
Themed Issue: Translational Neuropharmacology – Using Appropriate
Animal Models to Guide Clinical Drug Development

REVIEWbph_1299 1285..1300

Animal models in the drug
discovery pipeline for
Alzheimer’s disease
Debby Van Dam1 and Peter Paul De Deyn1,2

1Laboratory of Neurochemistry & Behaviour, Institute Born-Bunge, Department of Biomedical

Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium, and 2Department of Neurology,

Memory Clinic, Middelheim General Hospital, ZNA, Antwerp, Belgium

Correspondence
Debby Van Dam, Laboratory of
Neurochemistry & Behaviour,
Institute Born-Bunge, University
of Antwerp, Universiteitsplein 1,
2610 Wilrijk (Antwerp), Belgium.
E-mail: debby.vandam@ua.ac.be
----------------------------------------------------------------

Keywords
Alzheimer’s disease; amyloid b;
Caenorhabditis elegans; Drosophila
melanogaster; lesion models;
rodent models; tauopathy;
transgenesis; translational
research; zebrafish
----------------------------------------------------------------

Received
14 September 2010
Revised
21 January 2011
Accepted
4 February 2011

With increasing feasibility of predicting conversion of mild cognitive impairment to dementia based on biomarker profiling,
the urgent need for efficacious disease-modifying compounds has become even more critical. Despite intensive research,
underlying pathophysiological mechanisms remain insufficiently documented for purposeful target discovery. Translational
research based on valid animal models may aid in alleviating some of the unmet needs in the current Alzheimer’s disease
pharmaceutical market, which includes disease-modification, increased efficacy and safety, reduction of the number of
treatment unresponsive patients and patient compliance. The development and phenotyping of animal models is indeed
essential in Alzheimer’s disease-related research as valid models enable the appraisal of early pathological processes – which
are often not accessible in patients, and subsequent target discovery and evaluation. This review paper summarizes and
critically evaluates currently available animal models, and discusses their value to the Alzheimer drug discovery pipeline.
Models dealt with include spontaneous models in various species, including senescence-accelerated mice, chemical and
lesion-induced rodent models, and genetically modified models developed in Drosophila melanogaster, Caenorhabditis elegans,
Danio rerio and rodents. Although highly valid animal models exist, none of the currently available models recapitulates all
aspects of human Alzheimer’s disease, and one should always be aware of the potential dangers of uncritical extrapolating
from model organisms to a human condition that takes decades to develop and mainly involves higher cognitive functions.
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Introduction
As the prototype of cortical dementias, Alzheimer’s disease
(AD) presents with prominent cognitive deficits. Initially,
patients display limited forgetfulness with disruption of
memory imprinting, which evolves to short-term memory
disruption and, eventually, to long-term memory deficits. At

more advanced stages, patients show executive dysfunction-
ing leading to advanced helplessness. Besides cognitive dete-
rioration, patients display behavioural and psychological
signs and symptoms of dementia (BPSD). BPSD is an umbrella
term that embraces a heterogeneous group of noncog-
nitive symptoms and behaviours, including paranoid and
delusional ideation, hallucinations, activity disturbances,
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aggressiveness, diurnal rhythm disturbances, affective distur-
bances, anxieties and phobias (Reisberg et al., 1987). The
concept of BPSD is a descriptive one and does not reflect a
diagnostic entity but rather highlights an important clinical
dimension of dementia that has until recently been ignored
from both research and therapeutic points of view. In con-
trast with cognitive symptomatology, BPSD do not show a
progressive course. The impact of BPSD is emphasized by the
fact that they increase patient suffering, impose tremendous
strain on caregivers and significantly increase the financial
burden on the family and society.

The histopathological hallmarks of AD brain are extracel-
lular amyloid-b (Ab) plaques and intracellular neurofibrillary
tangles (NFT), accompanied by decreased synaptic density,
which eventually leads to widespread neurodegeneration,
loss of synapses and failure of neurotransmitter pathways,
particularly those of the basal forebrain cholinergic system.

The incidence and prevalence of dementia in general, and
AD in particular, have been studied extensively. AD is the
most common form of dementia, and the most elaborate
European epidemiological study – The Rotterdam Study –
demonstrated 72% of all dementia cases to be of AD origin
(Ott et al., 1995). The number of affected individuals is likely
to grow in the decades to come due to demographic changes
and our still-rising life expectancy. The worldwide societal
cost of dementia, based on a dementia population of 34.4
million demented persons, was estimated to $422 billion in
2009 (Wimo et al., 2010). It is forecasted that the number of
demented elderly will rise to 114 million by the year 2050
(Wimo et al., 2003). Therefore, as prevalence rates are pre-
dicted to experience a steep rise over the next 50 years,
intense and meticulous AD-related research is imperative.

Clinical research focuses at diagnosis of AD and related
conditions in an early stage based on specific biomarkers.
With increasing predictive efficacy for conversion of mild
cognitive impairment to dementia (De Meyer et al., 2010),
disease-modifying treatment strategies become indispens-
able. Despite intensive research, underlying pathophysiologi-
cal mechanisms remain insufficiently documented for
purposeful target discovery. The development and phenotyp-
ing of animal models is essential in AD-related research as
valid models enable the appraisal of early pathological pro-
cesses – which are often not accessible in patients. The iden-
tification of biological targets with an explicit role in early
stages of the disease process allows rational development and
preclinical evaluation of therapeutic strategies to alleviate or
prevent this neurodegenerative condition.

Animal models aiming at studying human diseases,
emerged in the 1800s and experienced a major boost during
the last decades. Of primary concern to neuroscientists is the
selection of the most relevant animal model to achieve their
research goals. Researchers are challenged to develop models
that recapitulate the disorder in question, which is often not
as straightforward as it may seem. Quite often they are con-
fronted with the choice between models that reproduce car-
dinal pathological features of the disorders caused by
mechanisms that may not necessarily occur in the patients
versus models that are based on known aetiological mecha-
nisms that may not reproduce all clinical features.

Alzheimer’s disease is by its prevalence and nature an
important burden on the life of patients and caretakers, as

well as poses major consequences for the health and aged care
systems. This review will therefore, focus on animal models
of AD. Readers interested in animal models of other dementia
types, including, for example, normal pressure hydroceph-
alus, Parkinson’s disease, frontotemporal dementia, and
forms of vascular and toxic dementia, are referred to a recent
Springer Science + Business Media Neuromethods book
entitled: ‘Animal models of Dementia’ (De Deyn and Van
Dam, 2010a).

Various types of animal models can contribute to our
growing understanding of the molecular pathways involved
in disease development and progression in AD. In general,
animal models of human disease can be classified into spon-
taneous, induced, negative and orphan models, of which the
latter two types do not apply to the field of Alzheimer mod-
elling. Spontaneous models are presumed to develop their
condition without experimental manipulation, but selective
breeding is often compulsory to establish and maintain the
desired line. Especially for psychiatric and neurological con-
ditions, including AD, few spontaneous models exist and
experimentally induced pathology is often necessary.

Spontaneous models

Few species, including dogs (Cummings et al., 1993; 1996;
Rofina et al., 2006), cats (Head et al., 2005; Gunn-Moore et al.,
2006), (polar) bears (Cork et al., 1988; Uchida et al., 1995;
Tekirian et al., 1996), goats and sheep (Braak et al., 1994),
wolverine (Roertgen et al., 1996), as well as several nonhu-
man primate species (Bons et al., 1994; Gearing et al., 1994;
1997; Lane, 2000; Geula et al., 2002; Kimura et al., 2003; Sani
et al., 2003; Lemere et al., 2004; 2008), spontaneously
develop plaque pathology and some species even exhibit
tauopathies. In addition, these histopathological changes can
be accompanied by cognitive decline (Cummings et al., 1996;
Voytko and Tinkler, 2004; Gunn-Moore et al., 2006; Rofina
et al., 2006). Unfortunately, the use of these species for
experimental research is limited by availability, economical
(based on long lifespan) and/or ethical reasons. Nevertheless,
the dog has been pointed out as an especially appropriate
model for the study of human brain ageing and neurodegen-
erative diseases in general, and AD in particular (Sarasa and
Pesini, 2009), based on its phylogenetic proximity to
humans, the in-depth knowledge of canine (behavioural)
neurology, and the histopathological and molecular similari-
ties between clinical AD and the canine variant. In particular,
the amino acid sequence of canine Ab1–42 is identical to the
human form, whereas the murine form differs three amino
acids from the human form. The severity of cognitive decline
represents a spectrum that captures normal ageing, mild cog-
nitive impairment and early/mild AD in humans. Given these
similarities, dogs have been frequently used in preclinical AD
studies. Dogs are ideally suited for longitudinal studies, and
have therefore been mainly used to study the beneficial
effects of an antioxidant diet, behavioural enrichment and Ab
immunotherapy (for review, Cotman and Head, 2008).

Ageing rodents do not spontaneously develop AD-like
histopathological hallmarks, and are therefore of no use to
the development of drugs targeting these pathological hall-
marks. Their contribution to the AD-related drug discovery
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pipeline is based on the occurrence of senescence-related
cognitive decline and behavioural alterations linked to
AD-relevant neurochemical and morphological alterations
(Erickson and Barnes, 2003), including age-associated cholin-
ergic hypofunction (Sherman and Friedman, 1990). In addi-
tion, they aid in uncovering the boundary between normal
and pathological ageing, allowing in-depth investigation of
basic neural mechanisms underlying brain ageing.

Natural age-associated deterioration has culminated in
the senescence-accelerated mouse (SAM), a model which was
established through phenotypic selection from a genetic pool
of AKR/J mice in the early 1980s. The SAM model includes
nine major SAM-prone (SAMP) substrains and three major
SAM-resistant substrains. SAM strains have been extensively
used as models for various age-related disorders; SAMP mice
undergo accelerated ageing while SAM-resistant mice
undergo normal ageing processes. The SAMP8 substrain in
particular has drawn attention in dementia-related research
because it shows age-associated learning and memory deficits
in association with Ab deposition (Yagi et al., 1988; Takeda,
1999). Interestingly, genes and proteins that undergo signifi-
cant alterations in SAMP8 brains are related to the following
functional categories: neuroprotection, signal transduction,
immune response, energy metabolism, mitochondrion,
protein folding and degradation, reactive oxygen species pro-
duction, cytoskeleton and transport, lipid abnormalities and
cholinergic dysfunction (Butterfield and Poon, 2005; for
review, see Sowell and Butterfield, 2010). The SAMP8 strain
has proven to be a relevant model for AD and several treat-
ment strategies have been studied in these mice, including
antioxidants (Farr et al., 2003; Poon et al., 2005; Nishimura
et al., 2006; Shih et al., 2010), antisense oligonucleotides,
directed at the Ab region of the amyloid precursor protein
(APP) gene (Kumar et al., 2000; Banks et al., 2001; Poon et al.,
2004; Ali et al., 2009), consistent with the notion that SAMP8
cognitive changes are associated with Ab-associated oxidative
stress. Besides pharmacological interventions, dietary restric-
tion as a way to increase lifespan and improve health, and its
effect on various functional categories that are affected in
SAMP8 with ageing, as described above, was recently evalu-
ated (Tajes et al., 2010).

Pharmacological, chemical and
lesion-induced rodent models

The disruption of multiple neurotransmitter systems in AD
plays an important role in the pathophysiology of cognitive
and behavioural disturbances associated with the illness. The
majority of animal models within this category are based on
the cholinergic hypothesis of AD. Degeneration of cholin-
ergic neurons in the nucleus basalis of Meynert, situated in
the basal forebrain and primarily projecting to the neocortex,
occurs early in the course of the disease (Davies and Maloney,
1976; Whitehouse et al., 1982). A correlation between cholin-
ergic deficits and both cognitive symptomatology and the
extent of neuropathological alterations in AD was reported
(Martin et al., 1987; Bierer et al., 1995; Dournaud et al., 1995).
The basal forebrain is the anatomical region ranging from the
septum to the midbrain, which passes under the anterior

commissure and groups together both the telencephalic and
diencephalic structures. The bilateral cholinergic centres
display a high density of cholinergic isodendritic neurons.
Classically, three cholinergic groups or ‘nuclei’ were defined:
the medial septal nucleus, the nuclei of the diagonal band of
Broca, and the nucleus basalis of Meynert. Histochemical
research specified different sets of cortical projecting neurons
with neurotransmitters other than acetylcholine intermeshed
among the cholinergic neurons, as well as a better under-
standing of the cortical targets, and the relationship between
cholinergic groups and neighbouring structures. The ascend-
ing cholinergic system, comprising sectors Ch1–Ch4 is a
topographically organized cholinergic regulatory projection
system, which innervates the entire neocortex, in addition to
several limbic and olfactory structures. Sectors Ch5 and Ch6
provide cholinergic innervation to the thalamus, and are
essential components of the ascending reticular activating
system, thereby indirectly regulating cortical activity via a
noncholinergic system between thalamus and cortex
(Mesulam et al., 1983; Selden et al., 1998).

The most commonly used pharmacological model related
to AD is scopolamine-induced amnesia (Sunderland et al.,
1986; Ebert and Kirch, 1998), which has increased our knowl-
edge of the role of the cholinergic system in cognition and
allows preclinical evaluation of symptomatic efficacy of
cholinomimetics, including mainly compounds with pre-
sumed acetylcholinesterase inhibiting activity (e.g. Trabace
et al., 2000; Ahmed and Gilani, 2009; Wong et al., 2010) and
muscarinic receptor 1 agonists (Malviya et al., 2008).

Scopolamine, a tropane alkaloid drug with muscarinic
antagonist effects, has a primary influence on processes
related to information acquisition (Rush, 1988). The use of
the scopolamine-induced amnesia model is however limited
by the fact that cholinergic hypofunction is not associated
with the development of pathological AD hallmarks, and the
lack of disease progression at the level of cholinergic and
cognitive dysfunction. Blockade of nicotinic receptors by
mecamylamine also induces learning impairment (Moran,
1993; Estapé and Steckler, 2002). In AD patients, not only the
muscarinic but also the nicotinic receptors are markedly
decreased (Whitehouse and Au, 1986; Nordberg et al., 1989).
Therefore, blockade of both receptors may offer a better
amnesia model (Levin et al., 1990; Riekkinen et al., 1990).

Besides scopolamine-induced amnesia, the cholinergic
hypothesis of AD has led to the development of a number of
lesion models for studying the pathogeny of cortical cholin-
ergic involution. Focal neurotoxic, electrolytic or mechanical
lesions of the cholinergic centres of the basal forebrain, as
well as more general lesions of all the cholinergic neurons of
the basal forebrain, are most frequently used to obtain such
models. Focal lesions are especially directed at the nucleus
basalis magnocellularis (Lescaudron and Stein, 1999; Vale-
Martínez et al., 2002), the rodent analogue of the human
nucleus basalis of Meynert, the septal area (Mulder et al.,
2005), or consist of fimbria/fornix transection leading to
septo-hippocampal cholinergic denervation (He et al., 1992;
Alonso et al., 1996). Lesioning can be achieved by surgical or
electrolytical procedures, and intraparenchymal or intracere-
broventricular microinjections of neurotoxic substances,
such as quinolic, kainic, N-methyl-D-aspartic, ibotenic and
quisqualic acids, the cholinotoxin AF64, and the immuno-

BJPAnimal models for AD

British Journal of Pharmacology (2011) 164 1285–1300 1287



toxin 192 IgG-saporin (for review, see Toledana and Álvarez,
2010). These models increase our understanding of the role of
cholinergic innervations in the aetiology and treatment of
cognitive disorders. In-depth anatomical knowledge of the
target area, including its neuronal and glial types, regional
neuronal circuits and their connections with other brain
areas, and mode of action of the toxin employed are essential
because lesion characteristics depend on the type of agent
employed and its capacity to cause selective harm to different
subtypes of neurons, nerve fibres passing through the affected
area, glial cells and blood vessels. However, the suitability of
these models is also much debated about because conflicting
results may be obtained and is it is essential to take into
account a wide range of factors influencing the outcome of
the study; such as, the species or strain used, its physiopatho-
logical characteristics (e.g. age at induction) and mainte-
nance (e.g. housing conditions), the model protocol,
including the location and extent of the lesion and whether
a unilateral or bilateral lesion is opted for, the lesion-inducing
agent, the type and concentration of toxin used, and even the
morphological, histochemical, biochemical and cognitive
methods used to phenotype the model (for review, see
Toledana and Álvarez, 2010).

Alzheimer’s disease-related memory deficits can also be
(partially) reproduced by specifically lesioning brain struc-
tures or pathways essential for different aspects of learning
and memory, such as the hippocampus, striatal and cortical
regions (Gray and McNaughton, 1983; Glenn et al., 2003;
Sloan et al., 2006; Castañé et al., 2010). These models are
mainly used to increase our knowledge of the neural mecha-
nisms underlying memory dysfunction. As for basal forebrain
lesion models, the major disadvantages are the lack of disease
progression, AD-typical pathology and the fact that only
selected lesion are studied compared with a more global
disease process in AD.

Some chemically induced models focus on only one spe-
cific pathophysiological pathway thought to underlie AD.
Such partial models have been developed to mimic, for
example, brain inflammation or glucose/energy metabolism
impairment and study the effects on neurodegeneration.
Brain inflammation can be experimentally induced by the
infusion of endotoxins, like lipopolysaccharide (Hauss-
Wegrzyniak et al., 1998), or proinflammatory cytokines
(Wenk et al., 2003). Brain metabolism can be disrupted
through interference with mitochondrial metabolic pathways
(Szabados et al., 2004), or neuronal insulin signal transduc-
tion (Ishrat et al., 2009).

Amyloid-b infusion rodent models

The amyloid cascade hypothesis of AD states that, regardless
of whether the disease is familial or sporadic, cerebral accu-
mulation and aggregation of Ab peptides to form amyloid
plaques is the primary culprit driving AD pathogenesis
(Selkoe, 2000; Hardy and Selkoe, 2002), and additional
disease processes (NFT formation and inflammation) result
from the imbalance between Ab production and clearance.
More recently an updated version of this theory has assigned
a pivotal role in AD pathogenesis to soluble Ab oligomers,
which can rapidly block long-term potentiation, and there-

fore cause memory failure (Gong et al., 2003; Lacor et al.,
2004; Walsh and Selkoe, 2007).

Aspects of AD can be mimicked by intracerebral or intrac-
erebroventricular infusion of Ab peptides in the rodent brain
(for review, see Lawlor and Young, 2010). Ab species can be
administered acutely, using a single stereotactic injection
(Harkany et al., 1998; 2000), or repetitively, using injections
through an implanted cannula (Yamada et al., 2005). To
better mimic the progressive nature of AD, chronic and con-
tinuous administration is accomplished by connecting an
implanted cannula to an osmotic mini-pump (Nakamura
et al., 2001; Olariu et al., 2002) or a micro-infusion pump
(Nag et al., 1999), or with microdialysis (Harkany et al., 2000).

Direct intracerebral injection of Ab peptides causes learn-
ing and memory deficits, as well as AD-like behavioural alter-
ations (Harkany et al., 1998; Yamada et al., 2005; Sipos et al.,
2007), with the severity of the deficits dependent upon the
species of Ab infused and the time interval between Ab
administration and behavioural testing. In addition to
measurable deleterious effects on cognition and behaviour,
exogenous administration of Ab species can lead to neuro-
pathological changes reminiscent of human AD, although
the full complexity of the human pathology is not repro-
duced and these pathologies are not widespread as in the
human condition. Accumulation of Ab deposits in brain
parenchyma (Frautschy et al., 1996; Sipos et al., 2007) can be
associated with, for example, inflammation and microglial
activation, oxidative stress, and local cell loss (Weldon et al.,
1998). More specifically, disruption of cholinergic function
was reported (Harkany et al., 1998; Yamada et al., 2005).
Within the published literature there is a wide variation in
the reported behavioural and neuropathological effects of Ab
infusion. These inconsistencies may be due in part to varia-
tions in methodologies; the species of peptide infused (e.g.
Ab1–40, Ab1–42 or Ab25–35), the aggregation state and concentra-
tion of the peptide preparation, the duration of the infusion,
the site of infusion, the time interval between Ab adminis-
tration and behavioural testing, and even the solvent used to
dilute peptides (for review, see Lawlor and Young, 2010).
These methodological differences need to be considered
when designing an in vivo Ab infusion model and interpreting
data obtained from such AD models.

Models based on intracerebral Ab infusion support the Ab
cascade hypothesis, provide insight in mechanisms and sec-
ondary effects of Ab toxicity and allow preclinical evaluation
of drugs targeting Ab, as well as test the protective effects of
pharmacological modulation of microglial signalling, because
infusion of peptide induces inflammation and microglial acti-
vation. Rodent Ab infusion models also offer some advantages
over the use of APP transgenic models. Overexpression of APP
results not only in increased production of Ab1–40 and/or Ab1–42,
but in elevated levels of other APP fragments, which can
have neuroprotective, neurotoxic or signalling functions, and
influence learning and memory. The infusion model allows
researchers to administer defined amounts of a specific Ab
species of known sequence and length or to introduce con-
trolled co-factors related to plaque development. Moreover,
rather than waiting several months for pathology to develop
with ageing in transgenic animals, Ab infusion models can
deliver experimental results (including plaque pathology)
within a timeframe of a few weeks (Frautschy et al., 1996).
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On the downside, in addition to providing only a partial
model of AD, and largely bypassing the effect of ageing on AD
progression, a major caveat of this approach is the fact that
administered Ab concentrations are much higher than Ab
levels found in the brain or cerebrospinal fluid of AD patients
(Vickers et al., 2000). In contrast to transgenesis, the invasive
nature of Ab infusion inevitably brings about brain injury,
which – in addition to the potential neurotoxic effects of
vehicles used – may contribute to the induction of inflam-
mation observed in these models. These potentially con-
founding effects can of course be controlled for by including
proper sham and/or scrambled peptide groups.

Transgenic models for AD

The past two decades have witnessed an extraordinary expan-
sion in our knowledge of the molecular basis of neurological
diseases, including AD. Much of this progress is based on
mapping gene loci in families with genetically determined
neurological diseases. Prior to the current revolution in
applied molecular genetics, the only practical method to
study the regulation and function of mammalian genes was
to utilize spontaneous mutants. Since the 1970s, it has been
possible to introduce DNA fragments into prokaryotic and
eukaryotic cells in vitro and to induce the expression of the
foreign DNA in these cells. Although the evaluation of gene
expression is relatively straightforward (determination of
gene product in culture medium), the activity of a specific
gene at the cellular level does not yield satisfactory informa-
tion about the regulation of the gene among the complex
physiological interactions of the whole organism. The devel-
opment of transgenesis techniques to create genetically
manipulated models has provided us with powerful tools to
study pathophysiological mechanisms and evaluate new
treatment strategies in vivo. Over the past decades, several
species have been used to create genetically altered pheno-
copies of human AD; in particular of course mice, and to a
much lesser extent, rats, as well as nonmammalian species,
like zebrafish (Danio rerio), nematodes (Caenorhabditis elegans)
and the fruit fly (Drosophila melanogaster).

AD models in D. melanogaster

Drosophila has found major application in the analysis of
genetic interaction in neurological disorders, including AD,
based on both classical phenotype-based genetic screens and
techniques for genetic manipulation, including gene knock-
down, deletion and transgenic insertions. A large degree of
functional conservation of proteins exists between insect and
human. Of particular interest to the field of AD research, is
the conservation of the proteolytic activity of g-secretase
between D. melanogaster and humans. This fruit fly g-secretase
can correctly cleave human APP. Endogenous orthologues of
AD-related genes, namely Appl (i.e. APP-like) (Rosen et al.,
1989; Luo et al., 1990) and dPsn (i.e. Drosophila presenilin
(PSENs)) (Li et al., 2007), with roles in axonal transport and
Notch signalling, respectively, are present in D. melanogaster.
In normal flies, however, there is no formation of Ab peptides

because of the lack of b-secretase (BACE1) activity and
sequence differences between APPL and APP at the positions
that constitute Ab (Rosen et al., 1989).

A complete APP-processing Drosophila model was
achieved by creating transgenic flies that carry constructs
encoding both human APP and human b-site APP-cleaving
enzyme 1 (BACE1, i.e. b-secretase). Human APP is cleaved by
the transgenic human BACE1, and subsequently, by endog-
enous g-secretase, thereby releasing the Ab sequence. When
specifically expressed in the eye, retinal deposition of Ab
plaques and age-dependent neurodegeneration were noted.
Ubiquitous expression also led to shortened life span and
defects in wing vein development. These APP-based models
are useful to screen for genes, drugs or metabolites that
modulate APP processing and have the potential to decrease
Ab-induced degeneration, as illustrated by dose-dependent
increased survival rates and life span after supplementation of
the food medium with a BACE1 inhibitor, and increased
survival rates after treatment with a g-secretase inhibitor
(Greeve et al., 2004).

In more simpler models, the Ab sequence is fused down-
stream of a secretion signal peptide, which results in expres-
sion of secreted peptides in the fly nervous system or in the
developing eye. These models have successfully shown pro-
gressive intracellular Ab accumulation, extracellular Ab
plaque deposition and neurodegeneration accompanied by
olfactory memory defects, reduced longevity and defective
locomotor behaviour. Phenotypical alterations occur in an
age- and dose-dependent manner with correlation between
Ab levels and neurodegeneration, as well as between pro-
pensity of Ab to aggregate and disease severity (Finelli et al.,
2004; Iijima et al., 2004; Crowther et al., 2005). These
secreted Ab models are useful to study the toxicity of dif-
ferent Ab species, and asses modifiers of Ab metabolism and
toxicity. The predictive validity of this fly model as a plat-
form for drug discovery was verified by testing the thera-
peutic efficacy of MK-801, an inhibitor of the excitatory
action of glutamate on the NMDA receptor and functionally
related to memantine, the noncompetitive glutamate
antagonist approved for symptomatic treatment of AD and
effective in slowing AD progression (Crowther et al., 2005).
Predictive validity of the secreted Ab fly models was further
corroborated with administration of Congo red, which
inhibits Ab oligomerization and had earlier been shown to
reduce neurodegeneration in a fly model of polyglutamine
repeat disease and a mouse model of Huntington’s disease
(Crowther et al., 2005).

Some of the phenotypes observed in fruit fly AD models
are analogous to those clinically observed in human patients,
such as learning and memory defects, and the presence of Ab
plaques and neuronal loss. In addition, other easy-to-score fly
phenotypes are used as surrogate markers for neurodegenera-
tion, such as reduced longevity, locomotor defects and rough-
eye phenotypes (for review, see Giannakou and Crowther,
2010). While there appears to be good concordance between
the phenotypes observed in these two complementary
approaches to model Ab toxicity in Drosophila, some differ-
ences in the subcellular localization of the peptide may exist.
With normal processing of APP, Ab is generated in an endo-
somal compartment and may subsequently be released to the
extracellular space. In Ab-expressing fly models, the peptide
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may enter the secretory pathway from the endoplasmic
reticulum (Crowther et al., 2005).

Although APP and Ab-expressing fly models mimic one
crucial aspect of AD pathogenesis, the role of tau pathology is
completely ignored. Drosophila tauopathy models developed
up to date are (mutated) human tau-overexpression models.
The neurotoxicity of (mutated) tau causes rough-eye and
longevity phenotypes, with more pronounced deficits in
models expressing mutated tau forms (Wittmann et al.,
2001). Intracellular inclusion resembling NFT can be pro-
voked in wild-type tau expressing flies when glycogen syn-
thase kinase 3b (GSK-3b) activity is increased (Jackson et al.,
2002), which is in accordance with the fact that hyperphos-
phorylation of tau induced its aggregation. As the Ab-related
models, Drosophila tauopathy models can be used in genetic
screens for modifiers of tau pathology with rough-eye as the
most frequently assessed phenotype (Shulman and Feany,
2003).

AD models in C. elegans

Caenorhabditis elegans, a free-living nematode of approxi-
mately 1 mm in length, has several characteristics that make
it useful as a model organism. The nematodes are transparent,
which allows study of embryonic development and gene
expression in living animals under the microscope. They also
have a very short life cycle (3 days) and a relatively short
lifespan (3 weeks), which allow genetic dissection of the
mechanisms that affect ageing and lifespan (Brenner, 1974;
Byerly et al., 1976). In addition, the mechanism of gene
silencing by RNA interference has been discovered in C.
elegans and has been developed into a potent reverse genetic
tool (Fire et al., 1998)

Several AD-related genes and pathways found in humans
have orthologues in C. elegans. The nematode genome
encodes three orthologues for PSEN1; (i) sel-12, which has
been found in a screen for suppressors of the egg-laying
defective phenotype in lin-12 gain-of-function worms
(Levitan and Greenwald, 1995), and which functions mostly
during embryonic development to facilitate Notch/lin-12
signalling; (ii) hop-1, homolog of PSEN1 (Li and Greenwald,
1997), which is in fact more homologous to human PSEN2;
and (iii) spe-4, which has no obvious human counterpart (Li
and Greenwald, 1997). Three genes, aph-1, pen-2 and aph-2,
produce proteins that combined together form a functional
g-secretase complex. In addition, an orthologue of Ab (apl-1),
has been described in C. elegans (Daigle and Li, 1993).
Similar to Drosophila, the APL-1 protein does not contain the
Ab sequence, neither does C. elegans display BACE1-like
activity.

Three Ab-expressing nematode models have been devel-
oped. When expressed in muscle cells, Ab1–42 induced the
formation of amyloid-immunoreactive inclusions. A subset of
these deposits also binds the Ab-specific dye thioflavin S,
indicating that amyloid fibrils are formed, comparable to
human AD. In addition, paralysis of the nematodes occurred,
thereby indicating a specific toxicity of Ab to the muscle cells
(Link, 1995). Transgenic nematodes expressing Ab1–42 in
neurons, also develop amyloid deposits, but display only a
very subtle phenotype (Link, 2006; Wu et al., 2006). Interest-

ingly, oligomeric species of Ab were detected in these strains
that might be similar to the neurotoxic Ab-derived diffusible
ligands (Wu et al., 2006). These models provide important
insight into toxicity of specific Ab species, but do not allow
screening of genetic or chemical modifiers of APP processing.

To create nematode tauopathy models, both wild-type
and mutated human tau protein were expressed in C. elegans
neurons (Kraemer et al., 2003), inducing a progressive phe-
notype of defective motility known as ‘uncoordinated
phenotype’, which was more apparent in the mutants. Inter-
estingly, these transgenic lines also exhibit hyperphosphory-
lation of tau (Kraemer et al., 2003), which is linked to GSK-3b
activation. Future genome-wide screens will show what
modifier genes are linked to the disease process, and represent
diagnostic or even therapeutic targets.

AD models in D. rerio

Danio rerio, or zebrafish, is a small (3–5 cm) fresh water tropi-
cal fish, which served a premiere model organism to study
vertebrate development. Danio rerio is very well suited for
large-scale forward genetic screens in which phenotypic
defects are identified before the identification of the gene
causing these defects, due to its large quantity of eggs, short
generation time and the external development of the trans-
parent embryos (Amsterdam and Hopkins, 2006). Impor-
tantly, orthologues of the genes involved in familial AD have
been identified in zebrafish as well, including PSEN1 (zf-ps1;
Leimer et al., 1999; Nornes et al., 2003), PSEN2 (pre2; Groth
et al., 2002; Nornes et al., 2003) and APP (appa, appb; Musa
et al., 2001). Zebrafish reverse genetics is slowly catching up
with Drosophila and/or mouse, as the techniques to perform
gene-specific knock downs, target-selected mutagenesis and
transgenesis in zebrafish are quickly developing (for review,
see Willemsen et al., 2010). Morpholino antisense oligonucle-
otide injection is the most widely used technique for tran-
sient gene knockdown in zebrafish (Bill et al., 2009), although
other strategies to establish stable knockout lines, including
chemical mutagenesis using alkylating agents (e.g. N-ethyl-
N-nitrosourea) for targeted induced local lesions in genomes
(TILLING) (Moens et al., 2008), and zinc finger nuclease
(ZFN)-mediated mutagenesis (Miller et al., 2007) are winning
ground. At present, no TILLING or ZFN-stable mutant
zebrafish lines with knockout mutations in orthologues of
human neurodegenerative disease genes have been published
yet. Morpholino-based zebrafish models have indicated that
PSEN enhancer (pen-2), part of the zebrafish g-secretase
complex, plays an important role in promoting neuronal cell
survival and protecting from apoptosis (Campbell et al.,
2006). Morpholino-based interference with splicing of PSEN
transcripts affects multiple PSEN functions, most often linked
to altered Notch signalling. Phenotypical alterations, includ-
ing hydrocephalus and decreased pigmentation have been
noted (Nornes et al., 2008).

Methods for generating a transgenic zebrafish are
pseudotyped retrovirus infection, transposons, transfection
of sperm nuclei and DNA microinjection, with the latter
being the most frequently used method for generating trans-
genic lines expressing a gene of interest (for review, see
Willemsen et al., 2010). A first step to study the effect of
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mutant human APP expression on the development of AD
was achieved by the generation of transgenic zebrafish
expressing enhanced green fluorescent protein (EGFP) under
control of zebrafish app gene regulatory elements. EGFP
expression was found to be present in subregions of brain and
spinal cord, as well as in vasculature (Lee and Cole, 2007).
The logical next step is to apply this vector to clone a PCR
product containing mutant human APP. Transgenic zebrafish
tauopathy models are already available. Transient and stable
transgenic zebrafish expressing human (mutated) tau showed
tau accumulations in neuronal cell bodies and proximal
axons resembling NFT (Tomasiewicz et al., 2002; Bai et al.,
2007; Paquet et al., 2009). Zebrafish kinases are sufficiently
conserved with respect to their human orthologues thereby
allowing the screening of therapeutic leads focussing on
kinase inhibition.

Zebrafish is an ideal vertebrate for primary toxicity studies
in whole animals because of their cost-effectiveness, the ease
of drug delivery and their high sensitivity to toxins. Applica-
bility of zebrafish in the drug discovery pipeline for dementia
was substantiated by several recent studies. GSK-3b is abnor-
mally up-regulated in several diseases including AD, where it
has been regarded as a potential drug target. Inhibition of
GSK-3b in zebrafish results in a headless embryo. Using this
phenotype, chemical libraries were successfully screened to
identify GSK-3b inhibiting compounds as potential therapeu-
tic candidates for GSK-3b-related diseases (Zhong et al., 2009;
Zou et al., 2010). Inhibition of g-secretase presents a direct
target for lowering Ab production in the brain as a therapy for
AD. However, g-secretase is known to process multiple sub-
strates in addition to APP, most notably Notch, which has
limited clinical development of inhibitors targeting this
enzyme. APP-selective inhibitors would be preferable to non-
selective inhibitors from a safety perspective for AD therapy.
Recently, a high-throughput screening method based on
phenotypic differentiation between pan and APP-specific
g-secretase inhibitors was established in zebrafish (Arslanova
et al., 2010).

Transgenic rodent models for AD

Modelling of AD in transgenic mice became reality in the
mid-1990s with the development of the PDAPP model
(Games et al., 1995), followed in subsequent years by the
Tg2576 (Hsiao et al., 1996) and APP23 (Stürchler-Pierrat et al.,
1997) mouse models, currently the most widely used amyloi-
dosis models in AD-related research. The PDAPP model
expresses human APP carrying the Indiana familial AD muta-
tion (V717F) driven by the platelet-derived growth factor-b
promoter, whereas both the Tg2576 and APP23 model
express human APP with the Swedish mutation (K670N/
M671L) driven by the hamster prion protein and murine
Thy-1 promoter respectively. All three models support the
amyloid cascade hypothesis; they display progressive Ab
deposition in both diffuse and neuritic plaques, cerebral
amyloid angiopathy, astrocytosis, microgliosis, (limited) hip-
pocampal atrophy, synaptic and neurotransmitter alter-
ations, and cognitive and behavioural deficits, relevant to the
human AD clinical and neuropathological profile (for review,
see Van Dam et al., 2005; Basak and Holtzman, 2010; Deacon,

2010; Van Dam and De Deyn, 2010). APP-based models
confirm the central role of APP and Ab in the Alzheimer
disease process, allow target identification, and subsequently,
the preclinical evaluation of various symptomatic and
disease-modifying drugs, mainly targeting the amyloid
cascade. The major caveat of these models, however, is the
lack of NFT formation, although hyperphosphorylated tau
may be present.

The discovery of early-onset AD mutations in the PSEN
genes, gave rise to the development of PSEN1 and PSEN2
transgenic mouse models. Despite an increased Ab1–42/Ab1–40

ratio in some of these models, no plaque pathology and few
cognitive and behavioural abnormalities are present. Like
APP-based models, they lack NFT development. They have
mainly served the basis for the development of double trans-
genic APP/PSEN mice, which display an increased Ab1–42/Ab1–40

ratio and accelerated Ab pathology compared to the single
APP model they are based on, thereby supporting the modi-
fying role of PSEN. In addition, these APP/PSEN mice exhibit
neuronal loss, amyloid-associated inflammation, cognitive
decline and BPSD-like behavioural alterations (McGowan
et al., 2006; Van Dam and De Deyn, 2006). The major draw-
back of all above-mentioned transgenic mouse models, that
is, the lack of NFT formation, was partially overcome by the
development of (mutated) human tau mice, and the subse-
quent crossing of tau and APP models, latter featuring
enhanced amyloid deposition accompanied by tau phospho-
rylation, NFT-like formation and overt neuronal loss, thereby
supporting the amyloid cascade hypothesis stating that Ab
pathology mediates tau pathology (Götz et al., 2004; Ribé
et al., 2005). Unfortunately, there is no co-localization of
plaques and NFT in AD-relevant brain regions, for example,
hippocampus and cortex, in APP/tau mice. This shortcoming
was counterbalanced with the development of the triple
transgenic (3 ¥ Tg) mouse (Oddo et al., 2003a,b). Rather than
crossing independent mutant mouse lines, two transgenic
constructs (mutant APP and tau) were microinjected into
single-cell embryos from homozygous mutant PSEN1 mice,
thereby preventing segregation of APP and tau genes in sub-
sequent generations. In accordance with the amyloid cascade
theory, these 3 ¥ Tg mice develop Ab plaques prior to NFT
pathology with a temporal and spatial profile equivalent to
AD, in addition to inflammation, synaptic dysfunction and
cognitive decline (for review, see Sy et al., 2010).

Single tau-knockout and (mutated) tau-transgenic models
allow further exploration of tau-related neurodegenerative
mechanisms in AD and related dementias. Tau-knockout
mice appear physically normal, are able to reproduce, and do
not display any change in central or peripheral nervous
systems, indicating that tau deficiency is likely compensated
by other microtubule-associated proteins. With the discovery
of mutations on microtubule-associated protein tau in fron-
totemporal dementia and parkinsonism linked to chromo-
some 17 (FTDP-17), numerous transgenic models using these
mutations were developed, allowing for the development of
tau pathology characterized by tau aggregation and neu-
rofibrillary degeneration. They display various phenotypes,
with the most prominent one being motor deficits, but also
memory impairment, in addition to neurofibrillary (or
neuronal-like) tangles or gliofibrillary tangles (for review, see
Sergeant and Buée, 2010).
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More recently the use of viral vector gene transfer tech-
nology has allowed the development of ‘somatic transgenic’
models, whereby genes putatively involved in AD pathogen-
esis can be selectively overexpressed in specific AD-relevant
brain regions (Hong et al., 2006; Lawlor et al., 2007).
Although this promising strategy has been shown to result in
the development of both cognitive deficits and Ab deposits in
treated animals, these genetic models require further charac-
terization to show reproducible development of behavioural
deficits and neuropathology prior to their widespread adop-
tion as a reliable and useful model of AD.

Given the boost transgenesis and gene targeting tech-
niques have given to the development of valid phenocopies
of the human condition the mouse models included in
this review are not exhaustive but rather form a representa-
tive sample of the available models. For an updated over-
view of available genetically modified models, we refer the
readers to specialized websites, as, for example, http://www.
alzforum.org, which also pays attention to models based on
late-onset AD genetic risk factors, such as apolipoprotein E
and sortilin-related receptor, as well as transgenic lines based
on other aetiological hypotheses, for example, mutated
human a-synuclein models, human cyclooxygenase-2 over-
expression models and anti-nerve growth factor mice.

The time and expense required to make genetically
altered mice is considerable, and the importance of this
investment is amplified by the long time course of most
studies of dementia. Investigators need to be able to make
informed choices about the different strategies for transgenics
and gene targeting in order to minimize unwanted variation,
and to maximize fidelity to the disease. In recent years, the
development of large genomic fragments stably cloned in
well-characterized libraries, and the ability to make trans-
genic mice from these clones in inbred strains have greatly
increased the power of the transgenic mouse. In addition,
new embryonic C57BL/6 cell lines have become widely
adopted for gene targeting, allowing knockins, knockouts
and conditional alleles to be established much more expedi-
tiously on the standard C57BL/6 background (Conlon, 2010).

The generation of transgenic rodent research models that
develop some of the pathological hallmarks of AD has given
a sizable boost to drug discovery efforts, and has also raised
many intriguing questions about the underlying disease
process. However, one should never neglect the potential
dangers of uncritical extrapolating from mouse/rat to
humans. The fact that at the moment no animal model
recapitulates all aspects of human AD reflects the limitations
of using a rodent system to model a human condition that
takes decades to develop and mainly involves higher cogni-
tive functions.

The merit of animal models in AD
drug development

Treatment goals change with disease severity. In mild to mod-
erate AD, the objective is to improve or maintain baseline
performance with disease-modifying drugs targeting central
aetiological processes. In more progressed cases displaying
cognitive and behavioural deficits which impair the wellbe-

ing of patients and caregivers, treatment is intended to slow
the rate of decline. These symptomatic therapeutics,
however, do not address the cause of the disease. If predispo-
sition for AD will become predictable – for example, based
on biomarker profiling in patients with mild cognitive
impairment – the development of preventive therapies will
be mandatory.

Treatment strategies in AD can be based on the following
approaches: (i) neurotransmitter-focussed approach; (ii) pre-
vention based on epidemiological data; or (iii) neuropatho-
logical hallmark-based approach. Either of these approaches
can be achieved via compounds with quite diverse modes of
action. Table 1 provides a nonexhaustive summary of these
different approaches or modes of action based on compounds
currently under clinical investigation. For each compound, a
representative example of a preclinical study supporting the
clinical application of that compound is provided, thereby
illustrating the merit of animal models in the drug discovery
pipeline for dementia.

Table 1 focuses on the major pathophysiological pathways
underlying AD and their link to cognitive decline. Besides
focusing on cognitive symptomatology, treatment of AD
should also include managing BPSD and related behavioural
alterations, especially given their major impact on patients,
caretakers and society at large, in addition to the fact that
atypical antipsychotics or classic neuroleptics display only
modest effect size and are associated with some potentially
major side effects. A variety of pharmacological agents has
been evaluated for the treatment of BPSD, including cholino-
mimetics, anxiolytics, anticonvulsants, antidepressants, hor-
monal preparations and antipsychotic (neuroleptic) drugs.
With the exception of atypical antipsychotics, clinical evi-
dence is rather anecdotal or based on open-label clinical trials
for most of these substances. In addition, although the catego-
ries of BPSD are superficially similar to symptoms in, for
example, the psychosis of schizophrenia or depression in
major affective disorders, the specific nature of these symp-
toms in AD and related disorders may be different based on
AD-specific neurochemical alterations and the interaction
with psychological, cognitive and functional factors (De Deyn
and Van Dam, 2010b). Preclinical evaluation of (non)pharma-
cological treatment strategies will undoubtedly contribute to a
better clinical management of BPSD. Prerequisite is of course
the availability of valid animal models of BPSD, and a need for
shifted attention from cognitive disturbances to BPSD-related
alterations in animal models of dementia. Certain AD models
have already been shown to exhibit both face (Vloeberghs
et al., 2004, 2006; Van Dam et al., 2005; Van Dam and De
Deyn, 2006) and predictive validity (Vloeberghs et al., 2008)
with regards to BPSD-like behaviours.

However, the insuperable species barrier between AD
model and patient should prevent uncritical and premature
extrapolation of animal model findings to the human condi-
tion. In general, high-quality and conscientious research
aiming at the validation of a new model or testing a new
compound requires thorough standardization of procedures,
good knowledge of strains, compounds and paradigm char-
acteristics, and skilled personnel. Keeping in mind basic
metabolic, physiological and anatomical differences between
humans and other species, it is clear that a ‘pluri-species’
approach increases the reliability of extrapolation from
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animal models to humans (Van Dam and De Deyn, 2006).
Too often it is taken for granted that a very good correlation
between the effect of drugs in so-called ‘validated’ animal
models and human clinical trials exists. A possible failure of
a drug in clinical settings is often interpreted as the failure of
the basis hypotheses on which the target for the drug was
selected, rather than the failure of the animal models in
which the drug was active. Several essential neurochemical
differences between, for example, rodents and men might
hinder a successful clinical development of a candidate drug;
for example, (i) the different pharmacology of the same drug
for rodent versus human target subtypes; (ii) the different
wiring of specific neurotransmitter circuits in rodent versus
human brain; and (iii) the difference in drug metabolism
which makes it difficult to simulate the human drug expo-
sure. More emphasis on good-quality translational studies,
more pre-competitive information sharing and the imple-
mentation of multi-target pharmacology strategies in pre-
clinical settings, may allow more reliable translation of
preclinical observations to the clinical setting and signifi-
cantly increase the success rate of the CNS drug discovery
pipeline (for review; see Geerts, 2009; 2010).

Conclusion

The conclusions drawn from animal models largely depend
on the validity of the model in representing the human
condition. Validation of a newly developed model mostly
comprises assessment of face, construct, predictive and aetio-
logical validity. The more levels of validity a model satisfies,
the greater its value, utility and relevance to the human
condition. The perfect model would account for aetiology,
symptomatology, treatment and physiological basis. Animal
models in general do not meet all of these criteria, but nev-
ertheless, all models described in this review may serve a
pivotal role in the drug discovery and development pipeline
of dementia to increase our knowledge of pathophysiological
mechanisms underlying dementia and predict clinical activ-
ity of newly developed treatment strategies. Certainly given
the fact that the evaluation of preventive or disease-
modifying efficacy is not easily accomplished in a clinical
setting. Animal models have the advantages of a rapid devel-
opment of symptoms and/or pathology, availability of poten-
tially large groups of subjects, accessibility to early-stage CNS
changes and the possibility of time-linked observations.

Unmet needs in the current AD pharmaceutical market
are disease-modification, improved efficacy, fewer side effects,
reduction of the number of treatment unresponsive patients
and patient compliance. Translational research based on
target discovery and evaluation in animal models will
undoubtedly aid in alleviating at least some of these short-
comings of the presently marketed drugs in the years to
come.
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