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Abstract

Temperature-sensitive (TS) mutants are powerful tools to study gene function in vivo. These mutants exhibit wild-type
activity at permissive temperatures and reduced activity at restrictive temperatures. Although random mutagenesis can be
used to generate TS mutants, the procedure is laborious and unfeasible in multicellular organisms. Further, the underlying
molecular mechanisms of the TS phenotype are poorly understood. To elucidate TS mechanisms, we used a machine
learning method–logistic regression–to investigate a large number of sequence and structure features. We developed and
tested 133 features, describing properties of either the mutation site or the mutation site neighborhood. We defined three
types of neighborhood using sequence distance, Euclidean distance, and topological distance. We discovered that
neighborhood features outperformed mutation site features in predicting TS mutations. The most predictive features
suggest that TS mutations tend to occur at buried and rigid residues, and are located at conserved protein domains. The
environment of a buried residue often determines the overall structural stability of a protein, thus may lead to reversible
activity change upon temperature switch. We developed TS prediction models based on logistic regression and the Lasso
regularized procedure. Through a ten-fold cross-validation, we obtained the area under the curve of 0.91 for the model
using both sequence and structure features. Testing on independent datasets suggested that the model predicted TS
mutations with a 50% precision. In summary, our study elucidated the molecular basis of TS mutants and suggested the
importance of neighborhood properties in determining TS mutations. We further developed models to predict TS mutations
derived from single amino acid substitutions. In this way, TS mutants can be efficiently obtained through experimentally
introducing the predicted mutations.
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Introduction

Temperature-sensitive (TS) mutants are fully active at permis-

sive temperatures and less active at restrictive temperatures [1].

There are two types of TS mutants, heat-sensitive and cold-

sensitive, depending on whether the permissive temperature is

lower or higher than the restrictive temperature. TS mutants offer

a powerful tool for in vivo investigation of gene function. A simple

temperature shift can control gene activity and be executed in any

cell type. Thus, TS mutants have been used to investigate gene

function in many organisms, including viruses, bacteria, yeast,

Drosophila, C. elegans, and mammalian cell cultures [2,3,4,5,6]. In

fact, genetic analyses of yeast essential genes have been conducted

primarily with TS mutants [7].

Despite the wide use of TS mutants in probing gene function,

TS mutants are difficult to generate. The standard procedure to

derive TS mutants, random mutagenesis followed by genetic

screen, is time-consuming and unfeasible in multicellular organ-

isms [8,9]. Further, only 4–6% of all possible single amino acid

substitutions in a protein are estimated to give rise to a TS mutant

[10,11,12]. The molecular mechanisms underlying TS mutants

are poorly understood. A previous crystallography study on

bacteriophage T4 lysozyme suggests that TS mutations have little

effect on protein structure, tend to occur at sites with low thermal

factors and low solvent accessibility, and exhibit no simple pattern

of amino acid substitution [13]. Mutagenesis and computational

studies suggest that TS mutations can occur on buried sites or

ligand-binding sites [14,15].

Recently considerable interest has focused on applying machine

learning methods to predict deleterious mutations or stabilizing

mutations [16,17,18,19,20,21,22,23,24,25,26,27]. However, only

one study has focused on TS mutations [28]. TS mutants are very

interesting because they can shift between stabilizing and

destabilizing states. They are stabilizing mutations at permissive

temperatures but deleterious mutations at restrictive temperatures.

In this study, we applied a machine learning method, logistic

regression, to investigate a large number of sequence and structure

features, with the goal to elucidate the molecular basis of TS

mutations. Our results indicate that neighborhood properties are

important determinants of TS mutations. Assembling features also

allowed us to predict single amino acid substitutions most likely to

confer a TS mutation. In this way, TS mutants can be easily

generated through targeted mutagenesis. This mutational engi-

neering strategy is in principle applicable to model systems from

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28507



bacteria to mammalian cell cultures, and will greatly enhance our

capabilities to characterize gene functions.

Methods

Dataset of TS mutations
Most TS mutants used in genetic studies are heat-sensitive (the

permissive temperature is lower than the restrictive temperature).

Thus in our study, we focus on investigating properties of heat-

sensitive mutants, which are referred to as TS mutants in the rest

of the paper. More specifically, we focus on TS mutants with a

single amino acid substitution (single mutants). This allows for easy

mechanistic interpretation.

We assembled a set of single mutants from five proteins, on

which extensive mutagenesis studies have been conducted

(Table 1). These proteins include bacteriophage T4 lysozyme

[10], E. coli lac repressor [11], E. coli toxin Ccdb [15], yeast TATA-

binding protein (TBP) [29], and human tumor suppressor p53

[12,30]. The crystal structures of all five proteins have been solved.

For each protein, we selected a Protein Data Bank (PDB) structure

[31] that had either been reported in the mutagenesis study or had

the best resolution. Having access to the structure allowed us to

develop and test many structure-based features. With the

exception of the TBP study, which only screened for TS mutants,

each of these mutagenesis studies generated both TS and neutral

mutants. Neutral mutants, unlike TS, behave the same at both

permissive and restrictive temperatures. Our final dataset

contained 6231 single mutants, of which 747 were TS mutants

and 5484 were neutral mutants. Only mutations located within the

crystallized region were included. The permissive temperature of

these mutants was 25uC or 30uC and the restrictive temperature

was 37uC.

Sequence and structure features
We investigated 133 sequence and structure features that might

be predictive for TS mutants. These features were calculated using

various software programs and in-house scripts. Features fell into

two categories: those describing properties of the mutation site and

those describing the mutation site neighborhood (Table 2). The

neighborhood is a group of residues located close to the mutated

residue. We defined neighborhood based on three different

distances: sequence, Euclidean, and topology. Most features have

their counterparts in the three neighborhoods. Some features were

derived from sequence information while others were derived from

the PDB structural information. The features are described briefly

here; the details are provided in Table S1.

Mutation site. A number of sequence conservation features

were calculated using super- and subfamily alignments, including

entropy, relative entropy, and the positional hidden Markov model

conservation score [18]. Physicochemical properties of wild type

and mutant residues were investigated, including hydrophobicity

[14], volume [32], charge, Grantham values [33], and unusual

residues. In addition, we classified the twenty amino acids into

three groups: non-polar, polar, and charged. A number of binary

features were developed based on this grouping: whether the wild

type or mutant residue belongs to each of the three classes, and

whether the mutation belongs to each of the nine possible

substitutions. Further, we evaluated whether a mutation was

located in the disordered region of a protein [34].

Solvent accessibility is the degree to which a residue is accessible

to solvent molecules. We calculated solvent accessibility and

relative solvent accessibility for wild type and mutant residues

[35,36,37]. A binary feature was developed to assess whether the

wild type or mutant residue was buried and charged [18].

Residues involved in ligand binding were identified from three

databases: LigBase, ModBase, and PDBsum [38,39,40]. We also

developed features to examine the relationship between mutation

site and the secondary structure. Thermal factor measures residue

rigidity. We calculated thermal factors for the mutated residue as

well as the side-chain of the residue. Further, changes in free

energy may imply that protein stability is altered when a mutation

occurs. We calculated the free energy change between the wild-

type and mutant using PoPMuSiC v2.0 [41] and FoldX v3.0

software [42].

Neighborhood defined by sequence distance. The

sequence neighborhood includes neighbouring residues both

upstream and downstream of the mutated residue. We used a

20-dimensional (20-D) vector to record the residue counts by type

in the neighborhood [22]. We calculated sequence conservation

and physicochemical properties for neighborhood residues. We

determined hydrophobic moment [14], residue buriedness, and

thermal factors for residues in the sequence neighborhood.

Further, we identified ligand binding and functional sites [43],

and computed the distance (number of amino acids) from the

mutation site to the nearest functional/ligand binding site.

Neighborhood defined by Euclidean distance. The

Euclidean neighborhood includes residues located within a sphere

of certain radius centred on the mutated residue (Figure 1). We used

Table 1. TS and neutral mutations of five proteins.

Protein

Permissive/
restrictive
temperatures PDB TS Neutral Total

T4 lysozyme 25uC/37uC 2LZM_A 95 1688 1783

lac repressor 25uC/37uC 1EFA_A 159 2534 2693

CcdB 30uC/37uC 3VUB_A 219 1011 1230

TBP 30uC/37uC 1YTF_A 141 0 141

p53 30uC/37uC 1TUP_B 133 251 384

Total - - 747 5484 6231

doi:10.1371/journal.pone.0028507.t001

Table 2. Categories of the 133 features describing single amino acid substitutions.

Site Neighborhood Total

Sequence distance Euclidean distance Topological distance

Sequence-based 28 16 - - 44

Structure-based 18 12 30 29 89

Total 46 28 30 29 133

doi:10.1371/journal.pone.0028507.t002
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the coordinates of Ca atoms when calculating distances. We

counted all neighbouring residues as well as residues by type.

Similar to the sequence neighborhood, we calculated sequence

conservation, physicochemical properties, residue buriedness,

thermal factors, and distance to the nearest functional/ligand

binding site for residues in the Euclidean neighborhood. We

modelled hydrogen bond and salt bridge interactions using

Chimera [44] and counted the number of these interactions in

the neighborhood.

Neighborhood defined by topological distance. We

further considered structural neighborhood based on relative

distance, as opposed to the absolute Euclidean distance. The

Delaunay tessellation divides the space spanned by a set of points

into a collection of non-intersecting tetrahedra in three dimensions

(3-D) (triangles in 2-D) [45,46]. Consequently, Delaunay

tetrahedra (DT) define clusters of four nearest neighbours. These

clusters are not based on the use of an absolute distance cutoff, and

hence are considered a more robust definition of nearest

neighbours. Delaunay partitioning of 3-D space has been

applied previously to proteins for modelling various aspects of

structure and function, including fold recognition [47], mutation

effects [48], and blind docking [49]. Our topological

neighborhood includes residues that form a Delaunay

tetrahedron together with the mutated residue, and are located

within a sphere of certain radius centered on the mutated residue

(Figure 1). We used the coordinates of Ca atoms when calculating

distances. We counted all residues as well as residues by type in the

topological neighborhood. A unique feature set in this category

consists of the number and the type of Delaunay tetrahedra. There

are five DT types based on the overlap between backbone and DT

edges [47] (Figure S1). We also calculated sequence conservation,

physicochemical properties, residue buriedness, and thermal

factors for residues in the topological neighborhood.

TS prediction models
We used logistic regression as the classifier to predict binary

response variables: TS versus neutral mutations. The model is

formulated as Y~
eb0zb1X1zb2X2:::zbnXn

1zeb0zb1X1zb2X2:::zbnXn
, where Y represents

the posterior probability of an amino acid substitution resulting in

a TS mutation, Xi is the ith predictive feature, and bi is the

corresponding feature coefficient. Given the larger number of

neutral mutations in our dataset, the positive (TS) and negative

(neutral) training examples were weighted inversely to the number

of such examples to mimic a 50-50 mixture of TS and neutral

mutations.

We applied a Lasso regularized procedure to select a

parsimonious feature set from all studied features. Lasso minimizes

the usual sum of squared errors, with a bound on the sum of the

absolute values of the coefficients [50]. We implemented Least

Angle Regression [51], an efficient Lasso model selection

algorithm, to select a subset of features. The subset features were

then included in the logistic regression model to predict TS

mutations.

Evaluation of TS prediction models
We evaluated the classification accuracy of TS models by ten-

fold cross-validation, where the classifier was built from 90% of the

training set and evaluated with the remaining 10%, and the

process iterated 10 times. We further applied a leave-one protein-

out strategy to evaluate the model performance. Mutations from

four proteins were used for building the classifier while mutations

from one reserved protein were held out for evaluation. Finally we

evaluated our models using independent datasets.

We calculated five measures to assess model performance. By

taking 0.5 as the threshold to define TS and neutral mutations, we

calculated accuracy (ACC), Matthews correlation coefficient

(MCC), and Kullback-Leibler divergence (KL) [52]. ACC and

MCC were defined as ACC~ TPzTN
TPzFNzTNzFP

and MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p , where TP is the number of

correctly classified TS mutations, FN is the number of TS

mutations predicted to be neutral, TN is the number of correctly

classified neutral mutations, and FP is the number of neutral

mutations predicted to be TS. Usually, MCC is a better measure

than ACC on an unbalanced training set. The Kullback-Leibler

divergence was calculated as KL(P,Q)~
P

i P(i) log P(i)
Q(i)

, where i

is TS or neutral, P(i) is the predicted probability of i, and Q(i) is the

observed probability of i. In addition, two measures were

calculated by taking multiple thresholds to define TS and neutral

mutations: distribution distance (DD) and area under receiver

operator characteristic curve (AUC). The measure DD determines

how the predicted TS probability distribution differs from the

predicted neutral probability distribution. The formula for DD is

the same as that of the Kullback-Leibler divergence, but with the

notations modified as follows. The range of the posterior

probability (dependent variable) was divided into ten equal

intervals. With i representing one such interval, P(i) is the

probability of TS mutants in interval i, and Q(i) is the probability

of neutral mutants in the same interval. A DD value of zero

indicates that the predicted neutral and TS distributions are

indistinguishable, while large values of DD indicate increased

separation between the two distributions.

Results

The neighborhood of a mutation site
We investigated three types of neighborhood – sequence,

Euclidean, and topological neighborhood. The neighborhood is

defined by a distance cutoff. We experimented with different

cutoffs using the feature–a 20-D vector of residue counts by type in

the neighborhood. A previous study suggested that this neighbor-

Figure 1. The difference between Euclidean and topological
neighborhoods illustrated in two dimensions. The dots are
residues and the thick red lines are the protein backbone. The green
dotted circle represents the neighborhood defined by Euclidean
distance with mutation site i (open dot) at the center. The Euclidean
neighborhood considers all residues within the circle: j, l, m, n, p, q (solid
dots). The blue lines are edges in Delaunay tetrahedra. The topological
neighborhood using the same radius cutoff includes l, m, n, p, q.
Residue j is not counted because it is not on a Delaunay edge with the
mutation site i.
doi:10.1371/journal.pone.0028507.g001
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hood feature accurately predicted disease-associated mutations

[22].

We built a classifier using the 20-D vector and calculated AUC

values from a ten-fold cross-validation of the classifier. For the

sequence neighborhood, we varied the number of neighbouring

residues from 6 to 15. For both Euclidean and topological

neighborhood, we varied the radius of the sphere from 6 Å to

15 Å (Figure 2). We found that the AUC value reached a plateau

at 11 residues for the sequence neighborhood. Thus, we included

11 residues upstream and 11 residues downstream of the mutation

site as the sequence neighborhood. The AUC value for the

Euclidean neighborhood gradually increased with the radius and

then reached a plateau at 13 Å. In contrast, the AUC value of the

topological neighborhood stayed close to a constant in the radius

range of 7–15 Å. This observation is consistent with the definition

of Delaunay tetrahedra, which robustly cluster four nearest

neighbours together. We chose to use the same cutoff value

(13 Å) for the topological and Euclidean neighborhood so that the

results are comparable. When comparing the performance of 20-D

vectors of the three neighborhoods, we observed that the two

structural neighborhoods were more predictive of TS mutations

than the linear sequence neighborhood (Figure 2). The optimal

cutoff identified by the 20-D vector was applied to the calculation

of other neighborhood features.

Features predictive for TS mutations
The main goal of this study is to elucidate the molecular basis of

TS mutations. To this end, the identification of predictive features

for TS mutations will enhance our understanding of TS mechanism

and help engineer TS mutants for gene functional study. To assess

the feature importance in predicting TS mutations, we built 133

individual feature-based classifiers and then performed a ten-fold

cross-validation on each classifier. Values of ACC, MCC, KL, DD,

and AUC were calculated from cross-validations to rank the 133

features (Table S2, Table S3). The top-20 predictive features for TS

mutations are listed in Table 3. We found that neighborhood

features dominate the top-ten list, suggesting that neighborhood

properties are more predictive than mutation site properties in

determining TS mutations. The most predictive feature was the 20-

D vector of residue counts by type in the Euclidean neighborhood

(AUC = 0.79). The similar 20-D vectors of the topological and

sequence neighborhood were highly predictive as well, ranking as

the 3rd (AUC = 0.75) and 11th (AUC = 0.72) most predictive

features, respectively. The 20-D vector feature performed much

better than the total residue counts in the Euclidean neighborhood

(AUC = 0.79 versus 0.66) as well as in the topological neighborhood

(AUC = 0.75 versus 0.63) (Table S2). This indicates that residue

counts by type are more informative for TS mutations than a single

count of total residues in the neighborhood.

Eight top-ten features characterized sequence conservation at

the subfamily level. Conservation is quantified by entropy and

relative entropy. Not only is the mutated residue highly conserved,

the residues in the neighborhood are as well. This suggests that TS

mutations tend to occur at conserved protein domains. Our results

also indicate that thermal factors are important predictors of TS

mutations. Both mutated residues and neighborhood residues tend

to locate in rigid regions of a protein. Further, solvent

accessibilities of wild-type residues are strong predictors of TS

mutations. Residues with low thermal factors and low solvent

accessibilities suggest well-defined conformations. These residues

Figure 2. Neighborhood performance at different distance
cutoffs. The feature–residue counts by type in the neighborhood–was
calculated for sequence, Euclidean, and topological neighborhoods at
different distance cutoffs. A classifier was built by using each feature.
The AUC value was calculated from a ten-fold cross-validation of the
classifier. The x-axis represents the number of residues for the sequence
neighborhood or the angstrom radius for the Euclidean and topological
neighborhoods.
doi:10.1371/journal.pone.0028507.g002

Table 3. The top-20 most predictive features for TS
mutations based on AUC values from a ten-fold cross
validation.

Rank

Feature name AUC

1 Residue counts by type in Euclidean neighborhood 0.79

2 Entropy of subfamily 0.76

3 Residue counts by type in topological neighborhood 0.75

4 Entropy of subfamily in topological neighborhood 0.75

5 Relative entropy of subfamily in topological neighborhood 0.75

6 Entropy of subfamily in Euclidean neighborhood 0.74

7 Relative entropy of subfamily in Euclidean neighborhood 0.74

8 Entropy of subfamily in sequence neighborhood 0.74

9 Relative entropy of subfamily in sequence neighborhood 0.73

10 Relative entropy of subfamily 0.73

11 Residue counts by type in sequence neighborhood 0.72

12 Positional hidden Markov model conservation score 0.71

13 Relative solvent accessibility of wild type residue 0.71

14 Side-chain thermal factor 0.70

15 Normalized side-chain thermal factor 0.70

16 Solvent accessibility of wild type residue 0.70

17 Residue thermal factor 0.69

18 Normalized residue thermal factor 0.69

19 Side-chain thermal factor in topological neighborhood 0.69

20 Normalized side-chain thermal factor in topological
neighborhood

0.69

doi:10.1371/journal.pone.0028507.t003
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can mediate intramolecular interactions that make large contri-

butions to the thermal stability of the protein.

The top-five predictive features by category are listed in Table

S4. Consistent with our observation from the top-20 list, we found

that neighborhood features are at least as predictive as mutation

site features for TS. In fact, top features in both Euclidean and

topological neighborhood tend to have higher AUC values than

those of top mutation site features. Only sequence neighborhood

features are not as predictive as mutation site features.

Feature independence
We developed 133 features that describe either the mutation site

or its neighborhood. Some features may be redundant. To

systematically examine feature independence, we computed

Pearson correlation coefficients of feature values on studied

mutations for all possible feature pairs, 8778 in total. The

correlation coefficients followed a normal distribution centred at 0;

more than 75% of the coefficient values were in the range of -0.2

to 0.2 (Figure 3). This suggests that a large majority of features are

independent and capture different properties of the mutation site

or the neighborhood. The highly positively correlated features

(coefficient . 0.8) were either different formats of the same

measurement, for example, thermal factor versus normalized

thermal factor, or the counterpart features in Euclidean and

topological neighborhood. The highly negatively correlated

features (coefficient , -0.8) were entropy and relative entropy.

This is due to their mathematical formulations.

TS prediction models
TS mutants are useful in investigating gene functions. They can

be efficiently obtained by construction of predicted mutations via

targeted mutagenesis. To predict TS mutations derived from

single amino acid substitutions, we built TS prediction models

using logistic regression. We applied the Lasso regularized

procedure [50] to select a subset of all input features to more

effectively predict TS mutations. The Lasso is a shrinkage and

selection method for linear regression. This procedure eliminates

redundant as well as non-informative features from the initial set

so that only a parsimonious set of the most informative features are

included in the logistic regression model. To this end, a total of

eight models were developed to predict TS mutations by using

different feature sets: ‘‘site features’’ model, ‘‘neighborhood

features’’ model, ‘‘sequence neighborhood’’ model, ‘‘Euclidean

neighborhood’’ model, ‘‘topological neighborhood’’ model, ‘‘se-

quence features’’ model, ‘‘structure features’’ model, and ‘‘all

features’’ model (Tables S5, S6, S7, S8, S9, S10, S11, S12).

We evaluated the performance of TS prediction models by

plotting receiver operating characteristic (ROC) curves from a ten-

fold cross-validation (Figure 4). We also calculated four other

performance measures: ACC, MCC, KL, and DD (Table S13).

The ‘‘site features’’ model used mutation site features, while the

‘‘neighborhood features’’ model used neighborhood features. We

observed that the ‘‘neighborhood features’’ model outperformed

the ‘‘site features’’ model in predicting TS mutations (Figure 4A).

This result is consistent with the performance of individual features

(Table 3) and, again, indicates that neighborhood features are

more important than mutation site features in predicting TS

mutations. The neighborhood features were further divided into

three sets, which served as the input for the ‘‘sequence

neighborhood’’ model, the ‘‘Euclidean neighborhood’’ model,

and the ‘‘topological neighborhood’’ model. We found the three

neighborhood models contain similar numbers of features to that

of the ‘‘site features’’ model. However, the performance of the

Euclidean and topological neighborhood models is either better

than or comparable to that of the ‘‘site features’’ model. Only the

‘‘sequence neighborhood’’ model performs worse than the ‘‘site

features’’ model.

Next, we were interested in testing the predictive power of

sequence and structure features. The ‘‘sequence features’’ model

contained features calculated from sequence information only,

while the ‘‘structure features’’ model had features derived from the

protein crystal structure. The ‘‘all features’’ model combined

sequence and structure features. The performance of the ‘‘all

features’’ model was slightly better than that of the ‘‘structure

features’’ model, while the ‘‘structure features’’ model performed

better than the ‘‘sequence features’’ model (Figure 4B). This

suggests that structure-based features have higher predictive power

than sequence-based features in differentiating TS mutations from

neutral mutations. Nevertheless, the results demonstrated that the

‘‘sequence features’’ model is useful in predicting TS mutations.

For a false positive rate of 20%, the ‘‘sequence features’’ model

achieved a true positive rate of 78% from a ten-fold cross-

validation. Ideally, we use the ‘‘all features’’ model to predict TS

mutations (AUC = 0.91). When structural information is absent for

a protein, we use the ‘‘sequence features’’ model for broader

application (AUC = 0.87).

Our training data include TS and neutral mutations of five

proteins (Table 1). We adopted a second strategy termed leave-one

protein-out to further evaluate the performance of TS prediction

models. Mutations from four proteins were used to build the ‘‘all

features’’ model by applying logistic regression and Lasso

regularized procedure as described before. Mutations from the

remaining one protein were reserved to validate the model.

Mutations from T4 lysozyme, lac repressor, CcdB, and p53 served

as the independent testing set, respectively, because these four

proteins have both TS and neutral mutations (Figure 5). Our

results showed that AUC values for the four models ranged from

0.67 to 0.82, among which the model by leaving-T4 lysozyme-out

Figure 3. Feature independence quantified by Pearson corre-
lation coefficients. Pearson correlations of feature values on studied
mutations were calculated for 8778 all possible feature pairs. A
histogram was plotted to illustrate the distribution of Pearson
correlation coefficients.
doi:10.1371/journal.pone.0028507.g003
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achieved the best performance. This result can be explained by the

size of training examples, as T4 lysozyme had the smallest number

of TS mutations among all proteins.

The ‘‘all features’’ model based on ten-fold cross validation

(AUC = 0.91) performed better than the leave-one protein-out ‘‘all

features’’ models (AUC = 0.67–0.82). Two reasons may account

for the difference. First, more training data was used for building

the model based on cross validation than for building the leave-

one protein-out models. Second, the leave-one protein-out models

were evaluated by different sizes of independent dataset while the

other model was evaluated by cross validation. Since leave-one

protein-out procedure applied independent dataset to assess TS

prediction models, it provides an indication on model performance

for real-world applications.

Validation of TS prediction models with independent
datasets

To further assess the performance of TS prediction models, we

obtained the mutation data on HIV-1 protease [53,54]. This

independent testing set consists of 14 TS and 110 neutral

mutations. The permissive temperature of these mutations was

32uC and the restrictive temperature was 37uC, which are similar

to those of our five training proteins. PDB structure of 2BPV_A

was used for calculating structure features.

As shown in Figure 6A, the ROC curve of the ‘‘all features’’

model is biphasic. True positive rates are three-fold of false positive

rates when applying thresholds greater than 0.5, while true positive

rates are less than two-fold of false positive rates when applying

thresholds less than 0.5. Although the AUC value is slightly lower

than those of leave-one protein-out (0.65 versus 0.67-0.82), the

lower left portion of the ROC curve is comparable with those,

suggesting our top-ranked predictions are particularly accurate.

We further plotted precision-recall curves to evaluate the

performance of the ‘‘all features’’ model (Figure 6B). A 50%

precision is reached when 14% of total TS mutations are covered.

As thresholds decline, the recall increases but the precision of TS

prediction decreases, suggesting that a higher number of TS

mutations are recovered at the expense of adding more neutral

mutations to the list. When the same independent testing set was

used to evaluate the ‘‘sequence features’’ model, an AUC value of

0.61 is reached for the ROC curve and a 50% precision is

Figure 4. Performance of TS prediction models from a ten-fold cross-validation. TS prediction models were built by applying logistic
regression and Lasso regularized procedure. Different models used different sets of features. ROC curves were plotted to evaluate each model. A. TS
prediction models using either mutation site features or neighborhood features. B. TS prediction models using all features, sequence features, or
structure features.
doi:10.1371/journal.pone.0028507.g004

Figure 5. Performance of TS prediction models from leave-one
protein-out validation. Mutations from four proteins were used to
build the ‘‘all features’’ model by applying logistic regression and Lasso
regularized procedure, and mutations from one reserved protein as
indicated in the legend were used to evaluate the model by ROC curve.
doi:10.1371/journal.pone.0028507.g005
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achieved with a 7% recall (Figure 6). Although the ‘‘all features’’

model outperforms the ‘‘sequence features’’ model, the ‘‘sequence

features’’ model has broader application in predicting TS

mutations, as structural information is absent for many proteins.

Our goal is to develop a computational method to efficiently

obtain TS mutants, not to identify all TS mutations for a given

protein. The prediction accuracy of top-ranked TS mutations is

much more interesting than the overall accuracy in classifying TS

and neutral mutations. Therefore, applying a high threshold to

define a small number of TS mutations is the most efficient way to

experimentally construct and obtain TS mutants. Both ‘‘all

features’’ and ‘‘sequence features’’ models achieved a 50% precision

in predicting TS mutations. This is a dramatic enrichment given the

fraction of TS mutations among all possible single amino acid

substitutions in a protein is in the range of 4–6% [10,11,12].

To further assess the ‘‘sequence features’’ model, we obtained

the second independent testing set containing 149 single TS

mutants of 110 yeast essential genes [55]. We calculated the

probability of these mutants being TS using the ‘‘sequence

features’’ model because not all proteins have structural informa-

tion. As the restrictive temperatures of these mutants vary from

28uC to 39uC, we grouped the mutants based on their restrictive

temperatures (Figure 7). We found the ‘‘sequence features’’ model

has no predictive power for TS mutants with restrictive

temperatures of 37uC or below, because the predicted probability

of being TS fluctuates around 0.5. However, the predicted

probability of being TS rises to 0.8 and 0.65 for TS mutants with

restrictive temperature of 38uC and 39uC, respectively. This is

consistent with the fact that all our training mutants were

evaluated at the restrictive temperatures of 37uC (Table 1).

Therefore, our models would perform best for predicting TS

mutants with restrictive temperatures above 37uC.

Comparison with other methods
Although there has been considerable interest in applying

machine learning methods to predict the effects of non-synonymous

mutations, the majority of the work focused on deleterious

mutations or disease associated mutations [16,17,18,19,20,21,22,

23,24,25,26,27]. Previous efforts outlined structure- and sequence-

based criteria for designing TS mutations of globular proteins

[14,15]. They suggest first the identification of buried sites or ligand

binding sites and then random mutation of one site. As these ad hoc

Figure 6. Performance of TS prediction models on an independent testing set. The independent testing set consists of 14 TS and 110
neutral mutations of HIV-1 protease. The performances of ‘‘all features’’ model and ‘‘sequence features’’ model were evaluated by this testing set. A.
ROC curves. B. Precision-recall curves.
doi:10.1371/journal.pone.0028507.g006

Figure 7. Performance of the ‘‘sequence features’’ model on an
independent TS mutant set. A total of 149 TS mutants from 110
yeast genes form the independent testing set. The mutants were
grouped based on their restrictive temperatures. The probability of
being TS was calculated for each mutant using the ‘‘sequence features’’
model. Average probabilities with standard errors are shown for each
group, ranging in size from n = 6 to n = 31.
doi:10.1371/journal.pone.0028507.g007
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criteria have no underlying statistical framework, it is infeasible to

compare them with our TS prediction models.

A recently published study presented a method to predict TS

mutants but the evaluation is based on cross-validation only [28].

The method used support vector machine (SVM) with a smaller

training set than ours (75 TS and 130 non-TS). It developed a similar

number of structure and sequence features as ours (108 features),

most of which are Rosetta relax-derived features. Further, it only

considered mutations on buried residues while our method ranks

mutations on all residues. To objectively compare the performance

of our method with the existing one, we tested them on the

independent mutation data of HIV-1 protease. However, only six

out of 124 mutations were predicted to have confidence score using

the existing method; the rest are either not on buried residues or have

no confidence score. Performance comparison based on these six

mutations (3 TS and 3 neutral) is shown in Figure 8. The result

indicates that our ‘‘all features’’ model either outperforms the

existing method or achieves similar performance as the existing one.

Further, based on cross-validation on identical training data, we

can compare the performance of our model with other machine

learning approaches. We built a SVM classifier to predict TS

mutations. SVM classifiers identify a hyperplane that can best

separate TS and neutral mutations in a high-dimensional space

[56]. Same training data and same feature set were used for SVM

as those for the ‘‘all features’’ model. The SVM classifier was

trained and built with Matlab interface for the Libsvm package

[57]. Different kernel functions were tested, including linear,

polynomial, and radial basis function. The best combination of

parameters was selected by a grid-search. Based on a ten-fold

cross-validation, we obtained the best-performed SVM classifier

with polynomial kernel using degree of 3, SVM parameter c of

0.004, and penalty parameter C of 0.00011. The AUC of this

SVM classifier was 0.91, which is same as that of the ‘‘all features’’

model; both classifiers were evaluated via the identical cross

validation procedure. This result demonstrates that our logistic

regression models have similar performance as the SVM classifier.

Comparison of performance measures
Multiple measures can improve the confidence in performance

evaluation. We calculated five measures to evaluate the perfor-

mance of features (Table S2) and TS prediction models (Table

S13) from cross-validations. To compare the five measures, we

computed the Pearson correlation and mutual information

between every pair of the five measures across all 133 individual

feature-based classifiers (Table 4). Pearson correlation is only

sensitive to a linear relationship between two variables while

mutual information is capable of detecting non-linear relation-

ships. We found that AUC and DD had the best concordance

according to mutual information and the third best concordance

according to the Pearson correlation. Both measures consider

average classification performance by taking multiple thresholds to

define TS and neutral mutations. MCC also showed consistent

performance with AUC and DD, suggesting it is a highly

indicative measure with just one threshold.

Discussion

The main goal of this study is to elucidate the molecular basis of

TS mutations and to predict TS mutations derived from single

amino acid substitutions. As such, we tested sequence and

structure features individually first, and then built eight different

TS prediction models. We assembled 133 features to describe

property changes occurring at mutation sites and in mutation site

neighborhoods. Three neighborhoods were defined based on

sequence, Euclidean, and topological distances. Our results

Figure 8. Performance comparison between the ‘‘all features’’ model and an existing method on an independent testing set. The
independent testing set consists of 3 TS and 3 neutral mutations of HIV-1 protease. The performances of ‘‘all features’’ model and SVM-LIN/SVM-RBF
[28] were evaluated by this testing set. A. ROC curves. B. Precision-recall curves.
doi:10.1371/journal.pone.0028507.g008

Table 4. Pearson correlation coefficients (top right) and
mutual information (bottom left) between measures across
133 individual feature-based classifiers.

ACC MCC AUC KL DD

ACC 0.48 0.45 -0.94 0.43

MCC 20.8 0.93 -0.32 0.83

AUC 19.6 25.9 -0.37 0.85

KL 14.4 14.3 13.2 -0.31

DD 29.0 42.3 50.0 17.5

doi:10.1371/journal.pone.0028507.t004
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highlight the importance of neighborhood features in predicting

TS mutations. The top-predictive features suggest that TS

mutations tend to occur at buried and rigid regions and tend to

locate at conserved domains. This perfectly explains the

importance of neighborhood features. Buried residues and the

environment of buried residues contribute greatly to protein

stability. Thus, TS mutations represent temperature-induced

changes in protein stability. The change in protein stability leads

to reversible functional changes.

Our study applied three types of distance to define mutation site

neighborhood. Comparisons of these neighborhoods as predictors

of TS mutations have not been done before. We found that

Euclidean and topological neighborhood performed better than

the sequence neighborhood. This is due to the use of structural

information. Euclidean and topological neighborhoods have

similar predictive power, although the performance of the

topological neighborhood is more robust in response to different

radius cutoffs.

In addition to testing each feature individually to determine

their contribution to the TS phenotype, TS prediction models

were developed by performing Lasso logistic regression on feature

sets. The Lasso regularized procedure was used to exclude

redundant and insignificant features. Many features that were

top-ranked individually, such as the residue counts by type in the

neighborhood, were selected by the Lasso procedure for TS

prediction models. Ideally, the ‘‘all features’’ model would be used

to predict TS mutations. However, when protein structural

information is absent, we could use the ‘‘sequence features’’

model for broader application. Both ‘‘all features’’ and ‘‘sequence

features’’ models predicted TS mutations with a 50% precision

through test on independent datasets. This is a dramatic

enrichment as compared to 4-6% TS mutations out of all possible

single amino acid substitutions [10,11,12]. Thus, our models allow

TS mutants to be systematically constructed with minimal effort.

In summary, our method provides an efficient route to TS

mutants for characterizing gene function, and is in principle

applicable to proteins in model systems from bacteria to

mammalian cell cultures. With the increased number of TS

mutations available in the future, our TS perdition models can be

further improved and the TS mechanism can be better

understood.
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