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Anxiety disorders are common, serious and a growing health problem worldwide. However, the causative factors, aetiology
and underlying mechanisms of anxiety disorders, as for most psychiatric disorders, remain relatively poorly understood.
Animal models are an important aid in giving insight into the aetiology, neurobiology and, ultimately, the therapy of human
anxiety disorders. The approach, however, is challenged with a number of complexities. In particular, the heterogeneous
nature of anxiety disorders in humans coupled with the associated multifaceted and descriptive diagnostic criteria, creates
challenges in both animal modelling and in clinical research. In this paper, we describe some of the more widely used
approaches for assessing the anxiolytic activity of known and potential therapeutic agents. These include ethological,
conflict-based, hyponeophagia, vocalization-based, physiological and cognitive-based paradigms. Developments in the
characterization of translational models are also summarized, as are the challenges facing researchers in their drug discovery
efforts in developing new anxiolytic drugs, not least the ever-shifting clinical conceptualization of anxiety disorders. In
conclusion, to date, although animal models of anxiety have relatively good validity, anxiolytic drugs with novel mechanisms
have been slow to emerge. It is clear that a better alignment of the interactions between basic and clinical scientists is needed
if this is to change.
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Introduction
‘Now is the age of anxiety’.

WH Auden
Despite the passage of more than 60 years since the pub-

lication of Auden’s Pulitzer Prize-winning text, it can be
argued that both at a global and local level that it is the first
part of the 21st century that represents the age of anxiety

(Auden, 1947). Anxiety disorders are currently the most
prevalent psychiatric diseases in Europe and in the USA, and
as such represent a grave and ever-increasing strain on
healthcare resources (Kessler et al., 2005b; Alonso and Lépine,
2007; Kessler, 2007; Nutt et al., 2007). Separate large-scale
epidemiological studies in both Europe (European Study of
the Epidemiology of Mental Disorders) (Alonso et al., 2004)
and the USA (National Comorbidity Survey – Replication)
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(Kessler and Merikangas, 2004) have demonstrated that
anxiety disorders have the highest lifetime prevalence esti-
mates (13.6–28.8%) and the earliest age of onset (11 years) of
psychiatric disorders (Kessler et al., 2005a,b; Kessler, 2007).
Patients suffering from anxiety disorders also frequently
present with other comorbid diseases, including not only
psychiatric disorders such as depression (Merikangas, 2003;
Kessler et al., 2005b), but also medical conditions including
functional gastrointestinal disease, asthma, cardiovascular
disease, cancer and chronic pain, hypertension and migraine
(Härter et al., 2003; Roy-Byrne et al., 2008). As such, anxiety
disorders represent a huge burden in terms of both their
social impact and their economic cost (Kessler, 2007; Nutt
et al., 2007). Our understanding of the pathological pro-
cesses, aetiology and causative factors underlying anxiety dis-
orders is still unfortunately in its infancy and must be
developed if we are to diagnose and treat anxiety disorders
more effectively (Wong and Licinio, 2004; Cryan and
Holmes, 2005).

In parallel to this, there is a growing realization that the
cost of phase II and phase III clinical trials in pharmaceutical
drug development is enormous and growing annually
(DiMasi et al., 2003), with the cost of central nervous system
drug development being higher than that of any other major
therapeutic area (Frantz, 2004). Furthermore, clinical trials in
psychiatry are burdened, as in many medical disease trials,
with very high rates of placebo response (Lakoff, 2002). As a
result, before embarking on costly trials, pharmaceutical
companies and research-funding agencies increasingly seek
assurance that any specific biological target is indeed relevant
to the disease (Gomez-Mancilla et al., 2005). Accordingly,
there is a growing emphasis on first obtaining proof that a
new chemical entity designed to alter the function of a spe-
cific target will do so in a predictable and safe manner.
Central to this approach, as with all diseases, is the availabil-
ity of valid preclinical animal models for evaluating the
potential utility of novel pharmacotherapeutics. However, as
a field, psychiatry has proven to be among the least pen-
etrable clinical disciplines for productively marrying knowl-
edge of human pathology with animal behaviour to develop
satisfactory in vivo animal models for evaluating novel treat-
ment approaches. In this review, we highlight the contribu-
tion of animal models to the current and future development
of anxiolytic drugs.

Anxiety disorders

The anxiety response is an important mechanism by which
we adapt and respond to real dangers. Dysregulation of this
healthy response resulting in ‘marked, persistent, and exces-
sive or unreasonable fear’ (American Psychiatric Association,
2000), culminating in a significant interference in normal life
can be described as an anxiety disorder. From a clinical per-
spective, anxiety disorders are described by Diagnostic and
Statistical Manual IV in terms of subtypes distinguished by the
nature of the anxiety-provoking stimulus. Most common
among these anxiety disorder subtypes are generalized
anxiety disorder (GAD), panic disorder (diagnosed with or
without agoraphobia), specific phobia, social phobia,
obsessive–compulsive disorder and post-traumatic stress dis-

order (PTSD). It should be noted that the Diagnostic and
Statistical Manual V, due for publication in May 2013, pro-
poses to expand and modify classification, as well as reclassify
obsessive–compulsive disorder in a different diagnostic cat-
egory (Holden, 2010; Miller and Holden, 2010).

While these subdisorders are to a degree epidemiologi-
cally comorbid, they display differential responsiveness to
the spectrum of anxiolytic drugs currently in clinical use.
This suggests that divergent etiological factors may underlie
the different disorders. Rating scales, such as the Hamilton
rating scale for anxiety and the clinical global impression
scale, are used by clinicians both as tools to quantify
symptom severity and as measures of treatment efficacy.
These disorders furthermore display distinct neurobiological
and neuroendocrine characteristics, indicative of differing
underlying pathology (Sramek et al., 2002).

Current drug treatment of anxiety

For millennia, humans have sought out chemical agents to
modify the effects of stress and feelings of discomfort,
tension, anxiety and dysphoria; the oldest of these being
ethanol. In the 19th century, alkaloids, bromide salts and
choral hydrate were used for their sedative hypnotic medi-
cine. A major breakthrough came with the introduction of
barbiturates into the clinical practice in the early part of the
20th century (López-Muñoz et al., 2005). They induce their
effects by facilitating the Cl- channel of the GABAA receptor
to open, even in the absence of GABA tone. Animal models,
especially canine-based paradigms, were particularly useful in
identifying the sedative and anticonvulsant properties of
such drugs, although self-testing was also very popular in the
early days of modern psychopharmacology. While barbitu-
rates were popular as major tranquillizers, their side effects,
including sedation and behavioural changes, tolerance, and
dependence issues coupled with the fact that their therapeu-
tic dose limit is dangerously close to its toxic level has led to
the pharmaceutical industry to seek out safer alternatives
(López-Muñoz et al., 2005).

It was in this context that the development of benzodi-
azepines emerged and revolutionized the treatment of
anxiety disorders. The first clinically available benzodiaz-
epine was chlordiazepoxide, which was synthesized by Stern-
bach in the 1950s at the Hoffman La Roche Pharmaceutical
Company (Sternbach, 1979). At a molecular level, benzodi-
azepines elicit their effects by allosterically activating the
GABAA receptor channel at a site distinct from GABA itself,
and thus only induce effects in synapses where GABA is
present. Key behavioural studies by Randall and colleagues
(Hanson, 2005) indicated that chlordiazepoxide might have a
distinct pharmacological profile compared with that of bar-
biturates and other psychoactive drugs such as the antipsy-
chotic chlorpromazine and anti-hypertensive reserpine.
These initial tests were carried out in mice and cats, and
included the mouse-inclined screen test indicative of muscle
relaxation and sedation, a foot shock test showing ‘taming
effects’, the anaesthetized cat model of muscle relaxation,
seizure-based pentylenetetrazol (PTZ) and electroshock tests
(Randall, 1960). Later, more sophisticated tests included
Skinner box based Sidman avoidance task (Sidman, 1953;
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Boren et al., 1959) in rats and monkeys, which provided a
sensitive and reliable measure of depressant action on behav-
iour. Thus, the tests used to illuminate the anxiolytic activity
of the first generation of chemically designed anxiolytics
were somewhat crude and not selective for anxiety per se. Yet,
they highlight the crucial role of animal testing in anxiolytics
development. It is somewhat ironic that as the tests
employed became more sophisticated (See Table 1) the devel-
opment of anxiolytic drugs has not greatly increased
(Figure 1).

Despite the advantages of benzodiazepines over previous
drugs, their long-term use is hampered by dependence liabil-
ity, tolerance, and cognitive and other behavioural side
effects. This once again led to a major research effort to try
and develop novel non-GABAergic based therapies.

The realization that the serotonergic system plays a role in
anxiety has been known for over 50 years since Aprison and
Ferster showed that the 5 hydroxytryptamine (serotonin)
(5-HT) precursor 5-hydroxytryptophan increased responding
in a pigeon conflict model (Aprison and Ferster, 1961). This
view mainly arose from some observed activity of 5-HT
antagonists in operant conflict paradigms in rats (Robichaud
and Sledge, 1969), as well as from an association between
reduction in turnover of 5-HT and the anxiolytic effects of
benzodiazepines (Goldberg et al., 1967). This research culmi-
nated in the development of 5-HT-based therapies for anxiety
disorders throughout the 1970s and early 1980s (Taylor and
Moon, 1991), chief among them was the azapirone chemical
class of which buspirone was the most successful. Buspirone
acts as a partial 5-HT1A receptor agonist, and its use confirmed
that it was possible to develop novel anxiolytic drugs that
lacked the side effects of GABA-based drugs. Also, it opened
up the possibility the modulation of the serotonergic system
may have clinical benefit in anxiety disorders. Today, bus-
pirone has a somewhat limited use, although it is generally
well tolerated with few side effects, its efficacy, is less and
onset of action slower than previous drugs such as the ben-
zodiazepines.

The clinical realization that anxiety and depression are
co-morbid has led to the clinical observation that selective
serotonin re-uptake inhibitors (SSRIs) are effective in treating
anxiety disorders following on from observations regarding
the efficacy of tricyclic antidepressants in anxiety (Rickels
et al., 1974; 1993). Indeed, today SSRIs are first-line therapy
for many anxiety disorders (Hoffman and Mathew, 2008).
The development of SSRIs for depression and subsequently
anxiety was firmly driven by mechanistic studies focusing on
the modulation of monoamine neurotransmission in vitro
and in vivo with little input of behavioural models initially
(Wong et al., 2005). This is a clear and sobering example
where animal models had little to do with the clinical intro-
duction of these treatments for anxiety. Indeed, the reliance
on traditional animal models of anxiety shows little positive
effects of SSRIs, and indeed anxiogenic effects are often
observed (Sánchez and Meier, 1997; Borsini et al., 2002). It
should, however, be borne in mind that a transient period of
increased anxiety is often reported in patients initiated onto
SSRI therapy (Vaswani et al., 2003; Baldwin et al., 2010). This
has led to much criticism of the models used. Likewise, there
has been a growing discussion focused on whether anxiety
and depression should be isolated from a drug development

perspective (Shorter and Tyrer, 2003). Moreover, given the
relative success of SSRIs, it is becoming clear that many phar-
maceutical companies are compelled to develop a ‘one pill
fits all’ approach to anxiety and mood disorders. This pro-
pelled research in the area of neuropeptides such as
corticotrophin-releasing factor receptor antagonists, neuroki-
nin 1 (NK1) receptor antagonists and melanocortin antago-
nists, which to date have yet to fulfil its initial promise
(Takahashi, 2001; Shimazaki et al., 2006; Ebner et al., 2009).
Recent drug discovery efforts have additionally focused on
ligands acting at G-protein-coupled receptors for the non-
monoaminergic neurotransmitters GABA and glutamate
(Chojnacka-Wójcik et al., 2001; Cryan and Kaupmann,
2005). The current status of several promising putative drug
classes for anxiety is given in Table 2.

It is clear that while there are certain overlapping factors
contributing to the natural history of anxiety and depression,
the symptomatic manifestation and treatment of each can be
very different; benzodiazepines, for example, have limited
efficacy in depression and yet represent a very effective inter-
vention in anxiety disorders, whereas SSRI antidepressants
are useful in both disorders. Thus, understanding the neural
circuits of both these disorders is crucial to devising novel
interventions. Animal models will be critical for such
approaches, although it must be remembered that animal
models can only be as valid as the clinical knowledge that
their translational validity is based on and that a better clini-
cal understanding of the diverging nature of the two disor-
ders is still of the upmost importance.

Endophenotypes

A growing recognition of the complex and heterogeneous
nature of anxiety has resulted in an effort to re-evaluate the
diagnosis and treatment of anxiety disorders, and develop a
novel approach where individual behavioural, physiological
and neurochemical end points are specifically considered as
opposed to a syndrome-based approach (Geyer and Markou,
2002; Gottesman and Gould, 2003; Hasler et al., 2004). Con-
sidered from a genetic perspective, the clinical deconstruc-
tion of anxiety can be described in terms of endophenotypes.
These are cognitive, psychological, anatomical or biochemi-
cal traits which are hereditary and represent reliable markers
of both the disease state and disease risk (Hasler et al., 2004).
The endophenotypes present in anxiety disorders may allow
for a more effective analysis of the neurobiological and
genetic factors that contribute to their development in
humans, as well as representing facets of disease more ame-
nable to the development of valid animal models (Gottesman
and Gould, 2003; Hasler et al., 2004). The behavioural
endophenotypes of anxiety disorders such as autonomic
hyper arousal, impaired extinction of traumatic memories,
sleep disturbances and avoidance of difficulty to escape areas
can all be readily modelled in existing behavioural paradigms
(Cryan and Holmes, 2005).

Like other medical disciplines, concerted effort is focused
on the generation of novel models of anxiety (i.e. an effort to
induce in animals a hyper-anxious state), analogous to the
state seen in anxiety disorder patients, which can be detected
by increased sensitivity to the anxiety-provoking nature of
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behavioural tests (Rodgers, 2010). Development of novel
genetic animal models has proven invaluable not only in this
regard, but in the dissection of neurobiological basis of
anxiety behaviour and in indicating potential therapeutic
avenues for treatment of anxiety disorders (Jacobson and
Cryan, 2010). Because the demonstration of an anxious phe-
notype in the corticotrophin-releasing-hormone over-
expressing mouse (Heinrichs et al., 1997), knock-out and
transgenic mice have played a vital role in both understand-
ing the in vivo function of putative drug targets and now
represent the definitive target validation strategy. More
sophisticated techniques, such as tet-on/off and Cre-lox
mediated gene expression systems, as well as siRNA-mediated
gene knock down allow temporal and regionally specific
control of gene expression in the brain, making transgenic
mice an even more useful tool for drug discovery (Gross et al.,
2002; Heck et al., 2004; Cryan and Holmes, 2005; Jacobson
and Cryan, 2010). Genetic models of anxiety behaviour are
listed in Table 3 (Finn et al., 2003). Combining these genetic
techniques with endophenotype-based, translationally valid
animal models is a central strategy in overcoming the chal-
lenges inherent in developing novel treatment strategies for
anxiety; however, it is not without its caveats. The genetic
models of anxiety listed in Table 3 display anxious pheno-

types in some reports, but display phenotypes of reduced or
unaltered anxiety in other cases. A prominent example is the
GAT1 KO mouse which has been shown to display an anxious
phenotype in the open field (Chiu et al., 2005), but also
decreased levels of anxiety in several measures of anxiety
when generated on a different genetic background (Liu et al.,
2007). Background strain can play a highly influential role on
the behavioural effects of genetic alterations (Crawley et al.,
1997), and is perhaps most notable in genetic models where
animals of the 129 strain are used in the generation process.
In many cases, anxious behaviour may be more associated
with the use of 129 strain mouse during the generation
process than the genetic modification itself (Crawley et al.,
1997; Võikar et al., 2001; Cook et al., 2002; Eisener-Dorman
et al., 2010). This may partly explain the surprisingly exten-
sive list of mutations that result in an anxious phenotype
propelling the question as to why so many mutant mice are
unhappy (Holmes and Cryan, 2006). Other possibilities
include that the test used are conceptually attractive, easy to
construct and carry out with minimal requirement for exten-
sive training of either mouse or experimenter (Holmes and
Cryan, 2006).

Manipulation of the early life experience of an animal
represents an important avenue by which anxiety can be

Figure 1
Advances made in the modelling of anxiety disorders in humans compared to the introduction of novel anxiolytic drug classes across the past
century. Clinical drug development clearly lags behind the development of novel techniques to model anxiety in animals. A novel class of
anxiolytic drug has not entered the market since the approval of fluoxetine, the first SSRI, in 1987, despite numerous advances in the preclinical
modelling of anxiety disorders.
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Table 3
Genetic and Environmental Models of anxiety (See also Finn et al., 2003)

Model Description Anxiety-like behavioural phenotype Reference

Genetic models

Selective breeding

BALB/c mouse Inbred mouse strain High Levels of anxious behaviour in the
open field, enhanced conditioned fear
learning and greater levels of anxious
behaviour in the light–dark box.

(Crawley and Davis, 1982;
Crawley et al., 1997;
Owen et al., 1997;
Griebel et al., 2000;
Belzung and Griebel,
2001)

BTBR T + tf/J mouse Inbred mouse strain Anxious phenotype in the elevated plus
maze, as well as increased anxiety like
behaviour in measures of social
interaction

(Pobbe et al., 2010)

Wistar-Kyoto (WKY)
rat

Outbred Rat Strain Hypoactivity in the open-field test and are
more vulnerable to stress-induced gastric
ulceration than control Sprague-Dawley
rats, hyper vigilant phenotype.

(Paré, 1994; McAuley
et al., 2009)

LAB/HAB Outbred mouse (CD-1) or rat
(Wistar) strains selectively bred
for high or low anxiety.

Greater level of anxiety behaviour in the
elevated plus maze and light–dark box.

(Salomé et al., 2002;
Kromer et al., 2005;
Landgraf et al., 2007)

High DPAT/Low DPAT Rat strains bred for low or high
levels of responsivity to the
hypothermic effects of 5-HT1A

receptor agonist 8-OH-DPAT

High DPAT rats display enhanced anxiety
behaviour in social interaction tests and
conflict tasks compared to low DPAT
mice.

(Commissaris et al., 2000)

Roman
high-(RHA/Verh)
and low-(RLA/Verh)
avoidance rats

Rat strains selectively bred for
good (RHA) and poor (RLA)
performance in two-way,
active avoidance paradigms.

RLA/Verh rats display enhanced anxiety
behaviour and enhanced neuroendocrine
stress response, a tendency towards a
passive response to novel environments
and higher levels of conditioned fear, as
well as increased anxiety in the open
field, light–dark box and elevated plus
maze than RHA/Verh rats.

(Steimer et al., 1997;
Yilmazer-Hanke et al.,
2002; Steimer and
Driscoll, 2003;
López-Aumatell et al.,
2009)

Maudsley reactive
(MR/Har) and
non-reactive
(MNRA/Har) rats

Rat strains bred, respectively, for
high and low open
field-induced defecation

MR/Har rats display a lower level of activity
in the open field, a more anxious
phenotype in conflict tests which is
insensitive to benzodiazepine treatment,
reduced exploratory behaviour to novel
stimuli, enhanced startle response with
reduced within-session habituation to
acoustic stimulus, greater levels of
stress-induced USVs (maternal separation
and air puff) compared to MNRA/Har

(Commissaris et al., 1989;
1992; 1996; Blizard and
Adams, 2002)

129 mice Inbred mouse strain Impaired Pavlovian fear conditioning.
129/P3 mice fail to habituate to
behavioural test of anxiety and display
increased vulnerability to chronic mild
stress

(Camp et al., 2009;
Salomons et al.,
2010a,b)

Fawn Hooded
(FH/Wjd) rat

Inbred rat strain The FH/Wjd rat displays lower levels of
social behaviour in both anxiogenic and
neutral environments than both the
Wistar and the Sprague-Dawley rat.

(Kantor et al., 2000)

Single-gene
manipulation models

COMT knock-out Mice with targeted deletion of
the catechol-O-methyl
transferase gene

Increased levels of anxiety behaviour in the
light–dark box seen in females only

(Gogos et al., 1998)

BJPAge of anxiety
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Table 3
Continued

Model Description Anxiety-like behavioural phenotype Reference

Adra2a knock-out Mice with targeted deletion of
the a2A adreno receptor gene

Increased anxiety behaviour in the open
field, elevated plus maze and the
light–dark box

(Schramm et al., 2001;
Lähdesmäki et al., 2002)

5-HT1A receptor KO Mice with targeted deletion of
the 5HT1A receptor gene

Increased anxiety behaviour in the open
field, elevated plus maze, elevated zero
maze, novelty-suppressed feeding and
novel object exploration paradigms, as
well as increased fear responses to
contextual cues in a fear-conditioning
paradigm

(Heisler et al., 1998;
Ramboz et al., 1998;
Gross et al., 2000;
Klemenhagen et al.,
2006)

Early life 5-HT1A

receptor KO (P4-21)
Mice where the 5-HT1A receptor

expression is conditionally
ablated from postnatal days
4–21

Increased anxiety behaviour in the open
field, novelty-suppressed feeding and
elevated plus maze in adult life

(Gross et al., 2002)

5-HTT knock-out Mice with targeted deletion of
the serotonin transporter gene

Increased anxiety behaviour in the elevated
zero maze, light–dark box test, elevated
plus maze, open field and a
hyponeophagia paradigm

(Carroll et al., 2007; Line
et al., 2011)

GAD65 knock-out Mice with targeted deletion of
the glutamic acid
decarboxylase 65 isoform gene

Increased anxiety behaviour in the open
field and in the elevated zero maze.
Selective alterations in the quality of the
mouse response in conditioned fear
paradigms

(Kash et al., 1999; Stork
et al., 2003)

GAT1 knock-out Mice with targeted deletion of
the GABA transporter (GAT1)
gene

Increased anxiety behaviour in the open
field

(Chiu et al., 2005)

GABAA receptor g2

knock-out
Mice with heterozygous deletion

of the GABAA g2 receptor
subunit gene

Increased anxiety behaviour in the open
field, elevated plus maze, light–dark box
and free choice exploration

(Crestani et al., 1999;
Chandra et al., 2005)

GABAA receptor g2L

knock-out
Mice with targeted deletion of

the GABAA g2L receptor subunit
gene

Anxious phenotype in the elevated plus
maze

(Homanics et al., 1999)

GABAB1 receptor
subunit knock-out

Mice with targeted deletion of
the GABAB1 receptor subunit
gene

Panic-like response in the elevated zero
maze, as well as increased anxiety
behaviour in the light–dark box and
staircase test

(Cryan and Kaupmann,
2005)

GABAB2 receptor
subunit knock-out

Mice with targeted deletion of
the GABAB2 receptor subunit
gene

Increased levels of anxiety in the light–dark
box

(Mombereau et al., 2005)

CRH over-expression Transgenic mice which
over-express the CRH gene

Increased anxiety in the open field,
elevated zero maze and elevated plus
maze

(Heinrichs et al., 1997;
van Gaalen et al., 2002)

Early life CRH
over-expression

Transgenic mice in which CRH is
transiently over-expressed from
postnatal days 0–21

Increased anxiety behaviour in the open
field and light–dark box tests in adult life

(Kolber et al., 2010)

Urocortin knock-out Mice with targeted deletion of
the urocortin gene

Increased anxiety in the open field and the
elevated plus maze

(Vetter et al., 2002)

CRH-BP knock-out Mice with targeted deletion of
the corticotrophin-binding
protein gene

Increased anxiety phenotype in the open
field, elevated plus maze and increases
in defensive withdrawal

(Karolyi et al., 1999)

APOE knock-out Mice with selective deletion of
the apolipoprotein E gene

Increased levels of anxietty behaviour in
the elevated plus maze

(Raber, 2007)
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Table 3
Continued

Model Description Anxiety-like behavioural phenotype Reference

Otsuka Long Evans
Tokushima Fatty
(OLETF) rat

OLETF rat constitutively lacks the
CCK1 receptor

High levels of anxiety behaviour in the
elevated plus maze, light–dark box and
open field tests

(Kobayashi et al., 1996;
Yamamoto et al., 2000)

mGluR5 receptor
knock-out

Mice with a targeted deletion of
the mGlu5 receptor gene

Increased anxiety behaviour in the elevated
plus maze

(Wu et al., 2007)

Desert hedgehog
knock-out

Mice with a targeted deletion of
the desert hedgehog gene

Enhanced anxiety behaviour in the
Vogel-punished drinking test

(Umehara et al., 2006)

TSC-DN mice Mice dominant negative for the
tuberous sclerosis-associated
gene TSC-DN

Increased anxety behaviour in the elevated
plus maze, as well as in the open field

(Ehninger and Silva, 2010)

APP transgenic mice Transgenic mice expressing
mutant human b-amyloid
precursor protein

Increased anxiety behaviour in the open
field and light–dark box as well as
greater levels of freezing in a
conditioned fear paradigm

(España et al., 2010)

3xTG-AD transgenic
mice

Transgenic mice expressing
human b-amyloid precursor
protein, tau and PS1

Increased anxiety behaviour in the open
field and light–dark box, as well as
greater levels of freezing in a
conditioned fear paradigm

(España et al., 2010)

TgActbetaE mice Transgenic mice over expressing
activin E

Increased anxiety behaviour in the open
field test and the elevated plus maze

(Sekiyama et al., 2009)

a-CaMKII transgenic
mice

Mice which over-express the
Ca2+/calmodulin-dependant
protein kinase (a-CaMKII)

Increased anxiety behaviour in open field,
elevated zero maze, light–dark transition
and social interaction tests

(Hasegawa et al., 2009)

TgNTRK3 mice Mice over-expressing the full
length neurotrophin receptor
TrkC

Increased anxiety behaviour in the elevated
plus maze and elevated zero maze, as
well as a panic reaction in the mouse
defensive test battery

(Dierssen et al., 2006)

TGR(ASrAOGEN)680
Rat

A transgenic rat expressing
anti-sense RNA to
angiotensinogen in the brain

Increased anxiety behaviour in the elevated
plus maze, light–dark box and open field

(Voigt et al., 2005)

Hdc knock-out mice Mice with a targeted deletion of
the histidine decarboxylase
receptor

Increased anxiety behaviour in the elevated
plus maze, light–dark box and open field
seen in females

(Acevedo et al., 2006)

SF1 knock-out mice Mice with a targeted deletion of
the steroidogenic factor 1
gene specifically in the CNS

Increased anxiety behaviour in the elevated
plus maze, the light–dark box, the open
field and the defensive marble burying
paradigm

(Zhao et al., 2008)

FMR1 knock-out mice Mice with targeted deletion of
the fragile-X-mental
retardation gene 1

Increased anxiety behaviour in the mirror
chamber test and in the social
interaction test

(Spencer et al., 2005)

Environmental models

Maternal separation Mouse or rat pups are separated
from their mothers for brief
periods during early life

Maternally separated rats display increased
anxiety behaviour in the elevated plus
maze in adulthood and a heightened
neuroendocrine response to stress.

(Plotsky and Meaney,
1993; Wigger and
Neumann, 1999)

Maternal separation
with early weaning
(MSEW)

Mouse pups undergo maternal
separation coupled with early
weaning

Mice that have undergone MSEW display
an anxious phenotype in the open field
and elevated plus maze tests

(George et al., 2010)

Social isolation (SI)
rearing

Mice pups are singly housed
from weaning (3 weeks) until
adult hood

SI mice have increased levels of anxious
behaviour in the elevated plus maze and
novel object recognition test. The SI
mice additionally have a depression-like
phenotype and display heightened levels
of aggression

(Koike et al., 2009)
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experimentally provoked in a translationally valid manner.
Studies of the human population have revealed that adult
behaviour is strongly influenced by an interaction of both
early life environment and genetic background (Caspi et al.,
2002; 2003). In an attempt to study this aspect of develop-
ment, several experimental protocols have been used to
induce anxiety behaviour by modifying early life environ-
ment (Plotsky and Meaney, 1993; Wigger and Neumann,
1999; Koike et al., 2009; George et al., 2010), neurochemical
function (Ansorge et al., 2004; Depino et al., 2008), as well as
altering early life gene expression (Gross et al., 2002; Kolber
et al., 2010). These interventions are detailed in Table 3. Simi-
larly to genetic models, the robustness of these environmen-
tally induced models of anxiety varies extensively. In
particular, while maternal separation has been shown to gen-
erate an anxious phenotype (Plotsky and Meaney, 1993;
Wigger and Neumann, 1999) in some reports, this is not the
case (Lehmann and Feldon, 2000; Millstein and Holmes,
2007; Savignac et al., 2011). The results achieved here are
heavily dependant on procedural factors such as the length of
separation and on subject factors such as gender (O’Mahony
et al., 2010).

Basic concepts in animal modelling of
anxiety disorders

Many of the symptoms of anxiety disorders are dependent on
the processing of complex psychological and cognitive con-

cepts that clearly cannot be measured in animals, such as ‘fear
of losing control or going crazy’ or a ‘sense of a foreshortened
future’. It is thus clear from the clinical presentation of
anxiety disorders that they can never be fully emulated as a
syndrome in animals (Cryan and Holmes, 2005; Arguello and
Gogos, 2006; Crawley, 2007). If, however, we consider the
substantial conservation of genetic, neurochemical and neu-
roanatomical features seen across mammals (Jones, 2002;
Tecott, 2003; Arguello and Gogos, 2006), as well as Darwin’s
observations regarding the conservation of many fundamen-
tal, behavioural and pharmacological responses between
species (Darwin, 1871; 1872), theoretically, by studying the
neural and genetic determinants of animal behavioural
response, we can, by inference, develop our understanding of
the neural and genetic basis of human behaviour under both
normal and pathological states (Geyer and Markou, 2002;
Cryan and Holmes, 2005; Crawley, 2007). A necessary exten-
sion of this theory is that the validity of any animal model of
psychiatric disease is determined by the robustness of the
diagnostic techniques used to describe the disease state in the
clinic. Translational interspecies comparisons are dependent
on combined advances in the fields of both human diagnos-
tics and animal modelling, as well as developments in our
understanding of behavioural, genetic and neurobiological
function in healthy humans and animals (Geyer and Markou,
2002; Markou et al., 2009). Likewise, novel reverse transla-
tional approaches, such as measuring human exploratory
behaviour (Perry et al., 2009), may provide novel ways to
model anxiety disorder endophenotypes in animals.

Table 3
Continued

Model Description
Anxiety-like
behavioural phenotype Reference

Chemical models

Pentylenetetrazole (PTZ)
induced anxiety

Administration of the GABAA

antagonist PTZ is a highly
anxiogenic stimulus. Rats can be
trained to discriminate PTZ
administration from saline.

PTZ induces an anxiogenic effects in the
elevated plus maze, as well as in conflict
test. Animals trained to discriminate
between PTZ and saline display PTZ
appropriated responses to predator
stress, alarm pheromones and to social
defeat.

(Jung et al., 2002)

Sodium lactate-induced
anxiety

Administration of IV sodium lactate
produces a panic response in
human volunteers and increases
in anxious behaviour in rats

Sodium lactate infusion reduces levels of
social interaction and increases levels of
anxious behaviour in the elevated plus
maze

(Johnson et al., 2008;
Shekhar et al., 1996;
2010)

m-chlorophenylpiperazine
(mCPP)-induced
anxiety

Administration of the non-selective
serotonin antagonist mCPP is a
highly anxiogenic stimulus. Rats
can be trained to discriminate
mCPP administration from saline.

mCPP administration increases anxious
behaviour in the elevated plus maze,
elevated t maze, elevated zero maze,
Geller-Seifter test, social interaction test
and shock induced vocalizations

(Gatch, 2003)

CCK induced anxiety Administration of cholecystokinin
evokes a panic like response in
rodents

CCK-8 produces a spontaneous freezing
response and evokes anxious behaviour
in the elevated T-maze and the elevated
plus maze. CCK-4 produces a panic like
reaction when injected into the dorsal
periaquiductal grey area.

(Mongeau and Marsden,
1997; Netto and
Guimarães, 2004;
Zanoveli et al., 2004;
Rupprecht et al., 2009)
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To determine the validity of an experimental model of a
neuropsychiatric endophenotype, standardized criteria such
as those proposed by McKinney and Bunney (1969) for
depression, and which are equally applicable to anxiety dis-
orders, can be used. These authors suggest that animal
models should bear a reasonable analogy to the human dis-
order in either manifestation or symptoms, induce a behav-
ioural change that can be objectively monitored, display
sensitivity to effective clinical treatments and display inter-
researcher reproducibility in order to be considered valid
(McKinney and Bunney, 1969). Current thinking on the
validity of animal models acknowledges the existence of
several types of validity, including face validity (similar
symptom manifestation to the clinical condition), construct
validity (similar underlying biology), predictive validity
(responsiveness to clinically effective therapeutic agents),
etiological validity (induced by similar stimuli as the clinical
condition), convergent validity (convergent measures with
other construct based models) and divergent validity (diver-
gent measures from other construct-based models) while
maintaining that the reliability and predictive validity are the
most important criteria in determining the overall validity of
the system (Geyer and Markou, 2002).

In the context of anxiety, it has been argued by Treit et al.
(2010) that the validity of behavioural tests of anxiety should
be based on three principles arising from the evolutionarily
conserved roles the fear response plays in normal survival
behaviour. Firstly, a correspondence between the behavioural
fear expressions in the animal model biochemical or physi-
ological correlates of these behaviours, and the expression of
isomorphic behavioural responses in humans. Secondly, if no
isomorphism is present, biological function should be con-
served between the anxiety-like behaviour in the animal
model and the human fear response. And thirdly, conserva-
tion of the neural mechanisms, engaged during the fear
response, that underlie anxiety-related behaviour in both
animals and humans (Treit et al., 2010).

In preclinical psychiatry research, there remains some
confusion on the distinction between an animal model
versus a test (see Cryan and Slattery, 2007). When describing
preclinical anxiety research, it is important to try and draw a
distinction between animal models of anxiety and experi-
mental tests of anxiety (Rodgers, 2010). In general, when the
term ‘animal model of anxiety’ is used, it refers to an animal
that exhibits a phenotype behaviourally relevant to clinical
anxiety disorders. When we use the term ‘test of anxiety’, we
refer to a behavioural paradigm that induces a quantifiable
fear-related behaviour related to the normal adaptive fear
response (Young and Liberzon, 2002; Rodgers, 2010). We can
thus say that a model comprises both an independent vari-
able (i.e. the inducing manipulation) and a dependent vari-
able (i.e. the behavioural/neurochemical readout) (Geyer and
Markou, 2000), whereas a test simply comprises a dependent
variable. Thorough clinical understanding of the underlying
pathophysiology of anxiety disorders is vital to determining
appropriate independent variables in preclinical research.
Identification of appropriate anxiety endophenotypes has
been useful in this regard (Cryan and Slattery, 2007). Tests of
anxiety are often described as ‘models of anxiety’ based on
the translationally questionable premise that anxiety disor-
ders represent an exaggerated activation of the normal fear

response, when in fact they more accurately represent models
of particular behavioural endophenotypes present in anxiety
disorders and indeed models of anxiolytic drug activity
(Young and Liberzon, 2002; Cryan and Holmes, 2005;
Holmes and Cryan, 2006). Rodgers (2010) points to the fact
that the distinction between animal test and animal model in
anxiety research highlights the crucial difference in the
knowledge we can garner from their use in understanding the
neural circuitry of anxiety. Studying the induction of fear in
an animal test in a normal animal can provide insight into
the neurobiology of the adaptive fear response, but may not
necessarily be appropriate for investigating the dysregulated
fear responses observed in anxiety disorder patients (Rodgers,
2010). It is thus important to remember that symptoms could
conceivably arise from pathological processes upstream of the
fear response and not from an abnormal fear response per se.
Knowledge of the dysregulated anxiety response in humans is
thus best derived from animals with a translationally relevant
dysregulation of their anxiety response, evidenced by greater
levels of anxiety in etiologically valid behavioural tests. This
may explain why, although our knowledge of the basic fear
response has become highly developed over the past number
of decades, the pathophysiology of anxiety disorders remains
impenetrable (Rodgers, 2010).

Human models of anxiety: translating
and adapting

All the abovementioned approaches share in common the
precept that the validity of an animal model of anxiety is
dependent on solid understanding of the ethological mani-
festation of anxiety in humans. Vital to this is the pharma-
cological validation of several fear/anxiety/stress-provoking
paradigms that can be used to mimic in humans a state
similar to the symptoms experienced by anxiety disorder
patients. These include generating classical conditioned fear
in humans, generating anxiety via public speaking, measur-
ing attentiveness to threatening cues using the Stroop-word
colour task, as well as measuring fear-potentiated startle in
humans (Graeff et al., 2003).

The provocation of panic attacks using cholecystokinin
(CCK) is a well-characterized method for the study of anxiety
in humans (Koszycki et al., 1991), and has proven to be of use
in exploring the neurochemical (Zwanzger et al., 2003;
Maron et al., 2009), genetic (Maron et al., 2010) and psycho-
logical (Tõru et al., 2010) aspects of panic disorder, as well as
representing a potentially useful screen for novel anxiolytic
drugs (Kellner et al., 2005; Kronenberg et al., 2005; Eser et al.,
2007). Anxiety in humans can also be generated experimen-
tally using chemical agents such as caffeine (Nardi et al.,
2007), m-chlorophenylpiperazine (mCPP) (Kahn et al., 1990),
yohimbine (Charney et al., 1984), CO2 inhalation (Nardi
et al., 2007), sodium lactate (Liebowitz et al., 1984; 1985) and
isoproterenol (Pohl et al., 1987; Balon et al., 1988; Yeragani
et al., 2007). A detailed summary of these techniques is
described in Table 4. The pharmacological validation of these
techniques, however, lags far well behind developments in
animal modelling of anxiety. It is vital that a greater invest-
ment is made into fully validating such paradigms both in
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terms of predictive and face validity. This is one area where
the pharmaceutical industries must combine with clinical
and basic scientists to really invest substantially in such
research (Conn and Roth, 2008). Moreover, with anxiety, we
have a clear advantage over depression drug development
with the very fact that fear can be relatively easily induced.
Moreover, advances in neuroimaging and neurophysiology
are unravelling clear circuits that are involved in various
anxiety disorders (Schiller and Delgado, 2010; Schiller et al.,
2010). The ability of pharmaceutical agents or psychological
methods to reverse the patterns of neuronal function associ-
ated with anxiety disorders is also at a very limited state, but
is a very attractive avenue for future innovation (Murphy,
2010). Moreover, developing this approach to modelling
clinical anxiety in humans will greatly facilitate early proof of
concept clinical trials.

Animal models and tests used in
assessing anxiolytic action

By far, the most commonly used species in preclinical anxiety
research are the mouse (Mus musculus) and the rat (Rattus
norvegicus), although as noted early studies in dogs and
pigeons have had their use. Traditionally, rats have been the
species of choice for behavioural pharmacology due to the
practical considerations of their size and amenity to surgical
intervention, as well as superior cognitive ability and superior
performance in operant and cognitive tasks. Many com-
monly used behavioural paradigms were initially developed
and validated as screens of anxiolytic activity in the rat before
adaptation to use with other species (Cryan and Holmes,
2005). The development of novel genetic modification tech-
niques, developed most extensively in the murine models,
has led to a surge in the popularity of the mouse in neurop-
sychiatric research. The mouse additionally has the advan-
tages as regards ease of breeding, low cost, short generation
turnover and smaller size from a drug-dosing perspective
(Joyner and Sedivy, 2000; Tarantino and Bucan, 2000; Tecott,
2003; Cryan and Holmes, 2005; Crawley, 2007; Jacobson and
Cryan, 2007; Phillips et al., 2007). However, this has brought
with it its own logistical problems in terms of difficulty
in combining blood collection for pharmacokinetic–
pharmacodynamic studies or biomarker analysis. Moreover,
the enormous interstrain difference in mouse behaviour
across many anxiety tests both under baseline conditions and
in response to pharmacological manipulation (Jacobson and
Cryan, 2010) can make interpretation of data difficult. The
question which invariably arises as to which mouse strain is
most like human is not an easy question to try and answer.
Thus, it is becoming clear that testing of putative anxiolytic
drugs requires testing across multiple strains (and species if
possible) to ensure the risk of a false negative. It should be
noted also that the manner in which a rodent responds to an
anxiety-provoking situation may be qualitatively different to
that of humans, but it is becoming clear that many of the
same neuronal circuits are recruited (Singewald, 2007). Often,
efforts at developing of translational models of anxiety are
interpreted as forming completely homologous models in
both humans and rodents; while this may be possible in

certain domains [e.g. startle response, stress-induced hyper-
thermia (SIH)], it also may be a very narrow approach and
disregards the ethological and species-specific aspects of
mouse behaviour (Rodgers et al., 1997). In the next section,
we will detail some of the more widely used animal tests for
assessing anxiolytic action, which are additionally summa-
rized in Table 1.

Approach–avoidance tests in
laboratory animals
Several forms of anxiety test have been employed and vali-
dated to measure levels of anxiety in rodents, many of which
are designed based on the concept that anxiety disorders
represent extreme states of a continuum of anxiety-related
behaviour (Cryan and Holmes, 2005). Many tests have an
ethological foundation based on the conflict that exists in
small rodents, such as rats and mice, between the natural
exploratory drive in these animals and aversion to exposed
brightly lit environments (Rodgers, 1997). These models
emerged over the past 40 years or so and relied on an etho-
logical approach to understanding anxiety as opposed to the
pharmacological approaches used in the development of
drugs such as the benzodiazepines (see above). Behavioural
paradigms based on approach–avoidance conflict include the
elevated plus maze (Handley and Mithani, 1984; Pellow et al.,
1985; Lister, 1987; Rodgers, 1997; Holmes, 2001; Crawley,
2007), elevated zero maze (Lee and Rodgers, 1990; Shepherd
et al., 1994), open-field test, light–dark box test (Crawley,
2007), staircase test (Simiand et al., 1984) and mirrored arena
(Rodgers, 1997; Rodgers et al., 1997; Belzung and Griebel,
2001; Crawley, 2007) where avoidance of exposed, brightly lit
or elevated areas is measured. The modified hole-board test
combines the approach–avoidance aspects of the open field
with the addition of board containing several holes which
allows for the direct measurement of exploratory behaviour
(Ohl et al., 2001a,b). Within these approach avoidance pro-
cedures, several species-specific behaviours and postures are
quantified and used as behavioural readouts. Reductions in
these ‘ethological parameters’ such as head dipping over the
edges of elevated apparatuses, rearing and stretch-attend pos-
tures regarded as a manifestation of increased anxiety (Shep-
herd et al., 1994; Rodgers, 1997; Rodgers et al., 1997; Belzung
and Griebel, 2001). Ethological analysis is taken to its
extreme in the measurement of mouse risk assessment, flight
and defensive attack behaviour following threat cue exposure
in the mouse defence test battery (MDTB) (Blanchard, 2003).
Apprehension and heightened levels of vigilance are fre-
quently a component of anxiety disorders, and measurement
of risk assessment behaviour, indexed by relevant ethological
parameters, is regarded as a model of this endophenotype
(Rodgers, 1997; Blanchard, 2003; Cryan and Holmes, 2005).

Although the constructs underling each of these
approach–avoidance tests, it is important to emphasize that
the pharmacology and underlying neurobiology are not nec-
essarily identical. To add to the complexity, large species and
strain differences occur. Thus, it is very difficult to define
which test is the best to model human anxiety responses.
This necessitates the use of a battery-style approach for assess-
ing novel pharmacological agents. However, questions always
emerge if a compound is showing an anxiolytic effect in more
tests, is it going to be more effective in the clinic? The recip-
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rocal experiences of researchers with SSRIs [very little activity
(Borsini et al., 2002)] and NK1 receptor antagonists [activity
in a number of tests (Varty et al., 2002; Vendruscolo et al.,
2003; Heldt et al., 2009)] would suggest not.

Conflict-based anxiety tests in
laboratory animals
Conflict-based models have been among the most sensitive to
GABAergic manipulation and have been played an important
role in assessing anxiolytic potential. Since the time of
Sigmund Freud, many theories have been introduced to
explain the relationship between anxiety and internal con-
flict (Sato, 2005), especially in relation to psychodynamic
theories. Freud (1966) discussed internal conflict in relation
to the three structures of the mind. Anxiety according to this
view is caused by the psychic tension among the forces rep-
resentative of the id, ego and superego. Another commonly
discussed theory concerning the relationship between inter-
nal conflict and anxiety is Alfred Adler’s (1954) theory of
inferiority. In his work, Adler discussed the process of how
our primary internal conflicts are caused by various feelings
of inferiority in great detail. Adler suggests that these feelings
of inferiority are also assumed to be one of the common
causes of anxiety. Sato (2005) describes conflict situations
within a framework that when something is consistent with
our desires, we feel comfortable. When something is incon-
sistent with our desires, we feel anxiety. Therefore, internal
conflict can be conceptualized using two constructs: (i) what
we desire; and (ii) what has, is or could happen. When what
we desire matches what has, is or could happen, we feel
comfortable. When what we desire does not match what has,
is or could happen, we feel anxiety. As is evident from the
way the model is worded, this applies regardless of whether
we are dealing with events in the past, present or future.

Therefore, conflict situations, in which a subject experi-
ences two opposing impulses, are a common and clinically
relevant feature of anxiety, and therefore employed in many
models employed for the detection of anxiolytic agents in
rodents. In conflict-based tests of anxiety in laboratory
animals, subjects receive a punishment (mild electric shock)
leading to suppression of a conditioned (learned) response for
reinforcement (food or water) (Rodgers, 1997). Punishment-
based conflict procedures have been employed for over 50
years in the identification and characterization of anxiolytic
agents (Geller and Seifter, 1960). Studies demonstrated that
when rats are trained to lever press for a food reward, during
the ‘conflict’ component, responses are inhibited by con-
comitant, mild electric shocks. This paradigm is known as the
Geller–Seifter test. Anxiolytic properties are deduced for drugs
that selectively enhance punished responses in the presence
of shock as compared to unpunished responses emitted in its
absence. Benzodiazepines and barbiturates were initially
demonstrated to exert specific anxiolytic properties active in
the Geller–Seifter test, and, subsequently, many classes of
potential anxiolytic agent have been characterized employ-
ing this procedure. However, major disadvantages remain: (i)
the necessity for long-term (months) and daily training of
subjects; and (ii) their repeated utilization. That is, exposure
to drugs may modify the actions of those subsequently
evaluated.

In an effort to overcome these problems, Vogel et al.
(1971) developed a novel conflict procedure in which male
rats were water deprived for 48 h and, during a test session of
3 min, drinking was punished by a mild, but aversive shock
delivered via the spout of the bottle every 20 licks. Accord-
ingly, a specific, drug-induced increase in the number of
shocks taken was considered to reflect anxiolytic properties.
Today, Vogel et al.’s (1971) test is one of the most widely used
tests for assessing anxiolytic activity in rodents (Millan and
Brocco, 2003).

A similar conflict procedure is the four-plate test, where
the drive to explore a novel environment is conflicted with
the drive to avoid floor-delivered foot shocks (Ripoll et al.,
2006). Defensive marble and shock-probe burying tests,
where animals bury novel or aversive items, differ from other
tests of anxious behaviour in that an active behaviour (i.e.
burying is used as an index of anxiety as opposed to other
tests relying on passive avoidance behaviour). It should,
however, be noted that controversy exists as to the precise
nature of the behaviour elicited in the defensive marble
burying assay in mice. It has been argued that this assay may
be more ethologically relevant to obsessive–compulsive dis-
order than to the rest of the anxiety disorders (Witkin, 2008),
or may represent a species-specific repetitive and persevera-
tive behaviour with little correlation to anxiety levels of
anxiety-like behaviour (Thomas et al., 2009). As such, they
make valuable additions to anxiety test batteries (Broekkamp
et al., 1986; Sluyter et al., 1996; 1999; Spooren et al., 2000;
Jacobson et al., 2007).

Other anxiety tests in laboratory animals
Anxiolytic activity in many of the mentioned tests can be
confounded by aspects of altered locomotor activity induced
by genetic or pharmacological manipulations (Cryan and
Holmes, 2005; Holmes and Cryan, 2006; Jacobson and Cryan,
2010). Thus, it is important to consider other tests in battery-
style approaches that are less dependent on motor outputs.
The following are some of the more widely used.

Hyponeophagia. Hyponeophagia, the suppression of eating
due to anxiety-related states caused by novelty, can be
assessed by measuring the latency to begin eating in a variety
of potentially anxiogenic situations. Once again, it is a
conflict-based model that has a long history in the assess-
ment of emotionality and anxiety with Hall (1934) observing
an inverse relationship between feeding and defecation in
animals exposed to a novel environment. In hyponeophagia,
tests the level of anxiety-related stimuli is manipulated by
using novel food and by conducting the experiment in novel,
potentially anxiogenic environments (Bannerman et al.,
2002; 2003; Deacon and Rawlins, 2005; Dulawa and Hen,
2005; Finger et al., 2010). These paradigms are ethologically
relevant and therefore do not require complex training pro-
cedures, are not confounded by painful stimuli, are simple to
conduct and are relatively cost-effective. Hyponeophagia-
based models are conducted either by presenting chow to
food-deprived animals, or by presenting a highly palatable
and familiar food to satiated animals, and measuring the
latency to feed and/or the amount eaten in a novel environ-
ment. The same dependent measures should also be assessed
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in the home environment to control for effects of the inde-
pendent variable on appetite. As in all anxiety assays, inbred
mouse strains show baseline differences in levels of hypo-
neophagia (Trullas and Skolnick, 1993). A number of genetic
manipulations resulting in anxious phenotypes including
leptin-deficient mice (Finger et al., 2010), 5-HT1A receptor
(Gross et al., 2000) and the NK1 receptor (Santarelli et al.,
2002) have also increased hyponeophagia.

Several variations of hyponeophagia-based behavioural
paradigms exist. These include the novelty-suppressed
feeding paradigm where animals are presented with normal
food in a novel anxiogenic environment, and the latency to
begin eating is taken as an index of the anxiety state of the
animal (Bodnoff et al., 1988; 1989; Gross et al., 2002).
Repeated exposures to hyponeophagia paradigms in different
environments and to different food stuffs can be used to
modulate the levels of anxiety generated in these paradigms
in order to optimize the sensitivity of the behavioural output
in this test (Deacon and Rawlins, 2005; Finger et al., 2010).
Another variant is the novelty-induced hypophagia model in
which animals are trained to consume a highly palatable
food, such as sweetened milk, and then later presented this
food in a novel aversive environment (Soubríe et al., 1975;
Gross et al., 2002; Santarelli et al., 2003).

Separation-induced ultrasonic vocalizations. Rodent pups
produce vocalizations in the ultrasonic range when separated
from their mother and littermates. This distress behaviour is
intended to elicit maternal attention and retrieval, as well as
to modulate maternal care behaviour by stimulating prolac-
tin production (Noirot, 1972; Hashimoto et al., 2001; Farrell
and Alberts, 2002). These distress behaviours can be recorded
and analysed both quantitatively and qualitatively in order to
measure levels of distress-like behaviour in both infant mice
and rats (Groenink et al., 2008; Scattoni et al., 2009). Suppres-
sion of USV emission is an ethologically valid marker of
anxiolytic drug efficacy (Groenink et al., 2008). Anxiolytic
effects in this test can be elicited with administration of
benzodiazepines, 5-HT1A receptor agonists and SSRIs. Agents
acting on the noradrenergic system, such as tricyclic
antidepressants, are, however, less consistent in their
anxiolytic effects (Borsini et al., 2002). USV reduction is also
seen with administration of a range of putative anxiolytic
agents, including NK1 receptor antagonists (Groenink et al.,
2008).

Measurement of USV production in response to painful or
stressful stimuli has also been proposed as a potential
measure of anxiety behaviour in adult rodents. 5-HT1A

receptor antagonists and SSRI antidepressants are effective at
suppressing USV emission in this model, although benzodi-
azepines have limited effects (Sánchez, 2003).

SIH. A key element of the adaptive anxiety response is acti-
vation of the autonomic nervous system and subsequent
physiological responses including an increase in body tem-
perature. This process is conserved across mammalian
species, including rodents and humans. Measurement of the
hypothermic response generated subsequent to stressful
stimuli represents a translationally valid and useful approach
to modelling anxiety disorders (Bouwknecht et al., 2007;
Vinkers et al., 2008). The hypothermic response to stress can

be attenuated using benzodiazepines, as well as buspirone
and ethanol (Spooren et al., 2002), and chronic, but not
acute, SSRI treatment (Conley and Hutson, 2007). The SIH
paradigm is additionally sensitive to the effects of numerous
putative anxiolytic agents (Spooren et al., 2002), as well as
providing a useful technique for exploring the role of indi-
vidual neurotransmitter systems in the anxiety response
(Vinkers et al., 2010).

Fear conditioning-based models
of anxiety

Alterations in conditioned fear learning and cognitive
defects form an important facet of the clinical manifestation
of anxiety disorders (American Psychiatric Association, 2000;
Lang et al., 2000). These include inappropriate processing of
potentially threatening stimuli in GAD, panic disorder and
phobias, as well as the long-term salience of traumatic
memories seen in PTSD. In order to model these aspects of
anxiety disorders, several conditioned tests of anxiety, such
as Pavlovian fear conditioning, have been developed and
validated (Cryan and Holmes, 2005; Ledgerwood et al., 2005;
Delgado et al., 2006; O’Connor et al., 2010). More recently,
the discovery that insular cortex dysfunction may play a role
in anxiety disorders (Paulus and Stein, 2006) has led to the
insular cortex-dependent, conditioned taste aversion para-
digm becoming more widely used (Bermúdez-Rattoni et al.,
2004; Guitton and Dudai, 2004; Mickley et al., 2004; Yasos-
hima and Yamamoto, 2005; Jacobson et al., 2006; Hefner
et al., 2008).

Conditioned fear paradigms revolve around the associa-
tion of innocuous stimuli, such as a tone or palatable taste
(conditioned stimulus), with a painful or stressful stimulus,
such as a foot shock or chemically induced malaise (uncon-
ditioned stimulus). Levels of conditioned fear generated in
these paradigms are indexed by a number of behavioural
outputs, including conditioned freezing, fear-potentiated
startle, active defensive behaviours, vocalizations, physi-
ological responses, as well as alterations in sucrose prefer-
ence in the conditioned taste aversion paradigm (Fendt
and Fanselow, 1999; Cryan and Holmes, 2005). Sleep dis-
turbances form part of the diagnostic criteria for several
forms of anxiety disorder (American Psychiatric Association,
2000; Prut and Belzung, 2003), and also represent sensitive
output in fear-conditioning paradigms (Sanford et al.,
2003a,b).

Extinction of the fear response generated in fear condi-
tioning and conditioned taste aversion paradigms is of par-
ticular use in modelling the persistence of traumatic
memories associated with PTSD and panic disorder (Ressler
et al., 2004; Barad, 2005; Cryan and Holmes, 2005; Ledger-
wood et al., 2005; Delgado et al., 2006; Jacobson et al.,
2006).The efficacy of the NMDA receptor antagonist
D-cycloserine in facilitating fear extinction in both the rat
fear potentiated startle paradigm and in human acrophobic
patients indicate a predictive validity for this approach
(Ressler et al., 2004; Ledgerwood et al., 2005; Davis et al.,
2006). For further information, see review from Graham et al.
(2010) in this issue.
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Pharmacological validation

A major criticism of many of the behavioural tests discussed
here is that while they display robust responsivity to the
benzodiazepine anxiolytics and thus display predictive valid-
ity in this respect (Cryan and Holmes, 2005; Crawley, 2007),
their predictive validity in respect of other classes of clinically
used anxiolytic drugs, in particular SSRI antidepressants, is
lacking (Borsini et al., 2002). This is based on the variable
effects produced by SSRI across the spectrum of anxiety tests
with the notable exceptions of the USV suppression, MDTB
and defensive marble burying paradigms (Rodgers, 1997;
Borsini et al., 2002; Blanchard, 2003; Markou et al., 2009). It
should, however, be remembered that many of the currently
used behavioural tests were developed based on prevailing
clinical practice that clearly distinguished between the
anxiety disorders and depression in terms of both symptom
presentation and treatment, with the gold standard of pre-
dictive validity as benzodiazepine sensitivity (Treit et al.,
2010). Nevertheless, a variety of putative anxiolytic com-
pounds have shown efficacy in a variety of SSRI-sensitive
behavioural tests. None, however, have made the transition
to clinic as of yet (Table 2). Rodgers (2010) outlines several
pitfalls in overemphasizing pharmacologically predictive
validity as a marker of a valid test. Predictive validity is by its
nature a retrospective assessment, a flaw in itself and that
putting too much stead on it comes with the risk that active
compounds will never be truly novel in their mode of action.
An additional risk is that tests whose sole merit is their pre-
dictive validity for either benzodiazepine or chronic SSRI
treatment may in reality be simple models of SERT or GABAA

receptor pharmacology (Rodgers, 2010).
Pharmacological agents used to induce anxiety behaviour

in animals include CCK (Rupprecht et al., 2009), sodium
lactate (Shekhar et al., 1996), the serotonin antagonist mCPP
(Gatch, 2003), as well as PTZ (Jung et al., 2002). CCK, mCPP
and sodium lactate also provoke panic-like responses in
humans (Liebowitz et al., 1984; Kahn et al., 1990; Koszycki
et al., 1991), and thus are viewed as potential animal models
of panic disorder. However, it should be noted that the lactate
model needs the added manipulation in animals of surgically
manipulating GABA in the dorsomedial hypothalamus to
prime for the panic-inducing effects of lactate (Shekhar et al.,
1996).

Caveats in preclinical models of
anxiolytics action
Alterations across the entire behavioural repertoire following
pharmacological or genetic intervention can often confound
the analysis of anxiety behaviour (Bouwknecht and Paylor,
2008). It is critical that such confounding behaviours are
taken into account in interpreting the effects of any agent in
a test. Outputs, such as freezing or exploratory behaviour,
and other locomotor-based behaviours are particularly vul-
nerable to obfuscation by alterations in locomotor function,
making the assessment of the locomotor effects of any novel
intervention paramount (Cryan and Holmes, 2005; Holmes
and Cryan, 2006; Jacobson and Cryan, 2007). However, some
tasks, such as the elevated plus maze, have in-built param-
eters that take into account any locomotor-altering effects of

a drug (Hogg, 1996; Rodgers et al., 1997). Disruption of cog-
nitive function by non-specific drug actions can disrupt
learning-dependant and exploration-dependant behavioural
outputs, confusing the analysis of data from assays of both
innate and conditioned anxiety (Jacobson et al., 2007; Bou-
wknecht and Paylor, 2008). Alterations to the sensory system
of the animal can have marked effects where nociception
(foot shock-based paradigms) or olfactory (conditioned taste
aversion) function is vital to proper responsiveness to the
test. Alterations to basal temperature can confound results
obtained from the SIH paradigm (Vinkers et al., 2008),
whereas alterations to feeding behaviour and satiety function
can influence behaviour in hyponeophagia paradigms
(Dulawa and Hen, 2005).

Similar advice is needed for the assessment of genetically
modified animals in tests of anxiety, and is vital in avoiding
erroneous interpretations of behavioural data. A thorough
determination of any confounding abnormalities present in
genetically modified animals prior to behavioural testing is
vital (Crawley, 2007). Other factors that can influence behav-
iour in anxiety tests are early life experience, previous test
exposure and compensatory changes in the case of transgenic
animals (Cryan and Holmes, 2005; Holmes and Cryan, 2006;
Jacobson and Cryan, 2007). Use of a test battery encompass-
ing multiple anxiety tests exploring different aspects of
anxiety behaviour has thus been suggested as an approach to
detect genuine behavioural effects (Cryan and Holmes, 2005;
Arguello and Gogos, 2006; Bouwknecht and Paylor, 2008). It
must be remembered, however, when designing such a
battery, as prior test experiences can influence behaviour and
markedly alter responsivity to pharmacological agents in a
number of behavioural paradigms (Holmes and Rodgers,
1998; Holmes et al., 2001). Battery approaches where tests
used progress from least stressful to most stressful, while
considering which tests are more vulnerable to the effects of
prior testing, and which allow for sufficient recovery time
between tests, can overcome this potential caveat (Bou-
wknecht and Paylor, 2008).

Conclusions and future directions

Despite the present dizzying array of behavioural paradigms
for use in anxiolytic drug discovery, recent advances in
animal modelling are yet to translate into novel pharmaco-
logical therapies in the clinic. A multitude of reasons may
underlie this apparent stagnation. These include concerns as
to the ethological and predictive validity of the techniques at
our disposal. The apparent insensitivity of many of the tests
to commonly used clinical anxiolytics, such as the SSRIs, is a
major concern (Borsini et al., 2002), and questions still linger
as to the fact that the maintenance of anxiety disorders is
ultimately based on cognitive processes only present in
humans, as evidenced by the efficacy of cognitive treatments
in humans (Steckler et al., 2008). In order to advance the
efforts in drug discovery, we must both re-assess our concepts
of validity (Treit et al., 2010). It is also important to remember
that our animal models are only as valid as the knowledge of
the neurobiology and pathophysiology of clinical anxiety
disorders that underpin their design.
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With this in mind, it is clear that animal models will play
a role in the emergence of the next anxiolytic drug class, but
only as a component of a broad multidisciplinary approach
where advances in animal models are informed by insight
into pathophysiological basis, as well as the neurobiological
and behavioural correlates of the clinical disease. A recent
example is that shown by Rupprecht et al. (2009), where in
vitro electrophysiology, animal behavioural experiments and
human studies are combined in the investigation of novel
therapeutic avenue for panic disorder, translocator protein
(18 kD) ligands.

Indeed, at a molecular and electrophysiological level,
great inroads are being made into delineating the circuits
underlying amygdala-dependent fear memory (Phelps and
LeDoux, 2005; Sigurdsson et al., 2007; Herry et al., 2008;
Ehrlich et al., 2009; Davis et al., 2010; Haubensak et al., 2010;
Pape and Pare, 2010; Parsons and Davis, 2011; Sierra-Mercado
et al., 2011), which are already being paralleled with imaging
studies in humans (Phelps and LeDoux, 2005; Davis et al.,
2010). It is only appropriate to mention here that despite the
failings of animal research in generating a new anxiolytic
drug class to date, it has proven a highly successful platform
for advancing our knowledge of the neurobiology of anxiety
and fear (Rodgers, 2010). The next step will be to advance
such basic neuroscience approaches into clinical drug devel-
opment. Interestingly, and for reasons not apparently clear,
similar approaches in non-cognitive-based models have failed
to advance in the same manner. If there is a continued reli-
ance on behavioural outputs in such models for drug discov-
ery efforts, it is crucial that knowledge is gleaned on how
certain anxiolytic work (or not) in them. The combination of
behaviour with imaging techniques, such as c-Fos immuno-
histochemistry, is becoming more sophisticated and will also
play a role in the future delineation of anxiety circuits in the
brain (Reijmers et al., 2007; Singewald, 2007).

In conclusion, animal models have played a role in the
development of some anxiolytic drugs, such as the benzodi-
azepines and buspirone; however, their relative contribution
to future drug development will only be accentuated as part
of a complete research program combining genetic signalling
pathways, electrophysiology, brain neurochemistry, neu-
roimaging and behaviour. For this approach to bear fruit,
there is also an onus on preclinical researchers to ensure that
novel clinical insights into the aetiology of anxiety disorders
appropriately inform both the design and use of animal
models and tests (Rodgers, 2010). It is imperative to state that
in addition to refining the predictive efficacy of the animal
tests used in anxiety research, preclinical scientists are
impressed on ethical grounds to actively innovate in replace-
ment of current models and tests with lower species or non-
animal techniques, refinement of procedures in order to
minimize animal suffering and reducing the number of
animals required to generate data – the 3Rs (Goldberg et al.,
1996). Moreover, while we clearly point out some of the
drawbacks of animal tests of anxiolytics action in this review,
it would be remiss not to mention the impediment to pre-
clinical research posed by the lack of conceptual clarity and
stability at the clinical level. Reverse translation, from clinic
to animal model in psychiatry, is not yet as fully developed as
it should, and this will be crucially important in determining
the true translational nature of animal models and aid in the

development of novel treatment strategies that will counter
the vast health problems in this age of anxiety.
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