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Abstract
Assessing the quality of predicted models is essential in protein tertiary structure prediction. In the
past Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiments,
consensus quality assessment (QA) methods have shown to be very effective, outperforming
single-model methods and other competing approaches by a large margin. In the consensus QA
approach, the quality score of a model is typically estimated based on pair-wise structure
similarity of it to a set of reference models. In CASP8, the differences among the top QA servers
were mostly in the selection of the reference models. In this paper, we present a new consensus
method SelCon based on two key ideas: 1) to adaptively select appropriate reference models based
on the attributes of the whole set of predicted models and 2) to weight different reference models
differently, and in particular not to use models that are too similar or too different from the
candidate model as its references. We have developed several reference selection functions in
SelCon and obtained improved QA results over existing QA methods in experiments using CASP7
and CASP8 data. In the recently completed CASP9 in 2010, the new method was implemented in
our MUFOLD-WQA server. Both the official CASP9 assessment and our in-house evaluation
showed that MUFOLD-WQA performed very well and achieved top performances in both the
global structure QA and top-model selection category in CASP9.
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1 Introduction
Protein structure prediction is one of the challenging problems in bioinformatics.
Determining accurate protein structures quickly and at low-cost will benefit many life
science fields, such as medicine and biotechnology. To increase the speed and bring down
the cost, computational methods for protein structure prediction have been actively
developed and significant progress has been achieved in recent years [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]. To facilitate the research and development of computational
prediction methods, a bi-annual community-wide experiment for protein structure
prediction, Critical Assessment of Techniques for Protein Structure Prediction (CASP), has
been held since 1994. CASP experiments have been served as a place for research groups to
rigorously test and evaluate their techniques for protein 3D structure prediction and model
quality assessment [11] [12].

Protein structure prediction software generates a large number of models and, as a result, the
ability of picking out the good ones directly affects the final prediction result. Currently,
protein structure prediction tools often can generate good structural models but have
difficulty picking them out [13] [14]. Thus, a Quality Assessment (QA) category was
created in CASP7 in 2006 to facilitate the development of QA methods. For a predicted
model, a good QA method should produce a quality score that is strongly correlated with the
true quality of the model.

Major approaches for protein model quality assessment (QA) can be divided into three
categories: energy or scoring functions, clustering-based methods, and consensus methods.
Energy or scoring functions have long been used in QA, especially for single model QA.
They estimate the quality of a given protein model based on its physical or statistical
properties. Physics-based energy functions have been constructed based on physical
properties at molecule levels [17] [18]. Their advantages include sound theoretical
foundations and the ability to estimate the quality of a single model. Their drawbacks
include being too sensitive to small structural errors and expensive computation due to the
large amount of information involved, such as atomic interactions of protein molecules and
solvent [20]. More recently, knowledge-based statistical scoring functions have gained
popularity. They are designed based on statistical knowledge of experimentally known
protein structures [21] [22]. These functions are faster, simpler and sometimes more
accurate than physics-based functions [23] [24].

The second approach for protein structure selection is clustering based. The idea of using
clustering to discriminate protein structures suggests that near-native structures have more
structural neighbors than poor structures [27]. Some clustering methods, e.g. SCAR [28],
apply k-means clustering algorithm and use cluster centroids as representative models for
clusters. A centroid is the average of all the structures in a cluster and is constructed by
minimizing distance constraint between each pair of residues. Some clustering methods, e.g.
SPICKER [30] and its variant [29], find clusters by looking for one or more structures with
the largest number of neighbors within a certain clustering radius. Surrounding a structure
with most neighbors, a cluster is formed and the cluster center is constructed. SPICKER also
uses cluster centroids as the candidates of near-native conformations. Though a centroid is
more robust than an individual structure in a cluster, it often contains significant atomic
clashes and needs additional structure refinement.

The third approach utilizes consensus information [15] [25] [31]. This approach assumes
predicted models as samples around a native conformation and a model that is more similar
to others is closer to the native conformation. Different from clustering-based methods,
consensus methods do not find clusters, but instead compute the quality score of a candidate
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model as the average of pair-wise similarities between it and other predicted models [25].
For example, 3D-Jury [15] and Pcons [39] use the average of pairwise similarity between all
models. 3D-Jury drops some bad models according to a predetermined cutoff value, and
computes the final score of a model by averaging its similarity scores against the remaining
models. In order to get further improvement, many methods, e.g. CASP8 QA servers
QMEANclust [32], MULTICOM [34], ModFOLDclust [40], and SAM-T08-MQAC [41],
also combine consensus techniques with scoring functions. A drawback of consensus
methods is that they need a large number of predicted models, usually in hundreds, that
consist of a sufficient number of good models, and do not work for single-model QA. As
demonstrated in previous CASP experiments, consensus QA methods have been very
effective, outperforming single-model methods by a large margin [13] [14]. A basic
consensus QA method RefAll [37] [38], referred to as total consensus QA in this paper, is to
use all available models as the reference set. In CASP8, the main differences of the top QA
servers were mostly in the reference models used. Despite significant efforts by the CASP8
QA teams in developing various sophisticated consensus QA methods, the simple total
consensus QA was shown to perform better than the top CASP8 QA servers on the CASP8
data [37] [38], which indicates that improving over the total consensus QA is non-trivial.

In our work, through systematic and in-depth analysis of different reference selection
strategies, we have developed a new adaptive consensus method based on two key ideas: 1)
adaptively select appropriate reference models based on the attributes of the whole set of
predicted models and 2) weight different reference models differently, and in particular not
to use the ones that are too similar or too different from the candidate models as references.
The method can work with any reasonable pairwise similarity measurement between two 3D
models, such as GDT_TS [16] and Q-score [53], [54]. Within a general framework, we have
developed several reference selection functions and studied their performances empirically
using CASP7 and CASP8 data. Extensive experimental results show the new method
outperforms state-of-the-art consensus methods and scoring functions in both quality
assessment and top model selection. In CASP9, the new method was implemented in our
QA server, MUFOLD-WQA, which was ranked No. 1 in both the global QA category and
the top-model selection category in term of the average GDT_TS loss.

2 Materials and Methods
2.1 Quality Assessment Problem Definition

Let S be a set of predicted models for a target protein, T, and p be the size of S, S = {si, 1 ≤ i
≤ p}. Let Y = {yi, 1 ≤ i ≤ p} be the true quality of each predicted model si, which is usually
measured as its GDT_TS value to the native structure, GDT_TS(si, T). Our goal is to
compute a quality assessment (QA) score xi for each si, 1 ≤ i ≤ p, such that X = {xi, 1 ≤ i ≤
p} correlates strongly with Y.

Specifically, a commonly used performance metric of QA is the Pearson correlation
coefficient ρ between X and Y:

(1)

The range of ρ is [−1, 1], with a perfect correlation being 1. Then, the problem objective is
to generate QA score X that maximizes the correlation ρ:
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(2)

Another important problem in protein structure prediction is to select the best model from a
pool of predicted models. The QA score X can be used for this purpose too. In this case, the
top-model selection problem becomes to select si with the largest xi value. Note that the
structure si with the largest xi value may not have the highest GDT_TS score. Unfortunately,
in practice, the native structures of proteins, hence yi, are not available, and thus the
selection is based on xi.

2.2 Similarity Measure and Consensus Algorithms
Our consensus method is based on pairwise similarity between predicted protein structures.
Any reasonable similarity metrics, such as RMSD, GDT_TS [16], and Q-score [53], [54],
can be used. For CASP data, we used GDT_TS simply because it is the main metrics used in
the official CASP evaluation [35]. GDT_TS stands for Global Distance Test Total Score and
measures global similarity between two protein structures si and sj as follows.

(3)

where Pd is the percentage of residues from si that can be superimposed with corresponding
residues from sj under selected distance cutoffs d, d ∈ {1, 2, 4, 8} [16]. GDT_TS values are
in the range of 0 to 1. The larger the GDT_TS score between two structures, the more
similar they are. In this paper, GDT_TS score is computed using software TM-score [36].

The GDT_TS value defined above depends on structure lengths. For example, for two
predicted structures si and sj of a protein, if Len(si) < Len(sj), where Len(si) and Len(sj) are
the lengths of si and sj respectively, then from the definition of GDT_TS, GDT_TS(si, sj) <
GDT_TS(sj, si).

The sensitivity of the pairwise GDT_TS to structure size complicates algorithm design. To
remove the dependency of GDT_TS on model length, we normalize GDT_TS by scaling
with the lengths of the compared structures as follows

(4)

where Len(seq) is the length of the query protein sequence, for which 3-D structures are
predicted.

The normalized score nGDT_TS has several nice properties. First, it is between 0 and 1,
because Len(si) ≤ Len(seq) holds for any predicted structure si. Second, with nGDT_TS(si,
sj) = nGDT_TS(sj, si), it is symmetric. More importantly, being independent of model
lengths, nGDT_TSs of different pairs of models are directly comparable. In the remainder of
this paper, nGDT_TS is used to measure structure similarity. However, for the convenience
of description, GDT_TS instead of nGDT_TS is used to denote normalized structural
similarity.

The total consensus method, called RefAll as shown in Algorithm 1, uses all predicted
models in computing a consensus score. Given a set of predicted models, RefAll computes
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the QA score of a given model as the average of all pair-wise similarity measures between it
and each of the other models.

RefAll and the other consensus algorithms presented in this paper are based on similarity
between a pair of 3D protein models. The algorithm GRefAll is RefAll using GDT_TS.

Though simple, GRefAll performs very well on CASP data sets. Table 1 compares the
performance of GRefAll with those of the top five QA servers in CASP8, which are all
consensus based and mainly differ in the selection of reference models and the choice of
pair-wise similarity metrics. Pcons_Pcons [39] is similar to GRefAll, but used LGscore and
S-score as their similarity metrics. SAM-T08-MQAC [41] first uses their in-house single-
model QA tool Undertaker to evaluate the models, then computes GDT_TS of each server
model against the top model that was labeled model 1 by the same server, and then takes the
median GDT_TS as their consensus cost function. QMEANclust [32] ranks the models
using the QMEAN scoring function [33] and chooses the top 20% of models as the reference
set for likely template-based modeling (TBM) targets and top 10% of models for likely free
modeling (FM) targets. MULTICOM [34] uses their single model scoring function
MULTICOM-CMFR to rank the models, and selects top five models as references.

As shown in Table 1, GRefAll outperforms the top CASP8 QA servers in terms of per target
Pearson correlation ρ. We were surprised at this result in the beginning and double-checked
our experiments to make sure that the methods were indeed run on the same set of models
with the same target structures as references and same method to calculate GDT_TS. We
even thought about using this method in one of our QA servers in CASP9. We did not do it
because some other teams could have discovered the same result and implemented it as their
servers. Also we had developed other QA methods, including the SelCon method in this
paper, that were slightly better than GRefAll based on our testing.

Even though GRefAll performs well on the CASP8 dataset, it can be improved. First,
different weights may be given to different reference models. The predicted CASP models
were usually generated from servers with different biases. Redundant models may be given
unnecessarily high weights in computing the QA score. Secondly, not all predicted models
need to be used as references and better strategies in choosing appropriate references can be
developed.

2.3 A New Selective Consensus Method - SelCon
The new consensus method SelCon, which stands for Selective Consensus, differs from
previous consensus methods in how to adaptively select and weight reference models based
on structure similarities. Given a set of predicted models for a protein target, SelCon
computes a QA score for each model based on its similarity to other models. The similarity
measurement can be any commonly used metric, such as GDT_TS, TM-score, or Q-score.
For each model, after computing its similarity to all other models, we perform a weighted
averaging of the similarity measurements. The major steps of SelCon is shown in Fig. 1 and
its pseudo-code in Algorithm 2.

A key part of SelCon is the weight function W that determines the relative importance of the
reference models. We have tried many different functions in our work and in this section
present three that are simple, yet effective functions.

2.3.1 Sigmoid Weight Function—The sigmoid weight function, Sig(x), is defined as
follows:
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(6)

where x is the similarity measure between a pair of structures, sim(si, sj), and c is a constant,
controlling the steepness of the sigmoid function. This function de-emphasizes similar
models by giving them smaller weights. The idea comes from our observation that there are
very similar or redundant models among the server predicted models and their effects should
not be double-counted [37] [38]. Through experiments, we determine appropriate c values.

2.3.2 Step Weight Function—The step weight function is defined based on a step
transition threshold θ as follows:

(7)

Again, argument x in the equation is the pair-wise similarity measure as in Eq. (6). The
function value is 0 when the similarity between two models is greater than or equal to θ and
is 1 otherwise. The result is that similar models, including redundant ones, are not counted
when computing the consensus QA scores. Although the step weight function is simpler
than the sigmoid weight function, our experimental results showed it can perform equally
well or better. We tested different values of θ using CASP8 data in our experiments to find
appropriate ones.

2.3.3 Band Weight Function—The band weight function is a generalization of the step
weight function. In addition to discounting very similar structures, very dissimilar structures
are also discounted. The band weight function is defined based on two threshold parameters,
a and b, as follows:

(8)

The weight is 1 when the similarity of a pair of models is between a and b, and 0 otherwise.
Again, we experimentally find appropriate values of a and b using CASP8 data. The
performance is tested in CASP9 using previously unknown CASP9 data.

Although the idea of redundancy and outlier removal is widely used, designing an effective
method to improve existing QA techniques is non-trivial, as demonstrated in extensive
previous work. We have experimented with many different algorithms before coming up
with the seemingly simple method SelCon, which was ranked at the top in CASP9. A
detailed analysis of why and how redundancy removal improves the consensus approach is
available in our previously published/accepted papers [37] and [38]. In this paper, a new
redundancy and outlier removal method, i.e. a general framework of similarity-based
weighting functions, with specialization as the sigmoidal, step, and band function, was
devised to assign weights to reference models, which is different from existing algorithms in
literature and is also different from the RefSelect algorithm in papers [37] and [38].

2.4 Determining SelCon Parameters
We used CASP8 targets as training set to determine appropriate parameters for the sigmoid
weight function, step weight function, and band weight function of SelCon. Originally,
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CASP8 provided 128 targets. Some of them were canceled and the final list of targets was
composed of 122 targets. Candidate models were submitted by different protein prediction
servers and archived at CASP8 official website [12].

First, for the sigmoid weight function, we tried different c values in the range of [2, 50] on a
subset of 23 randomly selected CASP8 targets. Experimental result shows that SelCon with
the sigmoid weight function is slightly better than GRefALL. Larger c values are slightly
better. For the step weight function, we tested different threshold values from 0 to 1 with
increment 0.1. For the band weight function, we tested the lower and upper cutoffs from 0 to
1 with increment 0.1, respectively, and used the values that gave the best QA result in the
rest of the experiments.

Table 2 compares the QA results of GRefAll, SelCon with step weight function (SelCon-
GStepW), and SelCon with band weight function (SelCon-GBandW) on all 122 CASP8
targets. The targets are divided into 8 subsets based on the average pair-wise GDT_TS
values of the predicted models of each target. The values in the table are the average QA
Pearson correlations for each subset of targets.

The results show that SelCon-GBandW is better than SelCon-GStepW, which in turn is
better than GRefAll. The improvement of SelCon-GBandW is significant on the harder
targets, i.e., the subsets of targets with small average pair-wise GDT_TS values. The last
subset (0.7 ≤ GDT_TS < 1) has low average QA values because there are only 4 targets in
this subset and one of them is T0498, which gave very low QA values for all consensus
methods: −0.4624, −0.3010, and −0.3010, for GRefAll, SelCon-GStepW, and SelCon-
GBandW, respectively.

Because SelCon-GSigW, SelCon-GStepW and SelCon-GBandW have different optimal
parameters for different classes of targets, we divided the CASP8 targets into three
categories, Easy, Medium and Hard, based on the average pair-wise GDT_TS values of the
predicted models of each target. Table 3 shows the classification criteria and the number of
targets in each category. Then, we randomly selected 40% of CASP8 targets in each
category as the training set to determine the best SelCon-GSigW, SelCon-GStepW and
SelCon-GBandW parameters for each category. The other 60% targets formed the test set to
test the performance of the algorithms with predetermined parameters. The experimental
scheme is shown in Fig. 2.

With the parameters determined based on the training set, we evaluated QA results of the
three new algorithms, SelCon-GSigW, SelCon-GStepW, and SelCon-GBandW, on the test
set and compared them with the result of RefAll, the total consensus method. Fig. 3 shows
that all three new algorithms outperform GRefAll and SelCon-GBandW is the best.

Table 4 compares the QA results of SelCon-GBandW with those of GRefAll and the top five
QA servers in CASP8 on all 122 CASP8 targets, including their results for each official
target category and overall average QA scores. In CASP8, the CASP organizers divided
targets into 5 categories: free modeling (FM), which is the most difficult group to predict by
current computational methods, fold recognition (FR), comparative modeling-hard (CM_H),
comparative modeling-medium (CM_M), and comparative modeling-easy (CM_E). The
numbers of targets in the modeling difficulty bins FM, FR, CM_H, CM_M, and CM_E are
7, 23, 22, 40, 30, respectively [42] [43]. Table 4 shows the overall QA score of GBandW is
0.9368, significantly better than the CASP8 top servers, and is also slightly better than
GRefAll.
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3 Results and Discussion
In CASP9 in 2010, we implemented SelCon-GBandW in our automated QA server
MUFOLD-WQA. CASP9 originally provided 129 targets, from T0515 to T0643. But later
12 targets were canceled and the remaining 117 targets were used for QA.

Fig. 4 shows the quality estimates of whole models based on per-target correlation between
predicted model quality and GDT_TS of the QA servers participated in CASP9, which is
consistent with the official QA assessment presentation at the CASP9 meeting [51]. The
servers are ranked according to their average QA scores, i.e., Pearson correlations of
estimated quality values to the true quality values per target. MUFOLD-WQA is tied with
two other servers at the first place, with average per target Pearson’s correlation coefficient
0.936. The paired t-test results for MUFOLD-WQA against the other top 7 servers are 0.98,
0.95, 0.43, 0.26, 0.21, 0.05, 0.16, respectively, and thus the improvement of MUFOLD-
WQA over them is not statistically significant based on paired t-test of p value 0.01. The p-
values of MUFOLD-WQA against the rest of QA servers are less than 0.01.

Table 5 shows the average Spearman’s correlations of the top CASP servers, in which
MUFOLD-WQA is the first, although the difference between the servers is small.

Next, we present the top-one-model selection result of MUFOLD-WQA. Fig. 5 shows our
evaluation of the ability of CASP9 QA servers for selecting the best model, which is also
consistent with the official QA assessment presentation at the CASP9 meeting [51]. The QA
servers are ranked by the average GDT_TS loss from the best predicted models and the top
10 servers are provided in Fig. 5. Again, MUFOLD-WQA is ranked No. 1, although the
difference of the top few servers is not statistically significant.

We also compared MUFOLD-WQA with the state-of-the-art single-model scoring functions
and the Zhang server, one of the best automatic prediction servers in the past CASPs, on
top-model selection. The average GDT_TS scores of the best models selected by MUFOLD-
WQA were compared with seven scoring functions, OPUS-Ca, ModelEvaluator, DFIRE,
RAPDF, OPUS-PSP, DFIRE2.0, and DOPE, as well as GRefAll. OPUS-CA is a knowledge-
based potential function for Cα models [44]. ModelEvaluator is a machine-learning based
scoring function using support vector machines and 1D and 2D structural features. DFIRE is
a statistical energy function based on the reference state of distance-scaled, finite ideal gases
[45]. DFIRE2.0 is an improved DFIRE that evaluates energy by ab initio refolding of fully
unfolded terminal segments with secondary structures [46]. RAPDF is a residue-specific all-
atom probability discriminatory function [47]. OPUS-PSP is an all-atom potential derived
from side-chain packing [48]. Finally, DOPE is an atomic distance-dependent statistical
potential calculated from a sample of native protein structures [49].

In Table 6, the first column, True Best, shows the average GDT_TS score of the true best
model from the predicted pool for each target. The results show that MUFOLD-WQA is the
best overall and its improvement over the other methods is statistically significant. On
CASP9 targets, its overall value 0.5855 is significantly better than OPUS-PSP at 0.5418,
which is the best among the scoring functions on CASP9 targets, an improvement of 7.4%.
The overall average loss of MUFOLD-WQA from the true best model is 0.0547, 8.5%.
MUFOLD-WQA also outperforms the first models of Zhang-Server.

Finally, MUFOLD-WQA was evaluated against quality measures MaxSub [52], TM-score
[36], Q-score [53], [54], S-score [39], [40] and RMSD. MaxSub and TM-score of each
CASP9 model to native were calculated using software TM-score [36] while other three
used our in-house program. We computed per-target Pearson correlation of CASP9 QA
servers against these five scores and then for each score selected 10 servers with the highest

Wang et al. Page 8

Proteins. Author manuscript; available in PMC 2012 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



average correlation. Table 7 provides the names of the top 10 servers under different
measures and the corresponding average correlation sorted in decreasing order of
correlation. It indicates that out of the top 10 CASP9 QA servers that have higher correlation
than all other QA methods in CASP9, only one server, i.e. MODFOLDCLUST2, is ranked
top, if RMSD is used as model quality measure. In addition, MUFOLD-WQA is among the
tops under the quality measures MaxSub, TM-score and S-score. If a QA server is ranked
based on the times it is among top 10, then out of 46 CASP9 QA servers, MUFOLD-WQA
is only inferior to MUFOLD-QA, MQAPMULTI, MULTICOM-CLUSTER,
METAMQAPCLUST and QMEANCLUST, which are atop four times.

4 Conclusion
In this paper, we presented a new consensus method SelCon with various reference selection
functions for QA in protein structure prediction and selection. The method is simple, yet
effective. Experimental results using CASP targets showed that the new method outperforms
previous consensus methods and scoring/potential functions. The adaptive consensus
algorithm with band weight function, GBandW, is robust and performed well, not only in
correlation-based QA, but also in top-model selection. In the global structure QA category
of CASP9, the MUFOLD-WQA that implemented GBandW was the top performer,
finishing as the #1 in the correlation-based QA and #1 in top-model selection among all
CASP9 QA servers and manual QA predictions.

In the future work, we will further improve the consensus methods for QA and model
selection. The CASP data sets consist of high-quality models generated from some of the
best prediction servers, a situation especially suitable for consensus methods. Without a pool
of high-quality models, existing consensus methods may not perform as well. A promising
direction is to develop new methods to combine the strengths of scoring/energy functions
and consensus methods to improve the QA and selection result on collections of commonly
available prediction models, e.g., those generated by individual prediction servers such as
Rosetta. We plan to experiment with SelCon on non-CASP models, such as I-TASSER
models and Rosetta decoys. With better understanding of conditions under which the
consensus approach achieves good performance, SelCon could be improved to perform well
outside CASP. Another issue of consensus methods is the high computational overhead in
computing pair-wise similarity measures, which makes them impractical on large data set,
e.g., thousands of models. Efficient algorithms will be developed to address this problem.
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Fig. 1.
Major steps of the proposed consensus method, SelCon.
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Fig. 2.
Experimental scheme for SelCon-GStepW and SelCon-GBandW.
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Fig. 3.
QA results of GRefAll and three new algorithms, SelCon-GSigW, SelCon-GStepW, and
SelCon-GBandW, on the randomly selected test set of CASP8 targets.
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Fig. 4.
Quality estimates of whole models (Pearson correlation coefficient) of top 10 QA servers on
117 targets in CASP9.
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Fig. 5.
Comparison of top 10 CASP9 QA servers on top-one-model selection.
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TABLE 1

QA performance comparison of GRefAll and the top five QA servers in CASP8 on 122 CASP8 targets.

Group Name Group ID # Targets Avg. Pearson corr.

GRefAll - 122 0.9290

Pcons_Pcons [39] 239 122 0.9168

ModFOLDclust [40] 31 122 0.9156

SAM-T08-MQAC [41] 56 121 0.9144

QMEANclust [32] 27 121 0.9021

MULTICOM [34] 453 121 0.9029
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TABLE 2

QA results of GRefAll, SelCon with step weight function (SelCon-GStepW), and SelCon with band weight
function (SelCon-GBandW) using 122 CASP8 targets. The targets are divided into 8 subsets based on the
average pair-wise GDT_TS values of the predicted models.

Target Subset #targets GRefAll SelCon-GStepW SelCon-GBandW

0 ≤ GDT_TS < 0.1 1 0.7525 0.7547 0.8265

0.1 ≤ GDT_TS < 0.2 14 0.8026 0.8060 0.8449

0.2 ≤ GDT_TS < 0.3 15 0.9150 0.9158 0.9169

0.3 ≤ GDT_TS < 0.4 9 0.9459 0.9508 0.9527

0.4 ≤ GDT_TS < 0.5 29 0.9542 0.9619 0.9629

0.5 ≤ GDT_TS < 0.6 32 0.9782 0.9792 0.9804

0.6 ≤ GDT_TS < 0.7 18 0.9797 0.9811 0.9812

0.7 ≤ GDT_TS < 1 4 0.6266 0.6657 0.6658
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TABLE 3

The three subsets of 122 CASP8 targets.

Group # targets Criteria: average pair-wise GDT_TS

Hard 30 (0, 0.3]

Medium 38 (0.3, 0.5]

Easy 54 (0.5, 1]
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TABLE 5

Average Spearman’s rank correlations of the top 10 QA servers in CASP9.

QA server Spearman’s rank correlations

MUFOLD-WQA 0.856

MUFOLD-QA 0.852

QMEANclust 0.850

United3D 0.839

MULTICOM-cluster 0.846

Mufold 0.840

MQAPmulti 0.841

MetaMQAPclust 0.852

Pcons 0.829

ModFOLDclust2 0.832
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Algorithm 1

RefAll

Require: Predicted protein models, S = {si, 1 ≤ i ≤ p}.

 for all si ∈ S do

xi =
1
p ∑
j=1

p
sim(si, s j)

  where sim(a, b) is a similarity measure between a and b, e.g., GDT_TS.

 end for

 return QA score for each model, X = {xi, 1 ≤ i ≤ p}.
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Algorithm 2

A New Selective Consensus Method, SelCon

Require: Predicted protein models S = {si, 1 ≤ i ≤ p} and a weight function W.

 For each si ∈ S

xi =

∑
sj∈S

W (sim(si, s j)) · sim(si, s j)

∑
sj∈S

W (sim(si, s j))
(5)

 return QA score for each structure, X = {xi, 1 ≤ i ≤ p}.

Proteins. Author manuscript; available in PMC 2012 October 14.


