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Abstract
Resurgent interest in antiviral drugs for the treatment of herpesvirus has led to the development of
new compounds that are progressing through clinical trials. This is important because there are
few therapeutic options for resistant infections and some viruses such as human cytomegalovirus
remain underserved. New compounds include conventional DNA polymerase inhibitors such as
valomaciclovir and cyclopropavir, as well as CMX001 that has a broad spectrum of antiviral
activity that includes all the herpesviruses. It also includes compounds with new molecular targets
such as maribavir, FV-100, AIC361, and AIC246. Recent advances with each of these compounds
will be reviewed including their virus specificity, mechanism of action, and stage of development.
The potential of these new compounds to improve clinical outcome will also be discussed.

Introduction
The herpesviruses are responsible for a wide variety of diseases in humans. Most of these
viruses are endemic in the population, with the seroprevalence of some approaching 100%
in the first years of life. These viruses establish lifelong latent or persistent infections that
can initiate subsequent episodes of disease. While these infections are common, and with a
few notable exceptions, they are typically mild and self limiting when held in check by the
host’s immune system.

One characteristic shared by all the human herpesviruses is the progression to severe disease
in immunocompromised hosts. Resistance to the therapies of choice also arises readily in
such hosts as the viruses continue to replicate notwithstanding sustained treatment with first
line drugs [1–2]. Treatment of resistant infections is problematic because secondary
therapies are limited by a lack of oral bioavailability, modest potency, and are associated
with significant toxicities [3–5]. The development of new therapies, particularly those with
novel molecular targets, will be important not only to treat resistant infections, but also to
prevent their occurrence with combination chemotherapy [6–7].

The development of acyclovir (ACV) for use as a therapy against the alphaherpesviruses
represents the first example of a truly effective antiviral therapy [8]. Yet the potency of
available therapies for herpesvirus infections pales in comparison to that of modern
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therapies for HIV infections. Indeed the modest antiviral activity of some approved therapies
for the other herpesviruses coupled with dose-limiting toxicity limit their effectiveness and
often result in the development of resistance in immunocompromised hosts [1]. New
therapies are required that have improved efficacy as well as reduced toxicity to allow an
extended course of therapy to suppress viral replication in the target population. The search
for such therapies has identified several promising compounds that are progressing through
various stages of clinical trials. Recent work with the most advanced compounds will be
discussed and compared with existing therapies to provide perspective on their potential
advantages.

New Developments in Antiviral Therapies for the Herpesviruses
The search for novel inhibitors of the herpesviruses has not only taken advantage of
conventional targets, such as the DNA polymerase, but has resulted in the discovery of new
molecular targets and greatly improved our understanding of the biology of the
herpesviruses (Figure 1). Novel inhibitors of viral infection will be reviewed with respect to
their efficacy, spectrum of antiviral activity, and their molecular targets insofar as they have
been described (Figure 2). Although many inhibitors of cellular targets have been identified
that impact viral replication, this review will focus on inhibitors that specifically target viral
gene products with an emphasis on recent developments in the field.

FV-100
FV-100 is the prodrug form of cf-1743 (3-(2-Deoxy-β-D-ribofuanosyl)-6-(p-
pentylphenyl)-2,3-dihydrofuro[2,3-d]pyrimidin-2-one), a bicyclic nucleoside analog
(BCNA) that has highly specific antiviral activity against VZV [9–10]. The excellent
potency of this compound makes it a good candidate to treat shingles that is underserved by
current therapies. Although its precise mechanism of action is unclear, the VZV thymidine
kinase appears to play a key role, as TK negative mutants in vitro are resistant to BCNAs
[9]. The drug is phosphorylated by the VZV thymidine kinase and further phosphorylated by
the VZV thymidylate kinase. Unlike ACV and other nucleoside analogs, a triphosphate form
is not detected in cells making it uncertain if it directly inhibits DNA polymerase or acts via
another mechanism [11]. The antiviral activity cf-1743 against VZV is 100 times more
potent than that of ACV although FV-100 is about 4-fold less active than cf-1743 [10]. In a
recent clinical trial with adults, FV-100 proved to be well tolerated [10,12]. A Phase 2
clinical trial evaluated the safety and efficacy of FV-100 compared to valacyclovir in the
treatment of shingles but data have not yet been published (NCT00900783).

AIC316
AIC316, also known as Bay 57-1293 (N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-
methyl-2-[4-(2-pyridinyl)phenyl]acetamide) is a helicase primase inhibitor that has good
activity against HSV-1 and HSV-2 [13]. It inhibits the helicase primase complex encoded by
the UL5, UL52 and UL8 genes of HSV and results in the inhibition of viral DNA synthesis
[14]. The interaction of AIC316 with the complex is thought to be mediated by the region of
UL5 close to helicase motif IV [15], and UL52 near the asparagine at position 242 that
together are thought to form a binding pocket for the drug [16]. The in vitro potency of the
compound is superior to ACV and is effective in mice infected with HSV [14]. Mutations in
UL5 and UL52 confer resistance to AIC316 as well as other related compounds under
development [17]. One mutation in UL5 that imparts resistance to AIC316 (K356N) is a
naturally occurring polymorphism that is detectable in more than 10% of clinical isolates of
HSV [13]. It is not clear how low levels of this polymorphism in patients would impact the
clinical outcome, but it will be monitored closely as clinical trials proceed. This may not
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prove to be a problem since HSV isolates with this polymorphism represented at a frequency
of 2% were successfully treated in mouse studies [18].

Because the mechanism of action of AIC316 is distinct from ACV it remains active against
ACV-resistant isolates of HSV [19]. This indicates that it might be useful in the treatment of
resistant infections, but more importantly might be used in combination to prevent the
development of resistance in high risk populations. The compound has proven to be well
tolerated in clinical studies and was shown to be effective in a recently completed phase 2
trial (NCT01047540).

Valomaciclovir
Valomaciclovir, the prodrug form of H2G (R-9[4-Hydroxy-2(hydroxymethy)butyl]guanine)
is a guanosine analog that has activity against HSV-1, HSV-2, EBV, and VZV [20]. It does
not have activity against HHV-6A, HHV-6B, HHV-7, HHV-8 or HCMV [21]. It is
phosphorylated initially by viral thymidine kinase homologs encoded by susceptible viruses,
and the triphosphate metabolite is thought to inhibit the viral DNA polymerase. It is not an
obligate DNA chain terminator like ACV, but like GCV, is a competitive inhibitor of the
viral DNA polymerase and interferes with the elongation of viral DNA. The compound also
has some effect on the activity of human DNA polymerase alpha as well [20]. It is more
potent than ACV in vitro against VZV [22], but mutations in the TK gene that confer
resistance to ACV also confer resistance to H2G [23]. The compound appears to be well
tolerated and Phase 2 studies have been undertaken to evaluate its effectiveness in infectious
mononucleosis and shingles (ClinicalTrials.gov identifier: NCT00575185 and
NCT00831103, respectively).

CMX001
CDV has good antiviral activity against all the human herpesviruses and has been licensed
for the treatment of HCMV infection [24]. Recently, a series of lipid ester analogs of CDV
was synthesized to help improve the oral bioavailability of the parent compound [25], and
this modification unexpectedly enhanced the antiviral activity against all the human
herpesviruses by 2 to 3 orders of magnitude compared to CDV [26]. One of these
compounds, hexadecyloxypropyl CDV (HDP-CDV, CMX001) was also shown to be
effective against clinical isolates of HCMV and HSV as well as GCV-resistant isolates of
HCMV [26] and ACV-resistant isolates of HSV [27]. Following uptake into infected cells,
the compound is metabolized to release CDV and is thought to inhibit viral replication by
the inhibition of the viral DNA polymerases [25].

CMX001 exhibited good oral therapeutic activity against HCMV infections in SCID mice
implanted with human retinal or thymus/liver tissue [28], against MCMV infections in
mice[29], and guinea pig cytomegalovirus infections in guinea pigs [30]. It was also
effective against HSV infections in murine models of infection [31], and potentiated the
efficacy of ACV both in vitro and in vivo [32].

The in vitro and animal model data summarized above taken together with results from
pharmacokinetic, metabolic, and toxicologic studies were used to select CMX001 as a
candidate for clinical evaluation [33], and CMX001 has successfully completed Phase 1
clinical trials. This compound proved to be well tolerated and confirmed earlier studies in
mice that showed significantly reduced accumulation of the compound in the kidney since
unlike CDV, CMX001 is not concentrated by the organic anion transporter in renal proximal
tubule cells [25]. Thus CMX001 avoids the nephrotoxicity that is observed frequently with
CDV [31,33–34]. CMX001 is currently being evaluated in Phase 2 clinical studies for
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treatment of adenovirus and HCMV infections (ClinicalTrials.gov identifier: NCT01241344
and NCT00942305, respectively).

Maribavir
Maribavir (MBV) is a benzimidazole L riboside that has good antiviral activity against EBV
and HCMV [35], and is a highly specific inhibitor of the HCMV UL97 kinase [36]. This
compound is also effective in vivo against HCMV in SCID/hu mice [37]. Inhibition of UL97
kinase activity by MBV results in a complex set of replication defects that corresponds to
the UL97 kinase null phenotype and has been recently reviewed [38]. Mutations in the UL97
kinase that confer resistance to MBV lie near the active site of the enzyme and are distinct
from those of GCV-resistant mutants and some also lie outside the conserved kinase
domains [39]. Consistent with these observations, the drug remains active against GCV-
resistant strains and might be useful in the treatment of drug resistant infections [35].
However, the inhibition of UL97 kinase activity by MBV may interfere with the activation
of GCV if administered concomitantly [27,40].

Interestingly, most resistant strains isolated in the laboratory do not have mutations in UL97,
but rather in the UL27 open reading frame [41–42]. Compensatory mutations in UL27 arise
when UL97 kinase activity is inhibited by MBV and impart low-level resistance to the drug
[41]. The resistance conferred by mutations within UL27 is modest compared to those in the
kinase, but they appear to occur much more frequently. A potential explanation for this
effect was proposed recently in a report that indicated pUL27 promotes the proteasome-
dependent degradation of Tip60 [43]. When UL27 is mutated, the presence of Tip60 leads to
reduced levels of p21Waf/CIP1, which are insufficient to reduce the levels of cyclin-
dependent kinases that can substitute for some of the activities of the UL97 kinase.
Increased levels of cyclin-dependent kinases have the potential to compensate for decreased
UL97 kinase activity since kinases such as cdc2 perform many of the same functions as
UL97 kinase including the phosphorylation of retinoblastoma protein [44–45], and
degradation of the nuclear lamina [46–47]. This is also consistent with the decreased
efficacy of MBV in dividing cells that have increased levels of cdc2. MBV failed to meet its
clinical endpoints in two Phase 3 clinical trials and was hypothesized to be related to the
specific endpoint selected [48]. Despite these negative clinical results, UL97 kinase remains
a good target for antiviral therapy.

Cyclopropavir
Methylenecyclopropane analogs have been shown to be effective against a number of the
human herpesviruses. The lead compound, cyclopropavir (CPV, MBX 400), was evaluated
against all the human herpesviruses and it was reported to be active in vitro against HCMV,
HHV-6A, HHV-6B and HHV-8 [49–50]. It was also effective in vivo in two animal models
of human HCMV infection [51]. This compound requires the UL97 kinase for its antiviral
activity since recombinant viruses with large deletions in the UL97 open reading frame, or
K355M mutations that abrogate the enzymatic activity of the kinase are resistant to the
antiviral activity of CPV [50, data not presented]. This was confirmed in enzymatic studies
that determined that CPV was a better substrate for the kinase than GCV [52]. The high
affinity of CPV for UL97 kinase also appears to inhibit the normal function of the kinase in
infected cells and likely contributes to the potency of the compound [27]. Once
phosphorylated by the UL97 kinase, CPV monophosphate can be further phosphorylated by
guanosine monophosphate kinase to the level of the triphosphate [53], which presumably
inhibits the viral DNA polymerase and is consistent with the observed inhibition of viral
DNA synthesis [50].
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Resistance to CPV has been mapped to the UL97 kinase and M460I, H520Q, and C603R
mutations confer resistance to this compound [54]. Although these mutations arise in the
clinic in response to GCV therapy, they are rather uncommon mutations and most GCV-
resistant clinical isolates remain susceptible to CPV. Deep sequencing of laboratory isolates
resistant to CPV also identified a frameshift mutation in the UL27 open reading frame that
deletes the critical carboxyl terminal domain important for the function of the protein [55],
and is consistent with other experiments that suggest CPV inhibits UL97 kinase activity
[27]. The selection of a frameshift mutation in the UL27 open reading frame in cells treated
with CPV is a good indication that it is similar to MBV in that it compromises UL97 kinase
activity. Mutations in UL27 might also have the potential to have a small impact on CPV
susceptibility. This promising new compound is currently under late stages of preclinical
development.

AIC246
AIC246 has been described recently as a potent inhibitor of HCMV replication that acts at a
late stage of viral replication and is thought to be an inhibitor of the terminase complex [56].
The terminase complex is composed of pUL89 and pUL56 that interact with the UL104
virion portal protein to direct the sequence specific cleavage/packaging of viral genomes
[57]. This process is essential for virus replication, and specific inhibitors of the complex
have been identified and characterized including BDCRB and BAY 38-4766 [58–59].
Recently, specific mutations in the UL56 open reading frame were identified that were
sufficient to confer resistance to the compound and thus confirmed that UL56 is a molecular
target of AIC246 [60]. Since AIC246 is thought to target the terminase complex, it is
predicted to be active against HCMV isolates resistant to nucleoside analogs and was
effective in an immunocompromised patient that failed multiple therapies [61]. In clinical
studies AIC246 has proven to be well tolerated and is currently being evaluated in phase 2
clinical studies (NCT01063829).

Conclusions
For more than a decade the development of new drugs for herpesvirus infections languished
as industry focused on other priorities, and further research continued largely in the
academic setting. But renewed interest in new therapies for herpesvirus infections is
heartening and appropriate as an awareness of potential opportunities has grown. The
tremendous successes in the therapy of HIV infections illustrate the power of highly
effective therapies and illuminate the modest efficacy of ACV, which remains the best drug
for the treatment of herpesvirus infections. The promising compounds summarized in this
review have the potential to augment current therapies for HSV infections and greatly
improve antiviral regimens for underserved herpesvirus infections.

Development of additional therapies with improved efficacy and reduced potential for
toxicity is clearly required. As additional drugs are approved it will be important not only to
understand the potential of each new molecule and new therapeutic target, but also to
consider their potential use in multidrug regimens. Deep sequencing techniques have led to a
new appreciation of the genetic diversity of herpesvirus genomes within an infected
individual. Indeed the level of diversity suggests that mutations conferring resistance to
antiviral drugs preexist and isolates that carry them can proliferate where the incomplete
suppression of viral replication afforded by single agents cannot be augmented by the host
immune system.

Combination therapy has proven to be highly effective in the management of HIV infections
as it can suppress virus replication to undetectable levels and minimize the development of
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resistance [62]. A similar strategy will be required to manage herpesvirus infections in
immunosuppressed hosts where extended therapeutic regimens are needed. A combination
of agents has the potential to keep residual viral replication to a minimum and prevent the
selection of resistant isolates that exist as subpopulations in infected individuals. Obvious
candidate combinations would likely include DNA polymerase inhibitors, as well as other
compounds with distinct molecular targets to minimize the development of resistance. Thus
new agents that inhibit novel molecular targets will be critical. And since
immunocompromised hosts are at risk for many herpesvirus infections, a broad spectrum
agent such as CMX001 will also be important in prophylactic regimens. The rapid
progression of compounds described here through clinical trials is crucial since they have
the potential to successfully treat underserved diseases and improve clinical outcomes.

Highlights

➢ We review recent advances in the development of new therapies for
herpesvirus infections

➢ Spectrum of antiviral activity, mechanism of action, resistance and stage of
development are discussed

➢ Opinions on future directions of the field are discussed
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Figure 1.
Summary of compounds that inhibit various stages of herpesvirus replication. Infection is
initiated by virions that bind to receptors at the cell surface and internalized capsids deliver
the viral genome to the nucleus. The subsequent synthesis of genomic DNA is inhibited by
nucleoside and nucleotide analogs inhibit the DNA polymerase and AIC316 that inhibits the
helicase/primase. The coordinated steps of genome cleavage/packaging are inhibited by
AIC246. Inhibitors of the viral UL97 kinase, such as maribavir, impact both early and late
events in viral replication and inhibit the egress of mature capsids into the cytoplasm.
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Figure 2.
New inhibitors of herpesvirus replication. Many new inhibitors undergoing clinical
development are not nucleoside analogs and belong to diverse chemical classes. The
structure of each of the molecules discussed is shown.
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