with a data-logger package

consisting of a data-logger and recovery system. The data-logger

package is surgically attached to the right side of the body below

the anterior lobe of the dorsal fin, using two plastic attachment

wires connected to a time-release mechanism. The tags are affixed

via an attachment plate aligned along the lateral line of the tuna’s

body. After two hypodermic needles are pushed through the dorsal

musculature, a plastic wire is used to secure the attachment plate

in place. Data collection begins when the tuna are returned to the

submerged net-cage. Due to limited memory capacity and battery

life, the tuna’s speed was recorded at uniform 1-second intervals

for a continuous span of forty-eight hours.

In order to ensure that any telemetry data collected in this

experiment is indicative of the tuna’s natural behavior, it is

essential to quantify any physiological impacts incurred by the

capture and attachment of the data-logger package. Since the

speed of a bluefin tuna serves as a good criterion for discriminating

non-equilibrium behavior, we apply relative entropy techniques to

quantify the effects of stress by measuring the difference between

the speed distributions of newly tagged tuna and equilibrium. The

procedure is as follows: first, all time series corresponding to step-

lengths measured at 1-second intervals are collected into bins of

10-minute intervals. For each bin tj we compute the probability

density function P(xi,tj), where xi is the step-length and tj is the

time corresponding to the j-th interval. The reference distribution

Q(xi) is then formed by averaging P(xi,tj) over all time intervals.

Assuming the data is normally distributed, we perform a chi-

squared goodness-of-fit test using the null hypothesis. Since the

null hypothesis cannot be rejected to a significance level of 5%, we

suppose that P(x,tj) and Q(x) are Gaussian distributions of

dimension one.

In order to definitively state that a tuna’s behavior is no longer

affected by trauma, we must establish at which point in time an

observed data set is statistically indistinguishable from the

reference distribution. A t-test is commonly employed to determine

if the mean values of the observed and reference distributions are

statistically consistent. In Appendix S1, we discuss the connection

between the t-test and the signal component of the relative entropy

for Gaussian distributions. That such a relation exists should come

as little surprise: any difference between the mean values of an

observed and reference distribution will contribute to the overall

‘‘distance’’ between them, which in turn establishes the amount of

information provided by the observation. For the concrete

example provided above, it is clear that the signal component of

the relative entropy vanishes when the two means are equal.

Results

We begin by comparing a newly observed speed distribution

P(xi,tj) for a single bluefin tuna with that of a reference

distribution Q(xi), obtained by averaging P(xi,tj) over all time

intervals. In both cases, the distributions correspond to step-

lengths measured at 1-second intervals and collected into bins of

10-minute intervals, as described above in the Methods section. In

Figure 1 we show the observed probability distribution function for

P(xi,tj) calculated in each bin tj , along with the re-averaged

reference distribution Q(xi). It is clear that the observed

distribution eventually approaches the reference distribution over

time. In this particular case the distance D(tj) between the

observed and reference distributions takes the form

D(tj)~
1

2
log

sq

sp(tj)

� �2

z
sp(tj)

sq

� �2

{1

" #
z

1

2

(mp(tj){mq)2

s2
q

, ð3Þ

where s and m are the standard deviation and mean value of the

step length, and the subscripts p and q correspond to the observed

and reference distributions, respectively. The values of D(tj) for a

single tuna released after surgery are plotted in Figure 2. Though

the dispersion term contributes little to the overall distance D(tj)

the difference in the mean values between the distributions leads to

a dominant contribution to D(tj) from the signal term. Since the

step-length is directly correlated with the tuna’s speed, one could

infer that behavior of a newly tagged tuna is considerably altered

due to various factors of stress.

Also evident in Figure 2 is a periodic increase in the tuna’s

speed, at times corresponding to the moment just before sunrise on

each day. Further inspection reveals that these signal spikes are

offset by about 20 minutes to the earlier side of sunrise, a result

that is consistent with a previous study [21]. In the latter study, it

was discovered that both the deepest portion of the dives and the

most rapid changes in depth are precisely timed with respect to

sunrise, with spike dives occurring at times corresponding to a sun

elevation of about 30 minutes before sunrise.

In Figure 3 we plot the signal component of the relative entropy

for three tuna fish. Large values of this term indicate that the

tuna’s behavior is considerably modified by distress from capture

and the physiological impacts of the attachments. As the tuna

recovers from the distress of capture and stress, the signal term

gradually returns to zero as the observed distribution converges

with equilibrium. In our case, the tuna’s behavior appears to

recover approximately 4–6 hours after release.

In order to demonstrate that a tuna’s behavior is no longer

affected by trauma, we must establish the point at which the

observed distribution is the ‘‘same’’ as the reference distribution.

Although the similarity of any two distributions is arbitrary, the

previously discussed t-test is often used to establish when two

distributions are indistinguishable, for example to a 95%

confidence level. The concept of distance, as defined by the

relative entropy, can also be applied as a means of distinguishing

the similarity of the two distributions. In Figure 4 we plot the

relative entropy in bins of 30-second intervals over the first seven

hours, along with a calculation of the t-test for comparison. As

discussed in Appendix S1, we solve the relative entropy for a t-

value of t~2:04, which corresponds to a confidence level of 95%

for a sample with 30 degrees of freedom. We find that the

distributions are indistinguishable when the relative entropy

reaches a value of 0.069, first obtained after 5.1 hours as shown

in Figure 4A. According to the t-test, the observed and reference

distributions become indistinguishable after 4.9 hours, shown in

Figure 4B.

Discussion

We show how methods from information theory can be used to

quantify the gain in information provided by a newly measured

observation, relative to a known reference distribution. This

measure, which serves as an effective distance between the

observed and reference distributions, is called the relative entropy.

To demonstrate the utility of these methods, we have analyzed the

speed distributions of Pacific bluefin tuna over a 48-hour time span

after capture and release. The reference distribution, which serves

as a model of the tuna’s baseline behavior, was constructed by

averaging the probability density function of step-lengths over all

Relative Entropy on Animal Behavior

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e28241



recorded time intervals. The speed distributions, when measured

immediately after a tuna’s release, provide a means of observing

stress-induced fluctuations in behavior. The departure of the

observed behavior from baseline behavior was assessed by

computing the relative entropy of the distributions, from which

we discovered that the tuna’s behavior is clearly modified by the

process of tagging and release. In this case, the resulting

modification in behavior is due primarily to a difference in the

Figure 1. Behavior of observed step-length distributions over time. Observed (black) and reference (red) probability density functions of the
step length P(x,tj) and Q(x) at various times. Observed distributions P(x,tj) were calculated at intervals of 10 minutes, 30 minutes, 1 hour, 4 hours,
and 6 hours after release. This figure demonstrates how the observed distributions P(x,tj) approaches the reference distribution Q(x) over time.
doi:10.1371/journal.pone.0028241.g001

Figure 2. Relative entropy distribution after release. Relative
entropy D(tj) (black), signal component (red), and dispersion compo-
nent (blue), plotted versus hours after release. The periodic increases in
the signal component correspond to the moment just before sunrise on
each day.
doi:10.1371/journal.pone.0028241.g002

Figure 3. Comparison of relative entropy distributions. Signal
components of the relative entropy for three bluefin tuna. In each case
the behavior is significantly altered for approximately 4–6 hours.
doi:10.1371/journal.pone.0028241.g003

Relative Entropy on Animal Behavior
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central tendencies of the two distributions, and thus the relative

entropy is dominated by the signal term. We found that the

modified behavior regresses to the baseline behavior after

approximately 5 hours, corresponding to the first bin in which

the observed distribution becomes indistinguishable from equilib-

rium to a 95% confidence level.

In this analysis, the relative entropy was calculated on the

assumption that both the observed and reference distributions are

described by Gaussian functions. For the case of Gaussian

distributions, the relative entropy can be decomposed into a

dispersion and signal component, the former of which depends on

the variance of the distributions, the latter of which depends only

on their mean value. Since the relative entropy is dominated by a

difference in the mean values of each distribution, rather than a

difference in their variances, it should be noted that our t-test was

carried out explicitly for the case of two distributions with equal

variances. Since the relative entropy captures information from all

higher-order moments, it is no surprise that our result of 5.1 hours

is slightly larger than the value of 4.9 hours determined from the t-

test alone. In fact, a simple example serves to illustrates why the

relative entropy is a more powerful test statistic in general: suppose

one observes a single variable with zero variance, while the

accompanying reference distribution for this variable has the exact

same mean value with unit variance. In this case, the t-value for

these two distributions is zero, and thus the signal component is

also zero. Yet the behavior of the observed variable is considerably

different from that of the reference distribution, namely because it

possesses zero variance while the latter does not. The significance

of the relative entropy is apparent: in order to accurately measure

the difference between two distributions, it is necessary to include

higher-order moments.

As mentioned in the Methods section, the relative entropy is

invariant under a change of coordinate systems. To see why this is

important, note that the step-length distributions used in this

analysis are measured in units of distance. In order to make a

quantitative statement about the speed of the tuna, we must in

principle perform a coordinate transformation from one basis of

units to another. However, since the relative entropy is invariant

under such transformations, we are guaranteed that the results in

the new basis are identical.

Relative entropy techniques can be used to study behavior

patterns that are modified by other factors, such as water

temperature, exposure to sunlight, etc. For example, in this study

we discovered a periodic variation in the tuna’s speed correspond-

ing to the moment before sunrise on each day. Most likely such a

fluctuation in the tuna’s diving pattern is due to changes in

ambient light during sunrise, a hypothesis supported by evidence

from other analyses. In captive bluefin tuna, it was observed a high

mortality of juveniles as a result of the fish buffeting the tank and

net-pen at sunrise [22]. In the previous study it was also found that

this phenomenon is caused by visual disorientation due to an

incompatibility of the retina to adapt to changes in ambient light

intensity. Kitagawa et al. [23] analyzed time-series data for depth,

and reported that bluefin tuna display distinct patterns in their

vertical movement at sunrise and sundown. It has also been

reported that juvenile bluefin tuna make sharp descents and

ascents, called spike dives, around sunrise and sunset each day

[21]. Willis found that these spike dives are offset by about

30 minutes on the darker side of each sunrise or sunset, which is

consistent with the results of our analysis.

There is an abundance of opportunities in which relative

entropy techniques can be applied. The relative entropy is a robust

Figure 4. Comparison of relative entropy and t-test distributions. Relative entropy (top), calculated over the first seven hours after release.
We determine that the distributions are indistinguishable when the relative entropy reaches a value of 0.069 (red horizontal line), first obtained after
5.1 hours (top). The t-test (bottom), can be used to determine that the observed and reference distributions are indistinguishable after 4.9 hours, to a
95% confidence level.
doi:10.1371/journal.pone.0028241.g004
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and powerful method for quantifying time-dependent differences

between observed data and equilibrium. Although the techniques

introduced in this analysis were developed specifically for the case

of Gaussian distributions, the authors soon hope to demonstrate

the utility of relative entropy techniques in the context of

generalized non-Gaussian distributions.
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(DOC)
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