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Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from
long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological
treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical
efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal
models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic
all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a
thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time
window must be carefully evaluated. Although the search for a single-compound, ‘silver bullet’ therapy is ongoing, a
combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In
summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug
industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of
animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more
homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug
delivery systems and monitoring of target drug levels and drug effects is warranted.
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Life brings on unexpected changes
But we must carry on despite it
– Lenny Kravitz, the Future Song

Introduction

Traumatic brain injury (TBI) caused by, for example, trans-
portation, falls, assault, sports, mainly affects young individu-
als and is the leading cause of mortality and disability in the
population below 50 years of age (Ghajar, 2000; Corrigan
et al., 2010). In Europe, TBI is the cause for 60 000 deaths
annually and the incidence of fatal and hospitalized TBI
combined was estimated to be 235/100 000 inhabitants.
Although the global magnitude of TBI is unknown, available
data suggest that the number of TBI victims globally is rising
sharply (Tagliaferri et al., 2006; Maas et al., 2008; Corrigan
et al., 2010). The TBI frequently causes persistent functional
deficits, leading to a loss of decades of productive life with a
huge cost to the patient, his or her family and the society.
Common consequences of TBI include personality changes,
seizures, cognitive problems, impaired motor function and a
reduced quality of life calling for long-term rehabilitation and
treatment (Masel and DeWitt, 2010). A range of psychiatric
disorders, where depression may be the most common, also
occur after TBI (Bryant et al., 2010). Currently, treatment of
TBI according to established guidelines consists of supportive
measures including the avoidance of prehospital hypoxia and
hypotension, rapid surgery of mass lesions when needed, and
neurocritical care (NCC) (Marion, 2006; Brain Trauma Foun-
dation et al., 2007). Improved NCC has been a major factor
for improving outcome of severely brain-injured patients (Elf
et al., 2002). The outcome of TBI patients may also reflect the
economic status of the region or country in which the patient
is treated (Mauritz et al., 2008). Further improvements in TBI
outcomes may be achieved by a continued refinement of
NCC based on research and development in the areas listed in
Table 1. However, to date there are no specific neuroprotec-
tive pharmacological treatment options with proven clinical
efficacy available for TBI patients (Maas et al., 2008). Impor-
tantly, prolonged and supportive neurorehabilitation follow-

ing the initial post-injury phase may also aid in improving
outcome where a number of cognitive ‘stimulants’ have been
evaluated to ameliorate post-injury disabilities (Napolitano
et al., 2005).

Traumatic brain injury may be the most complicated
disease of the most complex organ of the body. This statement
reflects the many features and distribution patterns of TBI as
well as the sophisticated structure and function of the brain.
For a successful translation of basic science knowledge to the
clinic to occur in this context we believe that a further refine-
ment of animal models and functional outcome methods as
well as TBI patient classification and standardized treatment
strategies is warranted (also see Morales et al., 2005).

The purpose of this review is to discuss the current use of
animal modelling of TBI as a tool in preclinical drug devel-
opment with a focus on closed head injury (CHI) models in
rodents, excluding the rapidly growing field of blast injury
models.

Basic pathophysiology of TBI

The primary injury to the head causes rapid deformation of
brain tissue with destruction of brain parenchyma and blood
vessels causing damage to cell membranes with the immedi-
ate release of intracellular contents (McIntosh, 1994; Rink
et al., 1995). This initial injury cannot be treated, only pre-
vented. Not all neuronal and glial damage occurs at the time
of primary injury which is markedly exacerbated by a
complex cascade of pathophysiological and neurochemical
events during the course of the initial hours and days
(Figure 1). Importantly, several reports have shown a progres-
sive encephalomalacia for many years post-injury (Greenberg
et al., 2008; Ng et al., 2008). Although the duration and mag-
nitude of this secondary injury cascade may be highly vari-
able among subtypes of TBI and among TBI patients, the
concept of secondary brain injury is central to modern TBI
management and the goal to improve outcome of TBI
patients using novel pharmacological treatment options. A
detailed overview of all aspects of the secondary injury
cascade is beyond the scope of this review but key factors are
highlighted below and in Figure 1.

In the immediate period following the primary injury,
there is a massive disturbance of the cellular ion homeostasis
initiated by excessive release of the excitatory amino acid
neurotransmitters glutamate and aspartate with the subse-
quent activation of glutamate receptors, a process named
excitotoxicity. The release of glutamate results in cellular
influx of Na+ and Ca2+ and efflux of K+ (Faden et al., 1989;
Katayama et al., 1990; Nilsson et al., 1990; 1993). The influx
of calcium ions is regarded to be a key event early post-TBI
leading to mitochondrial damage, an increase in free radical
production, changes in gene expression and activation of
calcium-dependent proteases including caspases, calpains
and phospholipases resulting in extensive cytoskeletal
damage (Marklund et al., 2001; Singleton et al., 2001; Israels-
son et al., 2008). The marked mitochondrial perturbation
post-TBI (Verweij et al., 2000; Lifshitz et al., 2004) leads to
uncoupling of mitochondrial ATP synthesis at the time of
increased energy demand due to activation of energy-
consuming ion transport systems and cell repair enzymes.

Table 1
Key scientific approaches for further improvement of neurocritical
care in traumatic brain injury

Pharmacological
neuroprotection

Drugs blocking specific secondary injury
mechanisms

Drugs stimulating reparative
mechanisms

Monitoring of the
brain injury
process

Biomarkers of specific secondary injury
mechanisms

Refined/novel neuroimaging methods

Neurorepair Axonal regeneration

Neurogenesis/stem cell therapy

Neurorehabilitation/plasticity
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Conversely, an increase in glucose utilization or hyperglyco-
lysis, has been observed across animal models and in humans
early following TBI (Bergsneider et al., 1997; Giri et al., 2000).
Unfortunately, the high demand for glucose and increase in
local cerebral metabolic rate of glucose occurs at a time of
reduced regional cerebral blood flow (rCBF) (Nilsson et al.,
1996; Ginsberg et al., 1997; Marklund et al., 2002) and this
uncoupling of blood flow-cerebral metabolism may be delete-
rious to the injured brain post-TBI (Chen et al., 2004).
Increased oxidative stress is another key feature of the post-
injury process because the brain is highly sensitive to free
radicals or reactive oxygen/nitrogen species (ROS/RNS). Fol-
lowing TBI, there are several potential sources for overpro-
duction of ROS/RNS, including the mitochondrial respiratory
chain, increased free iron resulting from breakdown of
extravasated haemoglobin, oxidation of catecholamines,
breakdown of membrane phospholipids, NADPH (the
reduced form of nicotinamide adenine dinucleotide phos-
phate) oxidase activation, infiltrating neutrophils and activa-
tion of nitric oxide synthetase occurring at a time when the
intra- and extracellular antioxidant defence systems are chal-
lenged and may become exhausted (Shohami et al., 1997;
Hall et al., 2010). Oxidative stress is currently thought to be a
major contributor to the secondary injury cascade following
TBI by ROS/RNS-induced damage to cellular membranes and
organelles by lipid peroxidation, protein oxidation and
nucleotide breakdown (Lewen et al., 2000).

The TBI induces a robust immune activation including an
acute inflammatory response with breakdown of the blood–
brain barrier (BBB), oedema formation, infiltration of periph-
eral immune cells, activation of resident microglia and
astrocytes and intrathecal release of cytokines (Schmidt et al.,
2005; Clausen et al., 2009; Ziebell and Morganti-Kossmann,
2010). A prominent up-regulation of several chemokine-
related gene transcripts was recently observed following focal
TBI in mice (Israelsson et al., 2008) and activated glial cells
and leukocytes secrete a variety of neurotoxic molecules
including tumour necrosis factor and the interleukin family
of peptides (Adamchik et al., 2000; Luheshi et al., 2009; Lu
et al., 2009a). Importantly, infiltrating leukocytes secreting
myeloperoxidase may be an important source for ROS by
producing hypochlorous acid (see Lewen et al., 2000). Con-
versely, numerous anti-inflammatory compounds have been
evaluated in the experimental TBI setting and repeatedly
shown to attenuate the behavioural and histological deficits
post-TBI (Clausen et al., 2009; Ziebell and Morganti-
Kossmann, 2010). However, some inflammatory pathways
may be important for regenerative responses and repair sug-
gesting that inflammation may be a double-edged sword fol-
lowing TBI (Lenzlinger et al., 2001; Morganti-Kossmann et al.,
2002; Whitney et al., 2009).

Neural injury has been well documented in the first few
hours after human TBI in important brain regions such as the
cerebral cortex, hippocampus and thalamus and parts of the
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Figure 1
Basic concept of primary and secondary injury in traumatic brain injury. Simplistic illustration of major preclinical ‘molecular’ secondary injury
factors as well as clinical secondary injury factors (named ‘avoidable factors’ in the neurocritical care setting). Early post-injury, glutamate release
and ionic disturbances (Na+, Ca2+ and K+) cause an energy metabolic disturbance complicated by an early decrease in cerebral blood flow. At this
time, mitochondrial disturbance is marked and a large increase in reactive oxygen/nitrogen species (ROS/RNS) is observed. Hyper- or hypoco-
agulation may also be present either causing microthrombosis or increased haemorrhages respectively. Neuroinflammation and axonal injury is
emerging in the immediate post-injury phase. Clinically, an increased ICP and/or decreased CPP must urgently be treated and both too low and
too high blood glucose levels corrected. It is also crucial that hypoxaemia and hypotension, seizures and fever is detected and treated. Chronically,
marked hormone disturbance may be observed. These factors have been shown to contribute to the progression of the primary injury (indicated
by the enlarging circles) and may be suitable targets for pharmacological intervention to reduce the extent of final injury. Ca2+, calcium ions; CPP,
cerebral perfusion pressure; GLc, Glucose; ICP, intracranial pressure; K+, potassium; Na+, sodium; rCBF, regional cerebral blood flow.
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brain stem (Kotapka et al., 1994). The TBI-induced mitochon-
drial damage causes initiation of apoptotic cell death via an
opening of the mitochondrial permeability transition pore,
the release and activation of pro-apoptotic factors including
soluble cytochrome c, apoptosis inducing factor and caspases
(Lifshitz et al., 2004; Mazzeo et al., 2009a). It should be
emphasized that TBI causes not only apoptotic but also
necrotic neuronal cell death (Raghupathi, 2004). Regardless
of the mechanisms for cell death, widespread neuronal
damage occurs and may be observed even remote from the
site of impact, where the hippocampal region may be par-
ticularly sensitive (Saatman et al., 2006).

Although neuronal cell death has received the predomi-
nating attention in the TBI field it is obvious that traumatic
axonal injury, often referred to as diffuse axonal injury (DAI),
is common following TBI. Importantly, DAI is a dominant
contributor to the functional deficits observed in TBI patients
and is observed with high frequency in those unfortunate
patients remaining in a persistent vegetative state (Graham
et al., 2005). Axonal injury is increasingly observed across
injury severities and TBI subtypes due to the refinement of,
for example, the magnetic resonance imaging technique
(Inglese et al., 2005). Acute axonal disconnection at the time
of impact is rarely observed and only in patients with very
severe TBI dying at the scene of the accident. Instead, stretch-
ing and shearing of axons caused by the impact may occur in
areas remote to the impact and has been linked to the intra-
axonal cytoskeleton damage that ultimately leads to axonal
failure and disconnection (Ferrand-Drake et al., 2003; Buki
and Povlishock, 2006). Axonal swellings and axonal bulbs are
the histological hallmarks of traumatic axonal injury, imply-
ing that axonal injury is an ongoing process that evolves over
hours to days (Buki and Povlishock, 2006). When axons are
disconnected, CNS axons do not spontaneously regrow fol-
lowing injury in contrast to axons in the peripheral nervous
system. The reasons for the inability of CNS axons to regen-
erate are likely multifactorial although the most important
factor may be the myelin-associated inhibitors of
axonal growth including myelin-associated glycoprotein,
oligodendrocyte-myelin glycoprotein and Nogo-A all binding
to the neuronal Nogo-66 receptor (Sandvig et al., 2004;
Walmsley and Mir, 2007; Gonzenbach and Schwab, 2008). It
should be remembered that unmyelinated axons comprise a
numerical majority of fibres in subcortical white matter and
these fibres may be particularly vulnerable to TBI (Reeves
et al., 2005).

Although damaged axons fail to regenerate, damaged
neurons are not replaced and there is a marked glial scar
counteracting any attempts for recovery, animals and
patients often show a surprisingly high degree of spontane-
ous recovery over the initial months post-TBI. This sponta-
neous behavioural improvement is thought to partly reflect a
remaining ability for neurophysiological and neuroanatomi-
cal changes in regions remote from a focal brain injury. Neu-
roanatomical plasticity, or the restructuring of neural
connections in response to lesions of the CNS, is a well-
documented phenomenon in the neonatal age group but
highly restricted in adults. Nevertheless, an increased sprout-
ing of uninjured corticospinal tract fibres into the injured
tracts was observed 6 weeks following TBI in the rat (Len-
zlinger et al., 2005; Marklund et al., 2007), suggesting that TBI

may elicit yet unidentified mechanisms causing spontaneous
sprouting that may be linked to the observed recovery post-
injury. Additionally, increased expression of trophic factors as
a part the inflammatory response, increased synapse forma-
tion and sprouting of hippocampal mossy fibres have all been
observed following TBI although their role in the recovery
process of TBI remains to be established (Scheff et al., 2005;
Hanell et al., 2010). It should be emphasized that yet other
factors, including disturbances in the neurotrophin, coagula-
tion, endocrinological and neurotransmitter systems, may
contribute to the pathology of TBI and be manipulated phar-
macologically (Marklund et al., 2006). In general terms,
current pharmacological approaches may be roughly catego-
rized into neuroprotection, inflammatory modulation and
enhancement of regeneration.

Clinical TBI

Classification of human TBI is traditionally based on the
symptoms and level of consciousness present on admission
to hospital, generally using the Glasgow Coma Scale (GCS)
and patients with severe TBI, that is, unconscious patients
with a GCS score of �8, are frequently selected for severe TBI
in clinical trials. Although the basic pathophysiology men-
tioned in the previous section may be common to most TBI
patients, we strongly emphasize that TBI is not one disease
(Figure 2). Instead, patients with similar clinical signs, symp-
toms and level of consciousness may have markedly different
radiological appearance (including skull fractures, contu-
sions, lacerations, axonal injury, BBB disruption, neurovascu-
lar injuries and haematoma with epidural, subdural,
subarachnoid, intra-ventricular and/or intracerebral location;
exemplified in Figure 2). Currently, acute treatment options
for clinical TBI comprise optimal prehospital management
and emergency room stabilization, surgery for space-
occupying mass lesions, measurement and treatment of
increased intracranial pressure (ICP) and the detection and
treatment of secondary injury factors, for example, fever,
seizures, hypoxia, hypotension (Figure 1) in a NCC setting
(Elf et al., 2002; Meyer et al., 2010). The evidence-based
guidelines for the treatment of TBI patients were recently
published in revised form by the Brain Trauma Foundation
et al. (2007). Pharmacological options in NCC include man-
nitol for reduction of emergent intracranial hypertension,
sodium pentobarbital or other sedative drugs for reduction of
brain metabolism and lowering of ICP in selected patients
and antiepileptic drugs. However, none of these available
compounds can be considered to have Class I evidence in the
treatment of TBI. Due to the long-term and frequently life-
long disabilities experienced by survivors of TBI (Masel and
DeWitt, 2010), the development of novel pharmacological
treatment options is of highest priority. Animal models of TBI
are crucial in the preclinical drug development phase,
reviewed in the next section.

Animal models of TBI

In view of the heterogeneous clinical situation, numerous TBI
models have been developed. Mimicking all aspects of TBI in
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a single animal model is impossible and for that reason, a
variety of TBI models are being used in animals of various
ages and injury severity levels. Rodent models are the most
common in TBI research due to their low cost and small size
(Finnie and Blumbergs, 2002). In addition to the heterogene-
ity of TBI, the difficulty in evaluating subtle cognitive and
psychiatric impairments in small animal species is a major
challenge in the preclinical evaluation of neuroprotective
drug candidates. Ideally, for an animal model to be useful in
preclinical development of pharmacological compounds it
needs to mimic the injury characteristics and severity
observed in the clinical setting. Additional features of a useful
preclinical TBI model are reproducibility, low costs, applica-
bility to both rats and mice, technically easy to perform and,
perhaps most important, production of long-lasting behav-
ioural deficits (Morales et al., 2005). Although even predomi-
nantly focal TBI shows a substantial degree of diffuse injury,
we categorize the animal models in the next section into
‘focal’, ‘mixed’, ‘diffuse’, ‘complex’ and ‘other’ models of TBI
for the sake of simplicity.

Focal TBI models
Controlled cortical impact. The most common brain lesion
following human TBI is cortical contusion, defined as a focal
destruction of brain tissue with micro haemorrhages, either
with intact pia mater (contusion) or a torn pia mater (lacera-
tion). Importantly, contusions frequently enlarge markedly
during the initial days post-TBI (Stein et al., 1993). Cortical
contusions predominantly occur in the frontal and temporal
regions and are often observed also at brain regions opposite
to the initial impact (contre-coup contusion). A common TBI
model used to mimic this feature of principally focal human
TBI is the controlled cortical impact (CCI; Figure 3) model,
producing extensive cortical tissue loss, hippocampal and

thalamic damage (Saatman et al., 2006), cortical spreading
depression (von Baumgarten et al., 2008) and signs of post-
traumatic epilepsy (Hunt et al., 2009; Yang et al., 2010). Using
silver staining methodology, widespread ipsilateral but also
contralateral axonal damage in the cortex, hippocampus and
thalamus was also observed (Hall et al., 2008). To induce CCI,
a craniectomy over one hemisphere is performed to avoid
skull fractures and brain injury is produced by a pneumati-
cally driven rigid impactor striking the intact dura mater
where the deformation of brain tissue including the time of
compression, impactor velocity and depth of impact can be
easily controlled using a computer-based monitoring device.
Different designs of the impactor tip can also be used to vary
the mechanical impact features. The CCI has been used in the
ferret, sheep and swine, but rat (Dixon et al., 1991) and mouse
(Smith et al., 1995) are currently the predominant species
investigated with this model. Although CCI is rather fast and
simple to use, reproducible and the injury severity can easily
be adjusted, this TBI model also has some disadvantages. First,
the contusion injury used in many reports is huge, frequently
destroying the majority of the ipsilateral cortex and clearly
not comparable with the extent of brain injury observed in
survivors of human TBI. Second, a large craniectomy is often
produced and if the bone flap is not replaced after injury, the
effect of secondary brain swelling may be attenuated thus
mimicking a decompressive craniectomy used for alleviation
of raised ICP in humans (Zweckberger et al., 2006; De Bonis
et al., 2010). Finally, the lack of brain stem damage in CCI will
not produce long-lasting unconsciousness and carries a very
low mortality, limiting the clinical relevance of this model.
However, the rather low variability of the model, the repro-
ducibility among centres and the long-lasting behavioural
impairments still make the CCI model suitable for evaluation
of pharmacological interventions.

aSDH

Surgical 
evacuation
NCC

EDH

Surgical 
evacuation

Cortical 

Contusion

NCC
Surgical evacuation

Decompressive
craniectomy

DAI

NCC

Common subtypes of traumatic brain injury and their treatment

Figure 2
Key issue in clinical traumatic brain injury (TBI) research. TBI is not one disease as exemplified with initial computerized tomography scans of
patients with severe TBI treated in our unit. These patients all had a decreased level of consciousness upon arrival in our unit. Typical primary
treatment options for the individual TBI subtype are shown. aSDH, acute subdural haematoma; DAI, diffuse axonal injury; EDH, epidural
haematoma; NCC, neurocritical care.
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Weight drop injury. In the weight drop injury (WDI) model,
an anaesthetized animal is subjected to TBI by a free-falling
weight dropped from a predetermined height onto the
exposed dura mater (open skull WDI) or the exposed skull
(closed skull WDI). In the open skull WDI model the weight
is dropped onto a piston resting on the exposed dura. Injury
severity can be graded by varying the mass of the weight, the
height or, in the open skull WDI model, by varying the depth
of compression by different designs of the piston. To mini-
mize variability the head is fixed in a restraint to prevent
movement. Frequently, the device has the measures to
prevent bouncing of the weight which may be difficult to
control. The WDI model is used in the rat using an open skull
technique and in both the mouse and rat using a closed skull
technique (Chen et al., 1996; Henninger et al., 2005; Morales
et al., 2005; Flierl et al., 2009) where a skull fracture may be
needed to produce a cortical contusion (Flierl et al., 2009).

The open skull WDI model shows several similarities to
the CCI model, producing a chiefly focal brain injury with a
cortical contusion and ipsilateral hippocampal and thalamic
damage, although some bilateral components to this injury
exist (Lewen et al., 1996; Marklund et al., 2001; Clausen et al.,
2005). Important information on the neurochemistry of TBI
and the comparison between clinical and rodent TBI has been
achieved using cerebral microdialysis in this model

(Katayama et al., 1990; Nilsson et al., 1990), including post-
traumatic seizure activity (Nilsson et al., 1994). Because the
vast majority of clinical TBI is CHI, concerns were raised to
the clinical validity of the open WDI (Flierl et al., 2009). On
the other hand, when using the closed WDI model the inci-
dence of skull fractures increases with rising injury severity
and may also cause a substantial degree of diffuse injury (vide
infra). As an example, a cerebral concussion, clearly a diffuse
type of TBI was simulated in a rat closed WDI model using
head fixation (Henninger et al., 2005).

In all, the WDI models are fast and reliable and produce a
significant degree of brain damage, neuroinflammation and
behavioural deficits including cognitive impairment and
provide important information on focal TBI in both rats
and mice.

Bifrontal contusion. Contusions commonly occur in the
frontal region and are an important contributor to the
observed personality changes following human TBI (Fork
et al., 2005). Due to the clinical importance of this injury
type, a bifrontal contusion rat model was developed by Dr
Stein’s group that showed histological damage in the medial
prefrontal cortex and impairment in cognitive and motor
function (Hoffman et al., 1994). This model may be consid-
ered a modification of the CCI model and following the

cFPI (rat)

*

CCI (mouse)

C

*

lFPI (rat)

B

A

D

Common TBI models

Figure 3
Examples of common preclinical traumatic brain injury (TBI) models mentioned in this review. Left panel: A = craniotomy position for lateral fluid
percussion (lFPI) injury and B = craniotomy for the central/midline fluid percussion injury (cFPI). The fluid percussion device (top, middle panel)
is used to produce the injury in both the lFPI and cFPI models (see text for details). In C and D, the controlled cortical impact (CCI) device is used
(bottom, middle panel). In C, the craniotomy is placed over the parietal cortex and gives a chiefly focal contusion injury. In D, the craniotomy
position is placed anterior to the bregma to produce a bifrontal contusion injury. Right panel; examples of the histological appearance from the
models (A–C) from our institution. Upper right, examples from a mild lFPI injury in a rat (contusion site marked with * and the rather small cortical
contusion with a white arrow). Note the ipsilateral ventricular dilatation (dark arrow). Right panel, middle image; example of a cFPI injury (rat).
Note the bilateral ventricular dilatation (black arrow) and haemorrhages in the corpus callosum (white arrow). Right panel, lower image; example
from a CCI brain injury in the mouse (impact site marked with *). Note the extensive cortical and hippocampal damage ipsilateral to the injury.
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central craniectomy the impactor is placed over the midline
centred anterior to bregma. This model represent a preclinical
approach to an important clinical problem and has been
repeatedly used in numerous pharmacological studies (Goss
et al., 2003; Djebaili et al., 2005), particularly on endocrino-
logical treatment options. The ongoing progesterone clinical
trial (vide infra) is to a large extent based on preclinical data
obtained in this model.

Acute subdural haematoma. Acute subdural haematoma
(aSDH) is a major cause for the acute mortality observed
following clinical TBI. Improved outcome was clearly dem-
onstrated if surgery was initiated within 4 h after the injury
suggesting that time is crucial in the management of aSDH
(Seelig et al., 1981). Following surgery, many patients still
need NCC owing to persisting depression of the level of
consciousness, focal deficits and cerebral swelling. There are
rodent models of aSDH developed for both the rat and mouse
in which autologous blood is injected into the subdural
space. Common findings include uncoupling of metabolism/
blood flow, development of ischaemia and, for example, dex-
tromethorphan, sodium channel antagonists and glutamate
receptor antagonists have been evaluated using these models
(Miller et al., 1990; Tsuchida and Bullock, 1995; Tsuchida
et al., 1996; Wang et al., 2010). A model of aSDH in the mouse
has also been developed (Sasaki and Dunn, 2001). To date,
only a minority of TBI studies in general and pharmacological
treatments in particular are conducted in these models
despite the huge clinical importance of aSDH.

Epidural haematoma. Epidural haematoma (EDH) is com-
monly associated with skull fractures and is caused by either
arterial or venous haemorrhage or a combination of both. In
the clinical setting, by far the most important treatment is
rapid surgery which is indicated for the evacuation of space-
occupying haematomas. The brain compression caused by
the EDH may cause secondary oedema that may require NCC
and ICP monitoring. To date, the mortality of EDH is still
high. Only rarely used animal models of EDH employed in
rats, dogs and pigs exist where EDH is simulated by either an
inflated balloon or injection of autologous blood into the
epidural space (Ganz et al., 1990; Ebmeyer et al., 1998; Balikci
et al., 2008). Pharmacological treatment has currently no role
in the management of EDH in the clinical setting although
vitamin E-supplemented rats showed increased blood flow in
the compressed cortex following EDH evacuation (Busto
et al., 1984).

Mixed TBI models
The lateral fluid percussion injury (lFPI) model is an impor-
tant TBI model used worldwide following its introduction by
McIntosh et al. (1989), reviewed by Thompson et al. (2005;
see Figure 3). In this model, the skull is exposed and a cran-
iotomy is performed, typically over the parietal cortex, and a
plastic cap is secured over the craniotomy using dental
cement. Injury is produced by the release of a pendulum,
hitting the end of a saline-filled reservoir producing a pres-
sure wave creating a fluid bolus which strikes the intact dural
surface to extend into the epidural space causing brain defor-
mation (Sullivan et al., 1976). In humans, the duration of the

force creating brain dislocation after falls is estimated to be
approximately 25 ms (Lindgren, 1966) which is similar to the
pressure wave produced by lFPI. Although mostly used in
rats, the lFPI model has also been adapted to the mouse
(Carbonell et al., 1998). Importantly, the severity of the
injury produced by the lFPI model may easily be varied to
evaluate also aspects of mild TBI in both mice (Spain et al.,
2010) and rats (Li et al., 2006). At the time of injury, a short-
lasting apnoea and concomitant seizures are frequently
observed and seizures are common at long-term post-injury
(D’Ambrosio et al., 2004; Kharatishvili et al., 2006; Kharatish-
vili and Pitkanen, 2010). The lFPI model produces consistent
behavioural (cognitive, motor, complex) deficits and necrotic
and apoptotic cell death in the cortex, hippocampus and
thalamus (Thompson et al., 2005). In addition to a focal cor-
tical contusion ipsilateral to the impact, there is also a sig-
nificant degree of axonal injury in the capsula interna and
externa and the corpus callosum making this injury model
clinically relevant (Graham et al., 2000). Limitations of the
lFPI model include some variability and it may be, at least
initially, technically challenging with marked differences in
outcome among technicians and centres at similar injury
severity levels. Even minor changes in craniotomy position
may result in large differences in histological and behavioural
outcome (Floyd et al., 2002). One important shortcoming of
this model, similar to the focal TBI models, is the lack of
long-lasting coma and brain stem damage. However, the lFPI
model remains very important in the preclinical evaluation
of drug candidates.

Diffuse TBI models
A large proportion of patients suffer from diffuse TBI, evi-
denced by traumatic subarachnoid haemorrhage, diffuse
oedema, small intraparenchymal haemorrhages and DAI
(Adams, 1982). In fact, the majority of TBI patients have at
least a degree of diffuse injury (Maas et al., 2007). Predomi-
nant locations for DAI are the parasagittal white matter,
corpus callosum, internal capsule, the thalami, and parts of
the brainstem and ventricular dilatation is commonly
observed (Ai et al., 2007). Mechanistically, angular
acceleration/rotation and, to an uncertain extent, linear
acceleration is the primary cause of axonal injury (Smith
et al., 2003; Fijalkowski et al., 2009). Some diffuse TBI models
produce a degree of angular acceleration without an associ-
ated impact and inertial acceleration injury models have been
developed using the non-human primate, pig, sheep, cats and
rabbits (see Morales et al., 2005). These models produce clini-
cally relevant damage to deep white matter tracts and grey-
white matter junction sliding contusions but their use in
pharmacological studies remain to be established. Because
rotational acceleration forces are required to induce axonal
damage, rotational models have also been developed for the
rat (Xiao-Sheng et al., 2000; Ellingson et al., 2005; Fijalkowski
et al., 2007; Kilbourne et al., 2009; Li et al., 2010). Although
these modifications of diffuse TBI models have many theo-
retical advantages, they still need to be defined in terms of
long-term behavioural deficits and more extensive patho-
physiological evaluation in order to be used as tools for phar-
macological evaluation. To date, the impact/acceleration
(I/A), midline (central) fluid percussion injury (cFPI) and
what we refer to as the ‘CCI-based’ models are the most
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commonly used diffuse TBI models as discussed in the fol-
lowing section.

The I/A (‘Marmarou’) model. Since its introduction, the I/A
weight drop model (Foda and Marmarou, 1994; Marmarou
et al., 1994), commonly called the ‘Marmarou model’, has
become a widely used diffuse head injury model in rat. The
trauma device used in this model consists of a weight falling
from a designated height through a tube onto a stainless steel
disc glued to the skull of the rat. The head of the anaesthe-
tized rat rests on a platform covered by a foam with a
carefully defined ‘spring constant’ to allow a controlled
movement of the head after impact. The model may be
considered a high-level weight drop model where the use of
the steel disc distributes the energy diffusely over the brain,
and the foam enables dorsal/ventral acceleration of the
unrestrained head. With this relatively easy to perform
model, widespread axonal injury is observed and, impor-
tantly, this model is one of few TBI models that can result in
prolonged unconsciousness. Behavioural deficits have been
reported after I/A TBI in the rat up to 1 month post-injury
(Beaumont et al., 1999; Cernak et al., 2001; Rancan et al.,
2001; O’Connor et al., 2003). One limitation of the Marma-
rou model is that it is unavailable for mice, although a similar
technique of a weight dropped on a disc was used in mice
(Kupina et al., 2001). The Marmarou model has provided
much useful information on the pathobiology of DAI and
results in an injury similar to what is observed in humans.
Although pharmacological studies have been conducted in

this model, mainly from the lab of Drs Povlishock and Vink
(see Table 2; Buki et al., 2003; Thornton et al., 2006;
O’Connor et al., 2007; Harford-Wright et al., 2010), its use in
such experiments is still rather scarce particularly in terms of
behavioural outcome. Thus, this model could and should
be used more frequently for long-term pharmacological
evaluation.

Midline (central) fluid percussion injury. Originally used in the
cat and rabbit and later adapted to pigs, dogs and sheep, the
popularity of the cFPI model increased when it was modified
for use in the rat (Dixon et al., 1987; McIntosh et al., 1987).
The model uses a similar set-up as the lateral fluid percussion
(vide supra) with the exception that the craniotomy and cap
placement is centred at the midline between the bregma and
lambda sutures and over the sagittal sinus (Figure 3). In addi-
tion to the production of widespread axonal injury and hip-
pocampal damage with accompanying brain stem damage,
persistent motor and cognitive impairment has been demon-
strated (Morales et al., 2005). The cFPI model produces a
clinically relevant diffuse brain injury with TBI-induced
hypertension, increased ICP and a reduced cerebral blood
flow (Kabadi et al., 2010). An additional strength of this
model is the recent murine application (the lab of Dr J.
Povlishock at the Medical College of Virginia, pers. comm.; as
well as our own lab, N. Marklund and L. Hillered, unpubl.
results). Shortcomings of the cFPI model include a rather
challenging and time consuming surgical preparation and
that only a limited injury severity can be achieved because

Table 2
Magnesium and cyclosporin A evaluation in rodent TBI models

Drug TBI model
Route of
administration Time window

Repeated
administration Outcome measure Time for outcome

Magnesium lFPI1–6,13–14,16,22

I/A7–11,15,17,19–20

CHI12

Bifrontal
contusion18

CCI23,24,27,28

Rat1–22

Mouse

i.v.1–7,9–11,13–16,18,19,22

i.p.17,20,21

s.c.12

i.m.8,10

Pre-injury3,22

�1 h1,2,4–7,9–21

1–6 h8

>6 h8

Yes8,18

No1–7,9–17,19–22
Cognition1,2,11,14,16,18,19,22

Motor/
Sensorymotor2–4,6–12,14,18,19,21

Oedema2,17,20

Lesion vol/cell
death5,6,13,16,19,22

Complex11,16

�7 days1,6,8–10,12,13,17,18,20

7–28 days2–5,11,14,19,21,22

>28 days15,16

Cyclosporin lFPI25,26,28

CCI23,24,27,28

Rat25–28

Mouse23,24

i.v.25,27

i.p.23,26,28

s.c.24

i.m.

Pre-injury23,25

�1 h23,24,26,27

1–6 h28

>6 h28

Yes23–26,28*
No27

Cognition25,26

Motor/
Sensorymotor25,26

Oedema27

Lesion vol/cell death23,24,28

Complex

�7 days23,24,27,28

7–28 days25,26

>28 days

References to Table 2:
1Smith et al. (1993), 2Okiyama et al. (1995), 3McIntosh et al. (1988), 4McIntosh et al. (1989), 5Bareyre et al. (2000), 6Guluma et al. (1999),
7Heath and Vink (1998), 8Heath and Vink (1999b), 9Heath and Vink (1997), 10Heath and Vink (1999c), 11Vink et al. (2003), 12Feldman et al.
(1996), 13Saatman et al. (2001), 14Bareyre et al. (1999), 15Fromm et al. (2004), 16Browne et al. (2004), 17Esen et al. (2003), 18Hoane (2005),
19Turner et al. (2004), 20Imer et al. (2009), 21Barbre and Hoane (2006), 22Enomoto et al. (2005), 23Scheff and Sullivan (1999), 24Sullivan et al.
(2000a), 25Alessandri et al. (2002), 26Riess et al. (2001), 27Fukui et al. (2003), 28Sullivan et al. (2000b).
Overview of preclinical studies evaluating Mg2+ or cyclosporin A in rodent models of TBI.
*Prolonged, >1 h infusion, included in the Repeated administration column.
CCI, controlled cortical contusion injury; CHI, closed head injury; i.m., intramuscular; i.p., intraperitoneal; i.v., intravenous; I/A, impact-
acceleration; lFPI, lateral fluid percussion injury; s.c., subcutaneous; TBI, traumatic brain injury.
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of acute mortality owing to brain stem damage. Although
there are numerous pharmacological studies using the cFPI
model, particularly on cognitive function, more long-term
evaluation of the behavioural consequences and treatment
efficacy is warranted.

Diffuse TBI models using a pneumatically driven device, ‘CCI-
based’ models. The CCI device used to produce a focal TBI
and described in a previous section of this review, may also be
modified to create a diffuse injury by placing the impact over
the midline (Lighthall, 1988) or using bilateral craniotomies
(Meaney et al., 1994). However, other similar models have
been introduced and achieved a higher popularity. Common
for these models is that the pneumatically driven impactor
strikes a steel disc fixed on the skull of the animal that rests
on a gel-filled base allowing for some movement of the head
at impact. These models have been used in both rats and mice
(Cernak et al., 2004; Laskowitz et al., 2007; Maruichi et al.,
2009). Advantages of this setup include the ease and speed of
the surgical preparation and the addition of the steel disc
enables the impact energy to be distributed diffusely over the
brain tissue resulting in hippocampal, brain stem and axonal
damage with motor and cognitive deficits. These models have
some impact variability and the relevance to the human
situation needs to be better defined. However, these models
have been successfully used in preclinical pharmacological
research and represent an interesting addition to the ‘classi-
cal’ TBI models.

In conclusion, diffuse injury models produce a significant
degree of axonal injury, of highest importance due to the vast
clinical problem of DAI, and should in our opinion be avail-
able in most labs evaluating the efficacy of pharmacological
compounds for TBI.

Complex TBI models
It has been demonstrated beyond doubt that additional, con-
comitant systemic injuries markedly exacerbate the outcome
following TBI. Hypoxia (PaO2 < 60 mmHg) and, in particular,
hypotension (systolic blood pressure <90 mmHg) are the
most common and occur in about one third of patients with
severe TBI (Chesnut et al., 1993). A common notion has been
that animals are far more resistant to secondary insults than
humans (Lammie et al., 1999). However, other studies have
demonstrated an impaired motor and histological outcome
in animals subjected to TBI and hypoxia (Ishige et al., 1987;
Clark et al., 1997) and the time period between the injury and
the secondary insults may be highly important (Geeraerts
et al., 2008). Thus, the CCI and I/A models have been used in
combination with hypoxia (Hellewell et al., 2010), hypoxia
and hypotension (Robertson et al., 2000; Stiefel et al., 2005;
Taya et al., 2010) and the lFPI model with hypoxia (Bramlett
et al., 1999; Bauman et al., 2000) and/or hypotension (Mat-
sushita et al., 2001; Aoyama et al., 2008). The secondary
insults were shown to exacerbate histological and behav-
ioural outcome in these studies and were also implemented
in a model of aSDH (Sawauchi et al., 2004). In all, these
models represent an excellent example of a true translational
approach where an important clinical problem is addressed
in the experimental setting. One elegant additional model is
the combination of the lFPI model with a tibial fracture

(Maegele et al., 2005; Maegele et al., 2007). The effects of
hypothermia have been evaluated in these models (e.g.
Robertson et al., 2000; Gao et al., 2010) although pharmaco-
logical intervention studies are scarce. We suggest that phar-
macological treatment options be evaluated also in the
combined TBI models prior to launching full-scale clinical
trials enrolling patients with multiple injuries.

Other TBI models
The use of larger animals such as the pig or piglet in TBI
research is increasing (Smith et al., 1999; Missios et al., 2009)
and examples of such TBI models being used in pharmaco-
logical evaluation is emerging (e.g. Zhang et al., 2008; Arm-
stead et al., 2010). These TBI models may gain wider use than
those using non-human primates and may hopefully be more
commonly employed for pharmacological evaluation in the
future. Although outside the primary scope of this review,
additional TBI models only rarely evaluated in pharmacologi-
cal studies are briefly mentioned in the following section.

Repetitive models. Epidemiological data suggest an increased
risk for onset of neurodegenerative diseases, such as Alzhe-
imer’s disease, in people who has suffered repetitive head
injury. In addition, repeated mild TBI commonly observed in
athletes (soccer, boxing, ice hockey, etc.) may have cumula-
tive adverse effects on cognitive function. Several models aim
at reproducing the clinical consequences of repetitive mild
TBI (see Morales et al., 2005). Repetitive concussive brain
injury models have also been developed for use in the mouse
using the weight drop model (DeFord et al., 2002; Creeley
et al., 2004) and in the rat using repeated, up to four, mild
concussive insults using the lFPI model (DeRoss et al., 2002).
For instance, using the CCI device modified using a rounded
silicone impactor on the intact skull in the mouse, the
animals were subjected to a mild injury and then to a second
injury at various intervals post-injury. Results from these
studies showed that a second injury impaired motor and
histological outcome with increased axonal pathology if the
second injury occurs within a 3- to 5-day period of the first
(Laurer et al., 2001; Longhi et al., 2005). Models of repetitive
TBI have also been used in mice over-expressing human
Amyloid precursor protein (Tg2576 mice), in which vitamin E
treatment resulted in less amyloidosis and improved cogni-
tive function (Conte et al., 2004). Although these models
provide insight into the field of repeated head injury of value
for, for example, athletes at risk for repeated concussions,
pharmacological evaluation has only rarely been performed.

Blast injury models. Rapidly growing field of interest is based
on the recent experience from combat field activities in Iraq
and Afghanistan where an increasing number of soldiers
exposed to blast waves from detonations suffer functional
sequelae requiring long periods of treatment. Rodent models
of blast TBI have recently been established (Cheng et al.,
2010; Risling et al., 2011; Saljo et al., 2010; Svetlov et al.,
2010). However, to our knowledge, no post-injury pharma-
cological intervention studies have been conducted to date
and long-term behavioural and morphological consequences
need to be established. These models of blast injury are still at
their infancy although future studies will likely provide novel
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information on the mechanisms of, for example, axonal
injury and its treatment.

Penetrating injury models. A model of penetrating brain
injury has been characterized in the rat (Williams et al., 2005;
Williams et al., 2006a,b) and shown to produce cognitive
impairment (Davis et al., 2010). In this model, a metal rod
covered with an elastic tube that rapidly (10 ms) inflates and
deflates is used to produce a shock wave along the injury tract
to mimic a penetrating ballistic injury. Marked grey and
white tissue damage, brain swelling, seizures, cortical spread-
ing depression and neuroinflammation with a resulting neu-
rological impairment was demonstrated. This model has been
recently used in pharmacological evaluation (Shear et al.,
2009; Lu et al., 2009b) and future studies are needed to define
the role of this model in the development of neuroprotective
compounds.

Although these models have not, or rarely, been used in
pharmacological studies, it is important to emphasize that
treatment efficacy of a compound in one TBI model does not
in any way guarantee efficacy in other TBI models. Thus,
more studies of efficacy of treatment compounds across a
range of TBI models are needed.

Outcome measures

Following human TBI, long-term changes in personality, cog-
nitive performance and motor function is common and leads
to a marked reduction in the quality of life. Spontaneous
recovery is most pronounced within the first 6 months after
the TBI but may vary with different types of TBI (Consensus
conference, 1999). Usually, outcome is assessed in the clinical
situation at 3 or, more commonly, 6 months post-injury
using increasingly complex batteries of neuropsychological
tests (Bagiella et al., 2010). However, the Glasgow Outcome
Scale (or its extended version GOSe) remains a basic outcome
measure included in the majority of clinical trials (Maas et al.,
2008). In the experimental setting, there are numerous
behavioural tests in use where the evaluation periods are
relatively short and only rarely extending beyond 1 month
post-injury (Marklund et al., 2006). To date, cognitive and
motor function tests are routinely included in outcome
evaluations (Fujimoto et al., 2004). Widely used tests for cog-
nition include the Morris water maze, object recognition test,
memory task, freezing response and others. Common motor
function tests include the Rotarod, cylinder test, skilled fore-
limb reach, grip strength tests and staircase tests. In view of
the complex personality and psychological disturbances
experienced by many TBI patients, more complex behav-
ioural assessment test have also been used in experimental
TBI research, albeit less frequently. These tests include the
open field, elevated plus maze, spontaneous motor activity,
exploratory activity and emotional activity tests. In addition,
using lFPI in rats, a pervasive hyperanxious phenotype was
observed (Jones et al., 2008). Depression is also a major clini-
cal problem post-TBI that has not been thoroughly studied in
animal models although there are reports using the Porsolt
test of forced swimming (Tweedie et al., 2007). There is
concern that the outcome measures in clinical trials and the

behavioural tests used in preclinical research are not well
matched (Fujimoto et al., 2004) calling for a continual refine-
ment of experimental outcome methods. As an example, a
novel behavioural model for testing numerous spontaneous
complex tasks was recently established for TBI in mice
(Ekmark-Lewen et al., 2010) using a test situation with a free
choice of different optional environmental settings that may
be useful for behavioural evaluation in pharmacological
research. Although it is obvious that evaluation of rodents
cannot directly be compared to that of humans, scientists
evaluating pharmacological compounds are encouraged to
incorporate more complex behavioural assessment tools in
addition to standard motor and cognitive tests into the study
protocols.

Neuroprotective pharmacology in
TBI – why no success thus far?

As outlined in the short overview in the previous sections,
there is a plethora of TBI models and outcome measures used
in many institutions worldwide, frequently employed for
evaluation of neuropharmacological interventions. In our
opinion, the key to successful preclinical development of
pharmacological compounds for the future lies not within
the development of yet more TBI models, but instead that
existing animal models be modified to better mimic the
complex clinical situation. It is also evident that features of
TBI observed in the clinical setting should be added to exist-
ing TBI models to enhance clinical applicability. Although
some previous clinical trials in TBI have been conducted
based on preclinical efficacy only in stroke models it should
be emphasized that TBI and ischemic stroke, although
sharing some common mechanisms, are truly two very dif-
ferent diseases of the CNS (Bramlett and Dietrich, 2004). It
appears logical that clinical and experimental TBI research
work together in a translational fashion in order to evaluate
experimental findings clinically and vice versa, and that clini-
cal experience and knowledge be incorporated into preclini-
cal TBI research. In the treatment of TBI there are numerous
pharmacological aspects to consider; for example, treatment
dose and time window, target brain concentration, route of
administration and efficacy in modifying certain aspects of
the pathophysiology of TBI. Most drug companies and scien-
tist focus on the development of a single, ‘silver-bullet’
therapy although a more realistic approach may be a combi-
nation of compounds using different targets (Margulies
and Hicks, 2009; Loane and Faden, 2010). In fact, several
compounds such as minocycline, erythropoietin and
2-sulfophenyl-N-tert-butyl nitrone (S-PBN), have been shown
to act as multifunctional therapeutics influencing multiple
targets in the secondary injury cascade. In the next section,
we outline some common shortcomings and problems of
existing TBI models and provide suggestions on how to
further improve these models.

Time window, route of administration and
the blood–brain barrier
In the vast majority of preclinical protocols, the treatment
compounds are administered early and, frequently, even
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prior to the TBI. The administration of a compound early by
prehospital care personnel may be problematic because of the
difficulty in obtaining informed consent (Menon, 2009). For
that reason, the time allowed for drug administration in
clinical trials has often been extended way beyond the time
window suggested by preclinical trials. In fact, time window
issues may be a major cause of the failure of the randomized
clinical trials evaluating neuroprotective compounds. More
research on extended time windows in the experimental
setting is needed. Specifically, the temporal appearance of the
secondary injury mechanism at target must be studied in
detail. Furthermore, numerous experimental studies have
employed oral, intraperitoneal or intracerebroventricular
administration routes that may have restricted clinical utility.
Additionally, single-dose treatment using high drug doses has
commonly been employed experimentally, in contrast to the
clinical setting where continuous infusion of a lower treat-
ment dose, in order to avoid adverse side effects, is standard.
In the NCC setting, numerous drugs, such as pentobarbital
and phenytoin, are used which may cause drug interaction
problems and influence clearance and distribution volume of
the study drugs (Empey et al., 2006). In addition, altered
cerebral metabolism, changed gene expression and protein
synthesis may influence the clearance, brain penetration and
distribution of a compound (see Boucher and Hanes, 1998; Lo
et al., 2001; Kalsotra et al., 2003). Thus, a correct translation
of dosage of a compound from the experimental to the clini-
cal setting requires careful pharmacokinetic evaluation in
humans.

In terms of pharmacology of TBI, the BBB must be con-
sidered. In fact, knowledge about in which patient and at
what time the BBB is open may be key factor in future clinical
trials (Blyth et al., 2009). The BBB is a physical barrier, com-
posed of capillary endothelial cells connected by tight junc-
tions together with astrocytes, that actively controls the
penetration of molecules and microscopic objects from the
blood into the brain. Small hydrophobic molecules (e.g. O2,
CO2, anaesthetics, barbiturates, ethanol and hormones) and
water readily pass through the BBB whereas diffusion of
microscopic objects (e.g. bacteria), large molecules (e.g.
plasma proteins) or hydrophilic molecules (e.g. electrolyte
ions) is restricted. Metabolic products such as glucose and
lactate, pyruvate are actively transported across the BBB by
specific proteins (Glucose transporter 1 and monocarboxylate
transporters respectively). In numerous studies, TBI has been
shown to alter the status of the BBB allowing for the passage
of substances normally restricted to the blood stream. The
duration of this BBB opening in TBI models is variable but
typically exists for a minimum of 3–7 days and the BBB
disturbance may appear in certain brain regions only and
with a different temporal profile for different molecular
weight substances (Cortez et al., 1989; Habgood et al., 2007;
Kelley et al., 2007). Due to an altered BBB, pharmacological
compounds hindered from entering the normal brain may
thus reach the injured brain. To take advantage of this situ-
ation in the NCC setting novel tools for monitoring BBB
function in TBI patients is urgently needed. The possibility
that TBI-induced oedema and reduced blood flow may influ-
ence drug transport into the injured brain should also be
considered. Ongoing research using chemically modified
pharmacological compounds (Banks, 2008) with improved

brain penetration may be an additional method for the treat-
ment of TBI.

Thus, knowledge of brain penetration and pharmacoki-
netics is highly relevant although only rarely evaluated in
preclinical research. In fact, most neuroprotective trials have
been conducted without such preclinical documentation. We
would like to encourage scientist to measure the penetration
of the study compound into target brain regions. In this
context, monitoring of a suitable surrogate end point biom-
arker by cerebral microdialysis may enable evaluation of the
appropriate therapeutic window, dosage and brain penetra-
tion of the study compound also in clinical TBI research.
Another key issue is to establish whether a drug has the
desired effect on a specified mechanism in vivo. Again, such
questions may be addressed using microdialysis to monitor a
suitable surrogate end point biomarker in TBI patients. In a
previous report, the free interstitial concentration of the
glutamate release inhibitor Topiramate as well as glutamate
was measured and a significant lowering of interstitial
glutamate was achieved only after the Topiramate dose was
elevated to a dose much higher than anticipated at the plan-
ning stage (Alves et al., 2003). These data strongly support
the importance of determining adequate target drug
concentration and proof-of-principle testing before moving
to large scale clinical trials (Alves et al., 2003; Helmy et al.,
2007). The proof-of-principle approach also helps to optimize
the timing of drug administration in relation to the time
course of the injury mechanism at target.

Finally, it should be noted that it may not be mandatory
for all drugs to penetrate the BBB to exert a neuroprotective
effect. Important information was obtained when the brain
penetration of two ROS scavengers, the nitrone spin traps
S-PBN and a-Phenyl-N-tert -butyl nitrone (PBN), were com-
pared. Although S-PBN did not reach the injured brain in
detectable amounts in contrast to PBN, equal ROS scavenging
properties and behavioural outcome improvement were
obtained suggesting that brain penetration was not an abso-
lute requirement for efficacy (Marklund et al., 2001). This
notion is also supported by the preclinical information
obtained using tirilazad and polyethylene glycol-conjugated
superoxide dismutase both without significant brain penetra-
tion but with neuroprotective properties (see Marklund et al.,
2006). These results suggest that the cerebral microvascular
endothelium may be an important target for pharmacological
intervention following TBI.

Animal models of TBI – are they
good enough?

One crucial question is – do current experimental TBI models
adequately mimic clinical head injury? Rodents are vastly
different from humans in terms of brain size and geometry,
white-to-grey matter ratio and they lack the cortical gyri
observed in higher species (Gennarelli, 1994). Major clinical
problems such as emotional and language difficulties are
obviously not possible to mimic using rodent models. There
is also a lack of TBI models producing long-lasting periods
with a decreased level of consciousness or coma, commonly
observed in severely injured TBI patients. Most laboratories
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also typically employ TBI models that, in reality, represent
injuries on the mild-moderate scale, in sharp contrast to the
severely brain-injured patients evaluated in clinical trials (see
Thompson et al., 2005). Another treatment strategy for severe
clinical TBI that is increasingly recognized is decompressive
craniotomy (Piek, 2002), which may prove difficult to evalu-
ate in rodent models due to differences in brain conformation
and anatomy, degree of cerebral swelling and skull anatomy.
In contrast, animal models appear to adequately mimic
certain aspects of blood flow-energy metabolic disturbances
post-injury. In patients dying from severe TBI, 90% were
found to have ischemic lesions upon autopsy (Graham et al.,
1978; Kotapka et al., 1994). However, observations in TBI
patients in the NCC setting suggest that ischaemia may be a
less prominent feature in TBI than previously thought and,
instead, other types of energy metabolic perturbations unre-
lated to hypoxia/ischaemia appear to be common (Hlatky
et al., 2004; Vespa et al., 2005; Dusick et al., 2007; Hillered
and Enblad, 2008). The reduction of CBF in TBI models is
usually modest, not reaching ischemic levels (Muir et al.,
1992; Nilsson et al., 1996), in agreement with the clinical
observations.

Despite several shortcomings of rodent models, only a
minority of all published TBI studies involves higher species
and mice and rats will likely continue to be the dominant
animal species in the future. In the next section, we discuss
some additional factors influencing animal modelling in TBI.

Gender
In practically all cohort studies on TBI patients, a clear major-
ity of TBI victims are males. In the clinical TBI literature,
initial reports suggested that women did better following TBI
than males although this has been questioned (Groswasser
et al., 1998; Farace and Alves, 2000; Bramlett and Dietrich,
2001; Ponsford et al., 2008). Apparently, gender may play an
important role because progesterone repeatedly improved
outcome in experimental TBI studies and progesterone is
currently undergoing clinical trial evaluation. Although most
rodent studies have been performed in male rats, female
animals are increasingly used to incorporate gender differ-
ences into experimental TBI models (Roof and Hall, 2000;
Bramlett and Dietrich, 2001). Gender may also influence
numerous aspects of the pathophysiology of TBI including
the response to enriched environment following TBI in the
rat and the degree of neurodegeneration (Kupina et al., 2003;
Wagner et al., 2004; 2007; Bonatti et al., 2008). Increased
attention to gender aspects in TBI is clearly warranted.

Age
The mortality following TBI in the elderly patients is more
than twice that of young patients (Mosenthal et al., 2002)
and age per se is one of the most important predictors of
outcome after human TBI (Mosenthal et al., 2002; Hukkel-
hoven et al., 2003). In fact, the incidence of elderly patients
with TBI appears to be increasing (Maas et al., 2008). The vast
majority of rodent TBI reports have been performed in ado-
lescent or young adult animals with a rather narrow age range
despite the fact that the past decade has seen a 21% increase
in individuals over the age of 65 (Adekoya et al., 2002). In the
experimental setting, aged rats are more impaired in motor

and cognitive performance compared to younger animals
following lFPI and bifrontal contusions (Hamm et al., 1992;
Hoane et al., 2004). Age-dependent injury-induced differ-
ences in gene expression in the hippocampus may contribute
to the increased vulnerability of the aged rat brain to lFPI and
mitochondria from aged animals are more perturbed com-
pared with those of young animals (Shimamura et al., 2004;
Gilmer et al., 2010). Pharmacological studies on aged animals
are rare following TBI (Cutler et al., 2007) and age-related
preclinical TBI research still remains a severely underexplored
area.

Species/strain differences and
epigenetic changes
Strain differences in the response to TBI (lFPI) were recently
reported between 3-month-old male Sprague–Dawley and
Fisher rats, the latter showing a higher ICP, more seizure
activity, longer ictal durations and more pronounced motor
deficits, but surprisingly a better cognitive performance in a
Morris Water Maze task (Reid et al., 2010). Another study
showed differences in cerebral immune cell infiltration and
extent of brain damage following open skull WDI in two rat
strains (Bellander et al., 2010) and Sprague–Dawley rats had a
more rapid behavioural recovery compared to Long–Evans
rats following lFPI (Tan et al., 2009; Reid et al., 2010). Impor-
tantly, in a study on cyclosporine treatment following CCI,
two different mice strains were evaluated for efficacy (Scheff
and Sullivan, 1999). Accumulating evidence also suggest that
various genetic factors are markedly important contributors
to the pathophysiology and outcome of TBI patients (see
Dardiotis et al., 2010).

Epigenetic changes induced by TBI are also increasingly
recognized (Gao et al., 2006; Dash et al., 2009) as a potentially
important part of the secondary brain injury process. Thus,
both epigenetic studies and the influence of strain on the
outcome following experimental (and clinical) TBI is of very
high interest in the TBI field and should be considered from
a pharmacological view.

Neurocritical care and secondary insults
During the initial NCC period following human TBI, numer-
ous secondary insults threaten the injured and vulnerable
brain. These secondary injury factors can be divided into
systemic (hypoxia, hypotension, anaemia, acid-base, electro-
lyte or glucose disturbances) or intracranial (raised ICP, sei-
zures, impaired rCBF, hyperthermia) factors. These insults
have only rarely been incorporated into existing TBI models.
Additionally, good physiological monitoring (pO2, pCO2, pH,
blood pressure, blood glucose, etc.) before and after TBI is
often not used in the preclinical TBI models. Another com-
monly used clinical monitoring device is brain tissue oxygen
monitoring, that is, Licox®, Paratrend® (Sarrafzadeh et al.,
2003) which has not, to date, been evaluated in experimental
TBI. In contrast, in vivo cerebral microdialysis is used world-
wide in the clinical setting and also in experimental TBI
providing a possibility for translational research on, for
example, energy metabolic perturbations following TBI (see
Hillered et al., 2005). A novel application of microdialysis is
sampling of protein biomarkers directly in the injured brain
following TBI using high molecular cut-off membrane
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catheters and is receiving increasing attention in the NCC
setting (Hillman et al., 2005; Brody et al., 2008; Helmy et al.,
2009; Marklund et al., 2009; Dahlin et al., 2010). Biomarker
sampling directly in the injured brain and more closely to the
pathoneurochemical process may improve the spatial and
temporal resolution of the biomarker signals compared to
traditional sampling in ventricular CSF or blood (Hillered
et al., 2005). Thus, microdialysis biomarker sampling may
avoid many problems associated with long-distance trans-
port, dilution and degradation causing a delay and reduction
of the biomarker signals in CSF and blood. In support of this
working hypothesis, our recent data in TBI patients indicate
that the levels of the F2-isoprostane 8-iso-PGF2a, a widely used
biomarker of oxidative stress, were markedly higher in
microdialysate compared with ventricular CSF and blood
samples (F. Clausen et al, submitted).

Clinical NCC also uses numerous strategies to lower ICP,
including administration of mannitol and hyperventilation,
targeting physiological parameters. Sedatives and anaesthet-
ics are commonly used in intensive care management of TBI
patients. One elegant study using CCI in the rat showed that
‘sub-optimal’ cerebral perfusion pressure (CPP < 70 mmHg)
resulted in an increased lesion volume (Kroppenstedt et al.,
1999) showing a good example of how scientists can take
clinical observations for testing in the TBI laboratory. In the
clinical setting, there is an ongoing search for prognostic and
pathophysiological biomarkers (Dash et al., 2010) that also
should be evaluated in the experimental setting.

We emphasize that not only preclinical scientists are
responsible for translating preclinical knowledge into clinical
treatments. In numerous aspects of the management of TBI
and, in particular, NCC there are discrepancies regarding, for
example, sedation, fluid management and strategies to
correct changes in ICP and CPP levels. These differences
among neurosurgical and NCC centres indicate a lack of
consensus and evidence-based guidelines making the animal
modelling even more difficult. Clinicians obviously need to
create international platforms working towards a more
unified treatment strategy in the overall management of TBI.
Encouragingly, international consortia and workshops have
been created with the aim of creating, for example, manage-
ment guidelines and uniform classification for TBI (e.g. Con-
sensus conference, 1999; Saatman et al., 2008; Compagnone
et al., 2005; Brain Trauma Foundation et al., 2007; Margulies
and Hicks, 2009), efforts that will likely be a key step in the
improvement in TBI care worldwide.

Neurorehabilitation
Without doubt, neurorehabilitation is a very important part
of the treatment of TBI victims. However, neurorehabilitation
varies tremendously among countries and also regionally
within many countries. Despite the differences in clinical
rehabilitation, efforts for mimicking this aspect of the clinical
management have been made. In the laboratory, numerous
studies have evaluated enriched environment as a treatment
option and consistently shown to enhance functional and
histological recovery after both FPI and CCI in the adult rat
(Hamm et al., 1996; Passineau et al., 2001; Hoffman et al.,
2008; Sozda et al., 2010). Additionally, late effects of enriched
environment plus multimodal early onset stimulation after
TBI in rats resulted in an improved motor function without

reduction of lesion volume (Lippert-Gruner et al., 2007). The
efficacy of drugs in TBI animals also subjected to enriched
environment (Kline et al., 2007) would be an interesting
approach in order to further improve the clinical similarity of
preclinical research.

Animal modelling in some previous
and ongoing clinical trials

In the past, numerous extensive and expensive clinical trials
have evaluated pharmacological compounds aiming to
improve the recovery of TBI patients. Invariably, they all
failed to demonstrate clinical efficacy. The reasons for these
failures are multifactorial and have been addressed in the
previous sections of this review (see also Maas et al., 2008).
Common shortcomings have included incomplete preclinical
evaluation, incorrect timing and dosing of the selected com-
pounds and the inclusion of too mildly or severely injured
patients and inclusion of all the various subtypes of TBI. Still,
numerous clinical trials in TBI are ongoing, examples being
the ProTECT trial (progesterone; Wright et al., 2007), aiming
to enrol 1140 patients), the citicoline brain injury treatment
trial (Zafonte et al., 2009), aiming to enrol 1292 patients) and
erythropoietin Phase II and III trials based on solid preclinical
studies (NCT00375869 and NCT00313716; see Nichol et al.,
2009). Thus, it is important to learn lessons from past trials
and also continuously evaluate trials that are ongoing or
being initiated. Here we selected two examples, the magne-
sium and cyclosporine A trials with the aim of reviewing the
published preclinical documentation. The reasons for select-
ing these two trials are that they both have unusually solid
preclinical documentation prior to embarking on the clinical
trials and the compounds are both in clinical use for other
medical conditions. One of the trials is completed and the
other is ongoing.

Magnesium
Magnesium (Mg2+) is the second most abundant cation in the
body, involved in more than 300 enzyme reactions (McKee
et al., 2005). Following experimental TBI, brain intracellular
free Mg2+ concentration significantly declines in number of
animal models evaluating mild-severe TBI in addition to focal
and diffuse TBI and this decline was shown to correlate with
the functional outcome (Heath and Vink, 1999a). In addi-
tion, in both humans and animals, TBI is associated with
decreased serum Mg2+ levels. Mg2+ was suggested to enhance
neuronal survival by, for example, blocking of the NMDA
receptor ion channels. In a number of preclinical TBI studies,
supplemental Mg2+ treatment consistently improved
outcome in several different TBI models using a battery of
functional outcome tests (Table 2). Because continuous Mg2+

infusion was safely used for other medical conditions includ-
ing eclampsia and considered cheap and readily available,
these encouraging animal data suggested that Mg2+ should be
evaluated in a clinical setting. In a randomized, double-blind
placebo-controlled monocentre clinical trial, 499 patients
with moderate-severe TBI (GCS score of 3–12) were enrolled
within 8 h post-injury (Temkin et al., 2007). Mg2+ was admin-
istered by an initial i.v. dose followed by an i.v. infusion for 5
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days and similar to the experimental findings, initial serum
Mg2+ levels were low in 60% of patients. Due to initially
high mortality and low blood pressure at the target serum
Mg2+ level of 1.25–2.5 mmol·L-1 (normal levels are 0.75–
1.0 mmol·L-1), target serum levels were decreased to 1.0–
1.85 mmol·L-1. The included patients had various subtypes of
TBI or a combination thereof; including DAI (36% of Mg2+-
treated patients), subdural haematoma (56%), EDH (21%),
intracerebral haematoma (9%), depressed skull fracture (18%)
and cortical contusions (60%) and a few patients had a pen-
etrating TBI. Primary outcome was a composite of mortality,
seizures, functional measures and neuropsychological tests.
No improvement of Mg2+ treatment was observed, instead a
clear negative trend in the outcome of Mg2+-treated patients
was observed. Numerous possible explanations for these dis-
appointing and unexpected results were suggested, including
a possible interaction with phenytoin and a possible negative
effect of prolonged treatment (contrary to the preclinical
setting) resulting in excessive NMDA receptor blockade. In
our opinion, other possible explanations of the study results
included the inclusion of all TBI subtypes, a too wide range of
TBI severity and a prolonged time window without prior
experimental supportive data. Importantly, rather high
serum Mg2+ levels are well tolerated but produce a very
modest increase in Mg2+ levels in the CSF (McKee et al., 2005).
The CSF Mg2+ was suggested to be increased in TBI per se
(Kafadar et al., 2007), suggesting a complex brain pharmaco-
dynamic situation with regard to Mg2+ in humans. These
aspects need to be considered in future TBI clinical trials.

Cyclosporin A
Cyclosporin A (CsA), known to inhibit T-cell lymphocytes by
binding to cyclophilin A, has long been used in the clinical
setting as an immunosuppressant to, for example, inhibit
graft rejections following transplantation procedures. The
CsA was suggested to influence TBI pathophysiology by
binding to calcineurin, a known causative factor in the
damage to the axonal cytoskeleton following TBI and posi-
tively influenced several aspects of cytoskeletal damage fol-
lowing TBI (Buki et al., 1999; Okonkwo and Povlishock,
1999). The CsA was also suggested to inhibit the opening of
the mitochondrial permeability transition pore although this
mechanism of action has been questioned (Marmarou and
Povlishock, 2006). The role of CsA as a neuroprotectant has
been evaluated in several animal models of TBI (summarized
in Table 2). The CsA does not reach the brain in high con-
centrations in non-TBI patients, since it is highly bound in
the serum and is a substrate for multidrug resistance efflux
pumps, eliminating CsA from the CNS compartment (Cook
et al., 2009). In TBI patients, CsA is detectable in the CSF for
up to 6 days, suggesting that the increased permeability of the
BBB after TBI may result in increased access for CsA to injured
brain regions (Hatton et al., 2008). Recently, the safety, toler-
ability and pharmacokinetics of CsA in TBI patients were
evaluated. In 30 patients with severe TBI included within 8 h
post-injury, CsA was injected twice daily using escalating
doses up to 2.5 mg·kg-1 dose-1 (Empey et al., 2006). Compared
with CsA pharmacokinetics in other disease states, a more
rapid clearance and a larger distribution volume of CsA
was demonstrated. Additionally, no significant differences
between the placebo- and CsA-treated patients with regard to

immunological parameters such as total lymphocyte count,
the incidence of infections and T-cell subtypes were observed
(Mazzeo et al., 2006). In an additional study (Mazzeo et al.,
2009b), 50 patients with severe TBI received 5 mg·kg-1 infused
over 24 h using continuous i.v. infusion initiated within 12 h
of the injury. Overall, small and likely not clinically signifi-
cant differences in renal function and white blood cell counts
were observed in CsA-treated patients and the safety profile of
CsA was good. However, no improvements in neurological
outcome were observed at 3 or 6 months post-injury. Still,
brain pharmacokinetics need to be carefully determined and
it is yet unclear if all subtypes of TBI will be included in the
next trial. A large Phase III efficacy trial of CsA in severe TBI
is currently under peer review by the National Institute of
Health-National Institute of Neurological Disorders and
Stroke Clinical Trials study section, and if approved, will be
performed in about 50 centres throughout the USA. The
results of this study will be eagerly awaited by the TBI
research community.

Conclusions

The lack of drugs with proven clinical efficacy in TBI is a
major challenge ahead for the research community and the
drug industry. So, where do we go from here? As outlined in
this review, a successful translation of basic science knowl-
edge to the clinic requires numerous refinements of the exist-
ing preclinical TBI models that may be achieved without
extensive efforts or costs. We believe that the current experi-
mental TBI models adequately reflect many aspects of human
TBI. However, to more adequately mimic the clinical situa-
tion, modification of injury severity, refined functional
outcome tests, addition of secondary insults and multimo-
dality monitoring may be needed. In addition, more research
into the effect of age, gender and species/strain on the
outcome of TBI is warranted. On the clinical side the ongoing
international effort to come up with a novel classification
system for TBI patients is widely appreciated (see Saatman
et al., 2008) and may enable selection of more homogenous
patient cohorts in future clinical trials. We also suggest that
clinicians work toward an international consensus with a
more homogenous treatment strategy for TBI patients in the
NCC setting to facilitate multicentre comparisons. In addi-
tion, improved CNS drug delivery systems and monitoring of
target drug levels and drug effects is warranted. Numerous
promising treatment options have emerged in recent years,
including neuroprotective, neurorestorative and anti-
inflammatory compounds that should be subjected to a
rigorous preclinical dose–response analysis of their efficacy
on the target mechanism and the ability to reduce post-
traumatic neurodegeneration and to improve behavioural
and neurological recovery. Based on the complexity of injury
mechanisms involved in TBI pharmacological combination
treatment strategies may be an important option to consider.
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