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A wide range of computations performed by the nervous system involves a type of probabilistic inference known as marginalization. This
computation comes up in seemingly unrelated tasks, including causal reasoning, odor recognition, motor control, visual tracking,
coordinate transformations, visual search, decision making, and object recognition, to name just a few. The question we address here is:
how could neural circuits implement such marginalizations? We show that when spike trains exhibit a particular type of statistics—
associated with constant Fano factors and gain-invariant tuning curves, as is often reported in vivo—some of the more common
marginalizations can be achieved with networks that implement a quadratic nonlinearity and divisive normalization, the latter being a
type of nonlinear lateral inhibition that has been widely reported in neural circuits. Previous studies have implicated divisive normal-
ization in contrast gain control and attentional modulation. Our results raise the possibility that it is involved in yet another, highly
critical, computation: near optimal marginalization in a remarkably wide range of tasks.

Introduction

When driving to the airport to catch a flight, it is important to
know how long it will take to get there. Driving, however, in-
volves many essentially random events, so it is impossible to
know exactly how long any particular trip will take. One can
know, however, the probability distribution over driving times.
To see how to calculate it, consider a very simple scenario in
which you are going to the airport at 5:00 P.M., and you know
that traffic either flows normally, and it takes 20 = 5 min to get to
there, or there is an accident, and it takes 60 = 20 min. If the
probability of an accident is 5%, then the probability distribution
over driving times is, at least qualitatively, 0.95 X (20 = 5) +
0.05 X (60 = 20) min. More formally, if p(#,C) is the joint distri-
bution over the time it takes to get to the airport and traffic
conditions, then p(t), the probability distribution over driving
times, is found by summing the joint distribution over all (in this
case all two) traffic conditions,

p(0) = 2p(50). (1)

This computation is known as marginalization, since traffic
conditions have been “marginalized” out, leaving only a mar-
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ginal distribution over driving times. Here traffic conditions
are a “nuisance” parameter, because they are something we do
not really care about, but may influence our inference about
driving time.

Marginalization arises in a wide range of seemingly unrelated
computations faced by the brain, such as olfaction, internal mod-
els for motor control (Wolpert et al., 1995), tracking of visual
objects, model selection in multisensory integration (Kérding et
al., 2007), function approximation, navigation, visual search, ob-
ject recognition, causal reasoning in rats (Blaisdell et al., 2006),
causal inference in human reasoning (Gopnik and Sobel, 2000;
Griffiths and Tenenbaum, 2009), addition of numbers (Cordes et
al., 2007), social cognition (Baker et al., 2009), and attentional
priming (Zemel and Dayan, 1997). Therefore, understanding the
neural basis of marginalization has extremely important implica-
tions for a wide array of problems in neuroscience and cognitive
science.

Although marginalization looked quite simple in the above
example, it is almost always difficult, primarily because the num-
ber of variables to be marginalized out is almost always large. For
instance, consider the problem of identifying a person in low
light. There are many things that do not matter at all, such as light
level, location, and speed, and many more that can help to iden-
tify the person but are not definitive, such as clothes, hair color,
and gait. All of them have to be marginalized out to produce a
probability distribution over identity. In the case of neural cir-
cuits, variables are typically encoded in population activity,
which further complicates the problem.

Here we show that biologically plausible networks can imple-
ment marginalization near-optimally for coordinate transforma-
tions, object tracking, simplified olfaction, and causal reasoning.
In all cases, the networks we use are relatively standard multilayer
recurrent networks with an intermediate layer that implements a
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Figure1. Relationship between neural activity and the posterior distribution for linear prob-
abilistic population codes. The left panel shows the spike count on a single trial in response to a
stimulus presented at s = 67.5. The height of the hill of activity corresponds to g, or gain. The
right panel shows the posterior distribution of s given the activity, r (obtained through Bayes’
rule). The variance of this posterior, o, is inversely proportional to g.

quadratic nonlinearity and divisive normalization, the latter a
nonlinearity that is widespread in the nervous system of both
vertebrates and invertebrates.

Results

Linear probabilistic population codes

The first step in understanding how networks of neurons per-
form the kinds of sums (or, in the more general case, integrals)
that are required of marginalization is to determine how neurons
encode likelihood functions and probability distributions. We
focus on a particular type of code—a linear probabilistic popula-
tion code (PPC) (Ma etal., 2006)—although our approach can be
generalized to other distributions over neural variability.

The central idea behind a PPC (linear or nonlinear) is that a
neural pattern of activity, r, encodes a function over s, as opposed
to a single value of s. The encoded function is the so-called like-
lihood function, p(x|s). If the prior over s is flat, we can also think
of r as encoding the posterior, p(s|r); see Figure 1. When consid-
ered as a function of r, p(r|s) specifies the form of the neural
variability. This variability is often assumed to be independent
and Poisson. Such an assumption, however, fails to capture the
behavior of real neurons, which are, typically, not independent,
and have Fano factors and coefficients of variation that are incon-
sistent with the Poisson assumption (Gershon et al., 1998; Mai-
mon and Assad, 2009). For that reason, here we use a broader
family, namely the exponential family with linear sufficient sta-
tistics, for which the probability distribution of response, r, given
the stimulus, s, takes the form

p(rls) = d(r)exp(h(s) - 1), (2)

where h(s) is a kernel, “-” denotes the standard dot product, and
¢(r) is essentially arbitrary.

We focus on the class of neural variability described in Equa-
tion 2 because it is both consistent with in vivo recordings (Ma et
al., 2006) and general enough to capture a range of distributions.
In particular, independent Poisson neurons fall into this class; for
these neurons,

exp(—Zf,-(s))

1

d(r) = T’ (3)
hi(s) = logfi(s)

where the tuning curves, the fi(s), satisfy the relationship 2, fi(s) =
constant. In this case, the ith element of the kernel, k;(s), is the log
of the tuning curve of neuron i. In the general case, however, h;(s)
depends on both the tuning curve and the covariance matrix of
the neural response (Ma et al., 2006).
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Although the distribution specified in Equation 2 does a
better job capturing real neuronal responses than an indepen-
dent Poisson distribution, it still needs to be extended to han-
dle neuronal responses that depend on contrast (or, in fact,
any nuisance parameter). That is because the response pattern
associated with the encoding model given in Equation 2 cor-
responds to a hill of activity whose peak is determined by s, but
there is no way, within the context of that model, to adjust the am-
plitude of the hill. In many realistic cases, however, contrast does just
that [orientation-tuned cells in visual cortex being the classic exam-
ple (Anderson et al., 2000)]. Consequently, we need to augment
Equation 2 by allowing ¢ to depend on a set of nuisance parameters,
like contrast, which we denote g because of their tendency to mod-
ulate the gain of the population pattern of activity (and, typically,
control the variance of the posterior distribution; see Fig. 1). The
encoding model we use, therefore, is a slight generalization of Equa-
tion 2,

p(rlsg) = Pp(r.g)exp(h(s) - r). (4)

The nuisance parameters are typically used to adjust the overall gain
of the response, although other effects are possible in principle.
Whenever the encoding model has the form given in Equation 4, the
resulting code is known as a linear PPC: it isa PPC because the neural
activity, r, encodes a function of the stimulus, s (as opposed to a
single estimate of s), and it is linear because the stimulus-dependent
portion of log(p(xs)) (the log likelihood) is linear in r.

The fact that the nuisance parameters do not appear in the
exponential (i.e., that h(s) depends on s but not g) is consistent
with observations that the value of the stimulus, s, controls the
overall shape of the population response (the noisy hill of activ-
ity), while the nuisance parameters, like contrast, modulate the
amplitude (Sclar and Freeman, 1982; Tolhurst et al., 1983;
Albright, 1992; Gur et al., 1997; Buracas et al., 1998; Gershon
et al., 1998; Anderson et al., 2000; Mazer et al., 2002). In
addition, this fact has computational implications, since it
means the posterior, p(s|r) (obtained via Bayes’ theorem), is
independent of the nuisance parameters. This allows down-
stream neurons to process the neural activity optimally with-
out having to know the value of the nuisance parameters, and
is partly responsible for the near-perfect performance of the
networks we describe below.

The problem we address here is as follows: how does the brain
take variables represented as linear PPCs (Eq. 4), carry out a
particular computation—marginalization—and encode the re-
sult as a linear PPC? The last step, encoding the result as a linear
PPC, is motivated in large part by the fact that both neural vari-
ability and microcircuitry are similar across cortical areas. If the
encoding model is also the same across areas, that provides a very
parsimonious framework, as it allows essentially the same net-
work operations to be used throughout the brain.

Linear coordinate transformations: theory

The first marginalization we consider is coordinate transformations,
a central computation in sensorimotor transformations. We start
with a simple transformation: computing the head-centered loca-
tion of an object, xA, from its eye-centered location, x® and eye
position, x, a transformation that is given by x* = x® + xF. (Al-
though linearity is important to derive exact results, it is not, as we
show below, essential.) This transformation involves a marginaliza-
tion because when we compute the probability distribution over x*,
we throw away—marginalize out—all information about x® and x*.
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curves. Our goal is to wire the network so
that the output layer codes for the head-
centered location of the stimulus, x*, also
in a linear PPC with bell-shaped tuning
curves.

The requirement that x* is encoded as
a linear PPC implies that
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(5)
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Marginalization for coordinate transformations. a, The network takes as input linear probabilistic population codes

where r* is the activity in the output layer.
We also want to make the network opti-
mal, in the sense that the output layer car-
ries all the information about x* that is
contained in x® and xF. In probabilistic
terms, optimality implies that

p(xAr?) = p(x*[r™r"), (6)

where r® and r* are the input layer activ-
ities that code for eye-centered location
and eye position, respectively, and r*

forthe eye-centered location of an object, r ?, and the current eye position, r £ (bottom layers), and returns a population code for the
head-centered location of the object, r* (top layer). The intermediate layer provides a set of basis functions of the eye-centered
location and eye position; its activity, r;, is given in terms of r® and r in Equation 9; the relationship between r* and ryis given
immediately below that equation. When we perform simulations, we vary the gain of the eye-centered layer from trial to trial to
mimic changes in image contrast. b, Bar graph showing the information loss in the output layer compared to the information
available in the input layers. QDN, Network with a quadratic divisive nonlinearity in the basis function layer. Information is
estimated by a single decoder for all values of contrast. Q-SD, Network with a quadratic nonlinearity but no divisive normalization,
using specialized decoders for each value of contrast. Q, Same as Q-SD but with a single decoder to estimate information for all
values of contrast. L, Network with a linear rectified activation function and the same decoder for every gain. The QDN network is
near optimal even when using a single decoder, which shows that it encodes a near-optimal posterior distribution and does so with
a probabilistic population code. ¢, Same as in & but for the nonlinear coordinate transform from the joint angles, (s;, s,), of a 2-D
arm with lengths, (d,, d,), to the visual azimuth s, of the arm end-point: s; = tan ~'([d,sin s, + d,sin(s, + 5,)1/[d,cos 5, +
d,cos(s; + 5,)1). See Notes.

the output of the network (Fig. 2a).

Note that Equation 6 involves posterior distributions—probabil -
ity distributions of x** given activity—whereas so far all our analysis
hasbeen in terms of likelihoods. The two can be connected via Bayes’
theorem; all we need are prior distributions over x* x® and xE. Here
we assume flat priors over all three variables, so the posteriors are
proportional to the likelihoods. This implies that, in the case of a flat
prior, a linear PPC encodes both the likelihood function and the
posterior distribution.

Although determining the optimal network exactly is nontriv-
ial, we can gain a great deal of insight into the form of the network
from just one property of linear PPCs: reliability is proportional
to the level of activity, or, more quantitatively (and as illustrated
in Fig. 1), the variance of the encoded variable is inversely pro-
portional to the height of the hill of activity (Ma et al., 2006). This
is certainly a feature of Poisson neurons, for which higher firing
rate means a higher signal-to-noise ratio. It is also relatively easy
to see from Equation 4, which tells us that as the amplitude of the
neural activity, r, increases the right hand side becomes more and
more sharply peaked in s.

The relationship between activity and reliability must hold
in all layers of our network, so, using g to denote the overall
height of the hill of activity (the gain), we have o3 = 1/¢*, o
o l/gR, and o3 > l/gE. For the transformation x* = x® + xE,
variances add o3, = o} + 0% (assuming no bias). If we substi-

tute the inverse gains for the variances, we obtain 1/¢g* = 1/g"
+ 1/g*, which may be written

2 (7)

Thus, whatever the form of the network, the gains must trans-
form via a quadratic nonlinearity with divisive normalization.

It is worthwhile emphasizing that, despite its name, we do
not use divisive normalization to normalize the probability
distribution encoded by the linear PPCs (i.e., we do not use it
to ensure that the probabilities sum up to 1). Nor do we use it
to obtain a neural response that is independent of the nuis-
ance parameters, like contrast (indeed, contrast has a multi-
plicative impact on the gain of the output activity). Instead, we
use it to obtain a linear PPC in the output layer, that is, a
pattern of activity that can be mapped linearly onto a log
probability using a decoder that is independent of the nui-
sance parameter.

We cannot, of course, translate directly from the behavior
of the gains to the exact form of the network—after all, the
gain is just one number, whereas the population activity is
characterized by the activity of many neurons. However, be-
cause activity is proportional to gain, we expect that the net-
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work will be the high-dimensional analog of Equation 7; one
such analog is

k. R_E
A EWU T ] (8)
e = PR
ECI nt Irl

where the w’s and ¢’s are parameters. Here R and r corre-
spond to activity in the input layer and r} to act1v1ty in the
output layer (see Fig. 2a). As we show below (Egs. 10—-14), the
network is optimal (Eq. 6) and x* is encoded in a linear PPC
(Eq. 5) if three conditions are met: first, the transformation is
linear (which it is in our case: x* = x® 4+ xF); second, the
distributions p(x®|r®) and p(x|r*) are Gaussian in x® and x*;
and third, the weights are chosen correctly in Equation 8.
Moreover, Equation 8 is easily implemented by incorporating
a two-dimensional intermediate layer in which the activity of
neuron ij, denoted, r;;, is given by

RrE

S - (9)

ri =
j
ECI ot r,

This is the layer shown in Figure 2a. Given this relationship, we
see from Equation 8 that the activity of the output neurons, 1, is
given by r} = E,] i

Readers not interested in the mathematical details needed
to demonstrate that Equation 8 does indeed implement an
optimal network may want to skip Equations 10—14. For those
who are interested, we start by noting that for Gaussian like-
lihood functions and a linear PPC, the encoding model has the
form

M — “’M)z

. (
P(rM|xM>gM) = ¢(TM>gM)eXP[ - xzo_i/[:|> (10)

where M, which stands for modality, can be either A, R, or E, and

pM . M
Hwm = MM (11)
and
s 1
oM = a - (12)
Here a™ and b™ are an essentially arbitrary pair of linearly

independent vectors. Expanding the term in the exponent, we
see that the linear kernel has an especially simple form:
h(x™) = —(x™)?/2aM + xMb™. [Note that the usual prefac-
tor, ¢(rM,g™), is related to H(r™gM™) via o(r™,gM)
d(rMgMexp(—puiy/207y).]

Combining the expressions for mean and variance given in
Equations 11 and 12 with the fact that, for the independent vari-
ables we are considering here, the means and variances add (u, =
wr + pgand 0% = 0% + 0%), we see that

bA -1t BRerR  BE . fE
a - r* a - a-r

1 1 1 (13)
A = Rt E E

We now simply need to write r** as a function of r® and r* such
that Equation 13 is satisfied. Defining two new vectors a*' and
b*7 that obey the orthogonality conditionsa®' - a* = b*T - b* =
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L a? - b2 =bA-a% =0, itis easy to show that the weights in
Equation 8 are given by
WA = aRaEaAT + aRbEbAT + bla EbAT, (14)
and the coefficients in the divisive term, c¢® and c&, are equal to
a®and a®. For the more general case in which there are priors on
x" and xF, the weights turn out to be identical to those in Equa-
tion 14. The one small difference is that there are two extra terms:
a piece that is linear in the firing rates is added to the numerator
in Equation 8, and a constant is added to the denominator (as in
Eq. 15 below). Thus, for linear transformations and Gaussian
noise, the optimal network consists of a quadratic nonlinearity
and divisive normalization.

Note that linear coordinate transformations are very different
from multisensory integration, which we have considered previ-
ously (Ma et al., 2006). For a linear coordinate transformation,
means and variances combine linearly; for multisensory integra-
tion, means and variances combine nonlinearly. Specifically, if
we have two variables, say x* and x", that provide information
about the location of a single object, then the mean and variance
of the location are given by (w /o + py/ovw)/(1/o + 1/0%) and
1/(1/o%+1/0%), respectively (Ma et al., 2006), rather than w, +
Wy and o + 0%, as in the case we just considered. Not surpris-
ingly, then, the network that performs multisensory integration is
very different from the network that performs linear coordinate
transformations. For linear PPCs, gains are inversely propor-
tional to variance (Fig. 1), so a simple sum of gains effectively
implements the sum of inverse variances, 1/0% + 1/0%. There-
fore, for multisensory integration, there is no need for a quadratic
nonlinearity or divisive normalization; a sum of neural activity
suffices as long as the inputs are linear PPCs.

Linear coordinate transformation: simulations
Equations 8 and 14 tell us the optimal network for neurons that
are deterministic and analog. Real neurons are neither. To deter-
mine whether our optimal network for marginalization also
works with real neurons, we performed network simulations us-
ing a type of spiking neuron known as LNP, or linear—nonlinear—
Poisson (Gerstner and Kistler, 2002). Because the Poisson step in
LNP neurons is probabilistic, there will necessarily be some in-
formation loss. However, Poisson spike generation is indepen-
dent across neurons, so the information loss, as measured by the
change in Fisher information, is inversely proportional to the
number of neurons. Indeed, using only 20 neurons in the input
and output layers, and 400 in the intermediate layer, the spiking
network loses only 0.72% of the input information (Fig. 1b, bar
marked “QDN”). Here, information loss is assessed by the Kull-
back—Leibler distance between the true posterior given by the
input pattern of activity and the approximate posterior given by
the output pattern of activity in the network. Importantly, in
these simulations the contrast of the visual object changed from
trial to trial, where contrast plays the role of a nuisance parameter
that affects the quality of the representation of x®. Thus, as dis-
cussed above, the network was able to perform near-optimally
without explicit knowledge of the nuisance parameters.

How important are the two nonlinear features of Equation
8 —the quadratic term in the numerator and the divisive normal-
ization in the denominator? To determine the role of divisive
normalization, we eliminated it and built a network in which the
basis function layer had only quadratic terms. Such a network did
not do as well; it lost 16% of the input information (Fig. 2b, bar
labeled “Q”). This information loss could be due to two factors:
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either the network encodes the optimal posterior but this poste-
rior is not encoded as a linear PPC (Eq. 5), or it does not encode
the optimal posterior distribution (Eq. 6). We found that it is the
former: the correct distribution over the head-centered location
of the stimulus can be recovered from activity in the basis func-
tion layer even in the absence of divisive normalization, but it
cannot be recovered by a single linear decoder. Instead, a set of
linear decoders, each specialized for a different contrast, is re-
quired. With multiple linear decoders, the information loss is
only 1.4% (Fig. 2b, bar labeled “Q-SD”). Thus, virtually all the
information in the basis function layer is available to a decoder
that knows the contrast. Importantly, however, without divisive
normalization, the population activity cannot be decoded opti-
mally by a fixed linear decoder. This makes it difficult for down-
stream networks to make optimal use of the activity unless the
contrast is also transmitted or estimated. The network with divi-
sive normalization is immune to this problem.

To determine the role of the quadratic nonlinearity in the
basis function layer, we replaced it with a rectified linear activa-
tion function, and at the same time eliminated the divisive non-
linearity. Such a network was also suboptimal; it lost 32% of the
input information (Fig. 2b, bar labeled “L”). In this case, infor-
mation was truly lost: even with linear decoders specialized for
contrast and applied to the basis function layer, the information
loss remained high (24%; Fig. 2b, bar labeled “L-SD”). These
simulations indicate that the divisive nonlinearity is needed to
ensure that the output of the network is easily decoded (even by a
network that does not know the contrast), and the quadratic
nonlinearity is needed to ensure optimality.

Nonlinear coordinate transformation

To determine whether these results generalize to nonlinear coor-
dinate transformations and non-Gaussian probability distribu-
tions, we simulated a network that computes the azimuth of the
end-point of a two-joint arm given the joint angles. This is a
fundamentally nonlinear transformation (see Fig. 2, inset) and,
because the variables are periodic, we cannot assume Gaussian
distributions for the joint angles, but instead use a Von Mises
distribution (which, for the large variance we used, is very differ-
ent from a Gaussian distribution).

The nonlinearity and non-Gaussian noise means that a net-
work using linear PPCs can no longer perform optimally. How-
ever, as we show below, a network with a quadratic nonlinearity
and divisive normalization provides a close approximation to the
optimal solution as long as the network parameters are properly
optimized. In fact, the network we use is almost identical to the
one in Equation 8; the only difference is that we add a constant to
the denominator. Thus, the output population activity, again
denoted r*, is related to the input populations, r® and r*, via

k _R_E
WiTi T

7 o+ ECR,rlR + cE,r,E
T

=

(15)

The network parameters are the weights, the wf—‘j, the coefficients
in the divisive term, ¢y and ¢, and the additional divisive term, c.
These parameters were optimized so that the output layer cap-
tures as much information as possible.

As can be seen in Figure 2¢, the network with a quadratic
nonlinearity and divisive normalization (Eq. 15) performs well:
the information loss is only 4%. By comparison, the quadratic
network without divisive normalization loses 15% of the infor-
mation (bar in Fig. 2c marked “Q”). As with the linear transfor-
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mation, though, a network without divisive normalization can
perform well if it uses a different, specialized, decoder for each
contrast (bar marked “Q-SD”). Finally, a linear rectified network
loses a large amount of information—about 40%.

Why should a network optimized for linear transformations
and Gaussian noise perform so well for a nonlinear transforma-
tion and non-Gaussian noise? The answer has to do with the
posteriors in the input layer: both are single peaked with widths
that are reasonably small compared to the curvature associated
with the nonlinearity. Under these conditions, the transforma-
tion is locally linear and Gaussian, and so our network is near-
optimal. Note, though, that “small” can be fairly large: at low
contrast, the width of the posterior was on the order of the cur-
vature in the nonlinearity, and the noise was noticeably non-
Gaussian. This suggests that networks implementing a quadratic
nonlinearity with divisive normalization are robust with respect
to departures from linearity and Gaussianity.

Time-varying quantities

In the above example, we focused on a static case—a transforma-
tion from eye-centered to head-centered coordinates of a station-
ary object relative to a stationary head with stationary eyes. In
almost all real-world problems, however, variables change over
time. A broad class of such problems involves noisy, time-
dependent observations combined with an internal model. Such
problems arise in the sensory domain (e.g., visually tracking an
object), the motor domain (e.g., moving a limb), navigation (e.g.,
keeping track of one’s location in space given movements and
sensory cues), and cognitive tasks (e.g., decision making, in
which evidence is accumulated over time). In all cases the brain
receives a continuous stream of noisy information about a time-
dependent quantity via the visual system in the case of tracking
and via proprioception in the case of limb movement. That in-
formation must be combined with an internal model (of the
motion of the object or the limb) to yield a posterior distribution
over the variable of interest. The marginalization in this case is
over all possible trajectories. For example, if you move your hand
in the dark, the probability that it will arrive at a particular posi-
tion is found by enumerating each possible trajectories that ends
in that position, and adding up their probabilities.

To understand how the brain might solve this class of prob-
lems, we first consider navigation, and ask how a rat could use
place cells to keep track of its position on a one-dimensional
track. We assume that the rat has an internal model of its posi-
tion, s(t), and that visual cues provide instantaneous (but noisy)
information about that position. The visual cues are encoded in a
linear PPC by a population of neurons, denoted r™(¢), using a
time-dependent version of Equation 10,

bin . rin(t) 2
] o

ain . rin(t)(
2 \S - ain . rin(t)

p(r'"|s,t,g) o exp| —

(see Fig. 3a). For this model, as in Equations 11 and 12 above,
the mean and variance associated with this likelihood function
are given by b ri"(f)/a’™ - ri®(¢) and 1/a™ - ri"(¢), respec-
tively. Here ri"(t)is the number of spikes on neuron i that
occurred between times t and t + dt (eventually we will take
the limit dt—0). Note that in most time intervals, there are no
spikes, and so all components of r'"(t) are zero. For these
intervals, the variance is infinite, and the visual cues do not
supply any information. Since the input spikes convey infor-
mation only rarely, and have no memory, all memory must be
encoded in the network.
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Figure3.  Kalman filter. a, The inputlayer, 1™, (corresponding to the spike times, ¢ in Eq.
19) provides evidence for the current position of the object in the form of a probabilistic popu-
lation code. The output layer (corresponding to the spikes, r, generated from the firing rate, v,
which evolves according to Eq. 19) encodes the position of amoving object on a spatial map. The
lateral connections in the output layer, some of which are shown as black arrows, implement
the internal model (for the optimal model, the dynamics is given in Eq. 19). The resulting
pattern of activity consists of a moving hill that encodes, via a linear PPC, for the position of the
object. Inthe top panel, the blue and red curves correspond to the output activity, r, at time tand
t+ At,respectively. b, Information loss in the output layer relative to the information available
in the input layer. The network with effective divisive normalization, via the quadratic term in
Equation 19, is near optimal (DN), while a network with linear inhibition (a - 2 replaced by a
constant) decoded with a single decoder (L) performs poorly. However, performance is close to
optimal for the linear network when using specialized decoders in which a - »is replaced by a
constant that depends on the level of noise (L-SD). See Notes.

To understand how to combine the information from r™ with
the animal’s current estimate of its position, we need to specify an
internal model. For simplicity, we assume that the animal is at-
tracted toward a point on a one-dimensional track (taken to be
the origin), but its movement is corrupted by noise. (Below we
consider a two-dimensional version of this task.) The dynamics
associated with this model has the form

ds
e ()] (7)
where s is position, y determines how fast the animal is pulled
toward the origin, and m(#) represents Gaussian white noise.
Between spikes, the animal’s estimate of its mean position
drifts toward zero (because of the —+ys term) and its variance
grows (because there is no incoming information). When a spike
occurs, the animal gets new information about position in the
form of a mean, denoted w;,,, and variance, denoted o7, (which, as
discussed above, are equal to b™ - r™/a™ - r'™ and 1/a™ - r'™, re-
spectively). Since new evidence regarding current position is con-
ditionally independent of previous evidence about current
position, combining that information with the current estimate is
just a cue-integration problem. Thus, if the current mean and
variance are  and %, they should be combined according to Ma
et al. (2006), as follows:

plo® + pilot,
R 0o + 1d
/0> = /0 + /0,

(18)

Equation 18 tells us how the mean and variance should be
updated when there is evidence. How should the neural activ-
ity be updated? We assume, as usual, that position, s, is en-
coded via a linear PPC, using the same encoding model as in
Equation 16 but with r™® replaced by a deterministic firing
rate, denoted v, and a™™ and b'™® replaced by new vectors, a and
b. Then, as has been shown previously (Ma et al., 2006), the
optimal cue combination network combines spikes linearly.
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Reasonably straightforward algebra (see Notes) indicates that
v should evolve according to

dV,‘ .
Frini oln(a s vy, + 'y}EW,-jvj + ;‘JM,-jEkZS(t — t]k ),

(19)

where the tj—"i" are the times at which spikes occur on input neu-
ron j, 8(*) is the Dirac delta function, af, is the variance of the
white noise, and the weights, W and M, depend only on a and b.
The last term in this expression represents the addition of spikes,
as is standard for cue integration (Ma et al., 2006). The origin of
the first two terms is slightly more obscure. Briefly, the term
proportional to o7, (a - v) acts to reduce the activity of the output
population, and thus increase the variance of the posterior (as
with the input population, the variance of the population coding
for s is equal to 1/a - v). The term proportional to yW, on the
other hand, tends to increase activity, and thus decrease variance.
This is because the more strongly the animal is attracted toward
the origin (the larger -y is), the more the animal knows where it is,
and the smaller the variance.

Unlike Equations 8 and 15, Equation 19 does not explicitly
contain any divisive normalization. However, because the first
term in Equation 19 is quadratic in », in the limit that the input
firing rate is large (the tf’i“ are closely spaced), the output firing
rate is proportional to 7}/* where ¥, is the average input firing
rate. Without the quadratic term, the output firing rate is propor-
tional to 7y, in the limit of large input firing rate. Thus, the effect
of the quadratic linearity is to divide the output firing rate by 7;/>
(see Notes). It is, therefore, effectively divisive—even though
there are no explicitly divisive terms in Equation 19.

By construction, if we integrate Equation 19 and compute the
posterior distribution over s from Equation 16 (but with r'™™ re-
placed by ¥ and a™ and b™ replaced by a and b), we will recover
the true posterior. However, neurons communicate by spikes, so
we need to turn Equation 19 into a spiking network. We do this,
as above, using LNP neurons. In addition, when we compute the
posterior, we need to approximate the firing rate by counting
spikes in small intervals (we use 10 ms). Because of this transfor-
mation to a spiking network, some information will be lost. How-
ever, even using only 20 input and 200 output neurons, the loss is
small, just 1% (see in Fig. 3b, DN). By contrast, a network without
the quadratic nonlinearity (i.e., a network in which the quadratic
term in Equation 19, (a * »)v;, is replaced with a linear term, Iv;,
with I independent of the information in the input population)
loses 22% of the information (“L” in Fig. 3b). When, on the other
hand, I; depends on the input information (“L-SD” in Fig. 3b),
the information loss is 3%. This indicates that most of the infor-
mation is preserved without divisive normalization, but it is no
longer in a linear PPC format.

Although we have considered a one-dimensional track, this
analysis easily extends to a two-dimensional field. To illustrate
how our framework applies to two dimensions, however, we
consider a different problem: tracking hand position in a lin-
ear track based only on proprioceptive feedback and knowl-
edge of the motor command that drives the movement. This
problem is two dimensional because subjects must infer both
position and velocity.

One advantage of this task is that we can make a direct com-
parison to the behavioral experiment of Wolpert et al. (1995). In
this experiment, subjects were shown a virtual representation of
the location of their hand and asked to make a linear movement.
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Figure 4.  Experimental and simulation results for the hand tracking task of Wolpert et al.
(1995). Inthat task, the hand starts ataknown location, accelerates along alinear track until the
subject hears a tone, and then decelerates until it stops, at which point subjects are asked to
estimate their hand position. a, Experimental bias of the estimate of hand position as a function
of duration of movement. Following Wolpert etal. (1995), bias was induced by using the wrong
internal model; see Notes. b, Experimental variance of hand position estimate as a function of
duration of movement. a and b are adapted from Wolpert etal. (1995). ¢, d, Same asin aand b
but for the model with divisive normalization.

Upon initiation of the movement the visual representation of the
hand disappeared, leaving proprioception as the only source of
sensory information about arm position. After a variable delay
(0-2s), subjects ended their movement, and were asked to esti-
mate the position of their (now stationary) hand.

As shown by Wolpert et al. (1995), the mean and variance of
the subjects’ estimate of endpoint position was consistent with
the prediction of a 2-D Kalman filter estimating the velocity and
position of the hand. We implemented this Kalman filter with
LNP neurons, using a 2-D extension of Equation 19 above, and
found that our network does indeed do a good job reproducing
the observed pattern of mean and variance (Fig. 4). Thus, our
network provides a neural solution for a 2-D Kalman filter that is
consistent with these behavioral results.

Recently, Boerlin and Deneve (2011) proposed a similar net-
work for computing the posterior distribution in a related task
that turns comparable rate equations into spikes via an integrate-
and-fire-like mechanism rather via a Poisson process. Although
not provably optimal in the limit of large networks, it had the
advantage that it represented the posterior distribution with a
relatively small number of spikes.

Discrete variables

So far we have considered continuous variables, but marginaliza-
tion over discrete variables is also a common, and important,
inference problem— consider, for example, the problem of de-
tecting the smell of bacon. Here the problem is to infer the prob-
ability of a hidden cause (e.g., bacon) given a set of noisy
observations of the various volatile chemicals (odorants) that
make up both bacon and the other odor sources (henceforth
referred to simply as odors) in a given olfactory scene.

At first glance, marginalization over discrete and continuous
variables seems very different—if nothing else, the former in-
volves sums and the latter integrals. However, if we use the same
encoding model (linear PPCs) for discrete variables, then much
of the machinery we used for continuous variables turns out to
apply directly. This can be seen with olfaction, for which the
problem is to build a network that can encode the marginal prob-
abilities over each possible odor source (e.g., ham, turkey, bacon,
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etc.) given a set of observed odorants (encoded in the input
layer). Here the stimulus of interest, s, is a binary vector indicat-
ing the presence or absence of an odor (s, = 1 when odor k is
present and 0 otherwise), while ¢, is intensity or concentration of
odor k. Each odor is described by a specific pattern of odorants;
for odor k, we use w;, to denote that pattern. The complete olfac-
tory scene is given by the mixture of the patterns of odorants
associated with each odor, weighted by its concentration,

0; = Ek:w,-kcksk. (20)
The concentrations of each of the odorants are encoded via a
linear probabilistic population code (Eq. 4 with s replaced by o;
and no nuisance parameters),

P(l‘i‘oi) = ¢(r)exp(h;(o) - 1)).

Here r; is the activity of the neurons coding for the concentration
of odorant i.

As with the continuous case, we seek a transformation from
the r; to a new population activity, rg"* = fi(r, 15, . . . ), which
codes, via a linear probabilistic population code, for the proba-
bility that odor k is present. In general, computing this probabil-
ity is hard because we have to marginalize out all the other
odors—something that involves integrating over the high dimen-
sional space of concentrations and summing over the exponen-
tially many possible combinations of odors. Not surprisingly,
deriving the exact transformation with a linear PPCs is difficult, if
not impossible. Motivated by our work with continuous vari-
ables, we asked whether an approximate solution could be imple-
mented by networks with quadratic nonlinearities and divisive
normalization. In fact, we use the same network as in Equation
15, except that there are additional indices to label the different
odors,

(21)

r}({)utzzri .Wi‘(‘.rj

7o+ 1205‘ 1 (22)
(see Fig. 5a). Note that this network is not meant to provide a
detailed model of the olfactory system; instead, it illustrates a
hard inference problem that captures the essence, if not the de-
tails, of the problem faced by the olfactory system.

We tested this network on four odorants (i = 1, 2, 3, 4) and
four odors (k = 1, 2, 3, 4); the results are shown in Figure 5b. We
found that for the network with a quadratic nonlinearity and
divisive normalization, the information loss was only 6% (bar
marked “QDN” in Fig. 5b). This should be compared to a 37%
loss when we used only a quadratic nonlinearity but no divisive
normalization (“Q” in Fig. 5b). Using specialized decoders im-
proved that by only a few percent (“Q-SD” in Fig. 5b). Linear-
threshold networks did even worse; the information loss was over
80% (“L” in Fig. 5b). Therefore, networks using quadratic divi-
sive normalization can implement near optimal marginalization
even for discrete classes. This extends the result reported in Fig-
ure 2¢, and shows that divisive normalization can lead to near
optimal inference even when the computations are nonlinear and
the distributions are not Gaussian. Figure 5b also shows that, in
contrast to our previous results, the performance of the network
with quadratic units using specialized decoders (Q-SD, Fig. 5b)
did not match the performance with quadratic divisive normal-
ization; it lost about 35% of the information.

The basic structure of this task—hidden causes mixing lin-
early to produce observations—applies to a wide range of prob-
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Figure5. Marginalization for discrete classes. a, Neural recognition network. For each observation (0,, 0,, . . . ), the probability

(of an odor source being present in the case of odor detection, or of a hypothesis in the case of blickets) is encoded in the output
layer with a linear probabilistic population code. The intermediate units compute all possible products of the input units (e.g., the
unit in red computes the product of units encoding 0, and o,; this is the quadratic step) and receive divisive normalization from a
set of inhibitory neurons (green units) that compute the sum of the activity of the input units. The activities of the intermediate
units are then combined linearly in the next layer to encode the marginal distributions over hypotheses. b, Simulations of an
olfaction task, in which the network contains four groups of input and output units. The network with quadratic divisive normal-
ization (QDN) is very close to optimal, with only 6% information loss compared to the optimal solution for this task. Linear rectified
(L) and quadratic (Q) networks perform much more poorly on the task. A quadratic network with specialized decoders (Q-SD)
performs better than the quadratic network with a single decoder, but, in contrast to the previous cases, using specialized decoders
does not lead to a performance comparable to the one obtained with a quadratic nonlinearity. Therefore, the quadratic network
fails in two ways: it does not compute the optimal posterior distribution, and it does not encode its estimate of the posterior
distribution in the form of a probabilistic population code. See Notes. ¢, Same as in b, but for the blicket experiment, in which the
network contains two groups of input units and two groups of output units rather than the four shown in a.
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Experimental predictions

Our framework makes a variety of exper-
imental predictions. In the case of linear
coordinate transformations, the most sa-
lient—and somewhat counterintuitive—
prediction is that the firing rate at which
one population of neurons saturates
should depend on the reliability of the in-
formation in another population. This
could be tested by, for example, recording
from neurons in visual cortex that both
fire in response to reaching targets and are
modulated by arm position. Such neurons
have been reported for instance in area
Vé6a (Battaglia-Mayer et al., 2001); these
neurons are believed to be involved in a
coordinate transformation from visual to
motor coordinates for the purpose of
reaching. This transformation is similar to
the one from eye-centered to head-
centered coordinates that we considered
earlier, and could be implemented with
the architecture illustrated in Figure 2a.
Our theory predicts that the firing rates of
some of those neurons should be modu-

lems. Next we consider one that seems very different from
olfaction: causal inference by children, as studied in the so called
“blicket” experiment (Gopnik and Sobel, 2000; Griffiths and Te-
nenbaum, 2009). In this experiment, 4-year-old children are pre-
sented with a “blicket” detector, a machine that goes off whenever
itis in the proximity of a blicket. Two objects, A and B, are placed
on the detector at the same time and the detector goes off, and
children are asked to evaluate whether objects A and B are blick-
ets. As one might expect, most children say that both A and B are
blickets. Then, object B alone is placed on the detector, which
again goes off. After this second presentation, all children say that
B is a blicket, and most say that A is not a blicket. This behavior
makes perfect sense from a probabilistic point of view. The ob-
servation that the detector went off for B alone indicates that B is
a blicket, in which case there is no need to posit that A is a blicket to
explain why the detector went off when both A and B were presented
together (A has been “explained away”). It requires marginalization
because the children need to compute the individual (marginal)
probabilities that A and B are blickets given knowledge that the de-
tector went off when A and B were presented simultaneously, and
that it went off again when B was presented alone. In the operant
conditioning literature in rats, this is known as backward blocking
(Shanks, 1985; Dayan and Kakade, 2000).

As with olfaction, we use the network shown in Figure 5a (but
with two inputs and two outputs rather than four of each). Each
node in the input layer encodes an observation (in this case the
state of the blicket detector and which objects were placed on it);
each node in the output layer encodes a hypothesis (in this case
the probability that a particular object is a blicket). The observa-
tion units connect to an intermediate layer of units implement-
ing, as with olfaction, a quadratic divisive normalization, which
in turn projects to the hypothesis units. Simulations of the blicket
experiment show that the network loses 8% of the information
(Fig. 5¢). As with all problems considered so far, networks with
linear rectified units or quadratic units but no divisive normal-
ization performed much worse (Fig. 5¢).

lated by the reliability of the information

provided to the sensory system regarding
both the target and the arm position. Here reliability is defined as
the inverse variance of the posterior distribution (see Fig. 1),
which can be modified by manipulating the degree of blur. Spe-
cifically, the firing rates of these neurons, A, should follow the
relationship A « gy g, p/( &y + gap)> Where gy, and g, are propor-
tional to the reliability of the evidence regarding visual target and
arm position, respectively.

This prediction is specific to the combination of visual target
and arm position signal for the purposes of inferring the head-
centered location of the target. For instance, if the same neurons
also respond to the auditory location of the reaching target
(which is presumably already in head-centered coordinates), we
predict that the visual and auditory signals should not be multi-
plied, but added. This is because the probabilistic inference re-
quired to combine the visual and auditory input optimally is
multisensory integration, not marginalization. As we have shown
previously, optimal multisensory integration with linear PPCs
requires that we sum the visual and auditory activity (as opposed
to taking the product as we did for the visual and arm position
signals) (Ma et al., 2006).

The network implementing the Kalman filter, which we ap-
plied to place cells in the hippocampus and to tracking hand
position based on proprioceptive feedback, not only predicts
neural activity in the presence of sensory feedback, it also predicts
activity in its absence. For place cells, sensory feedback can be
eliminated by turning off the lights and eliminating all olfactory
cues; in this case, our theory predicts that the firing rates of the
place cells should decrease as a power law, 1/(c + t), where tis the
time since the sensory cues vanished, assuming the correlations
between place cells do not change significantly over time and the
restoring force, yin Equation 17, is zero. The inverse time depen-
dence reflects two facts: first, in the absence of feedback, one’s
position should execute a random walk, for which the variance
increases linearly with time; second, in the linear PPC framework,
firing rate is inversely proportional to variance. This is a very
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specific, and easily falsified, prediction, one that is made by no
other theory we know of.

Finally, our work makes a very specific prediction about what
happens when divisive normalization is removed from networks
in which variables are encoded as linear PPCs, at least for the
inference problems we considered: before removal, the activity
should be optimally decodable with a single linear filter; after
removal, the optimal linear filter should depend on reliability.
This could be tested in insect olfaction, where preliminary results
indicate an encoding model consistent with linear PPCs (Olsen
and Wilson, 2008), and where it might be possible to selectivity
block divisive normalization.

Discussion

Lateral inhibition is ubiquitous in the sensory systems of all ani-
mals, and is often thought to enhance stimulus selectivity [which,
interestingly, is not always the case, see (Spiridon and Gerstner,
2001; Series et al., 2004)]. When lateral inhibition takes a specific
form, divisive normalization, it has been suggested that it imple-
ments a form of gain control that keeps neurons within their pre-
ferred firing range (Heeger, 1992; Nelson et al., 1992; Gao and
Vasconcelos, 2009). This form of gain control is also thought to
promote contrast-invariant sensory representations in area V1 (Al-
brecht and Hamilton, 1982; Heeger, 1992; Busse et al., 2009;
Ringach, 2010), spatial pattern-invariant velocity representation in
area MT (Heeger et al., 1996; Simoncelli and Heeger, 1998), and
concentration-invariant odorant representations in the olfactory
system (Simoncelli and Heeger, 1998; Luo et al., 2010; Olsen et al.,
2010). In addition, it has recently been implicated in attentional
modulation (Simoncelli and Heeger, 1998; Winkowski and Knud-
sen, 2008; Reynolds and Heeger, 2009), and also in probabilistic
computations, such as removing high-order correlations in neural
responses to natural images (Schwartz and Simoncelli, 2001) and
extracting the maximum likelihood estimate from a linear PPC (De-
neve et al., 1999). Some of these studies have also explored how
invariance promotes linear separability (Luo et al., 2010; Olsen et al.,
2010).

Our results share some similarities with the previous studies in
the sense that we also suggest that divisive normalization plays a
role in probabilistic computations and yields representations that
can be linearly decoded in a way that is invariant to nuisance
parameters (like contrast or concentration). However, we have
expanded these previous studies in two important directions.
First, we have shown that quadratic nonlinearities with divisive
normalization could play an important role in marginalization, a
key operation for probabilistic inference. Second, the resulting
representation does not encode just the value of the encoded
variable, but encodes full probability distributions, whose log can
be linearly decoded with a decoder invariant to nuisance param-
eters—a form of invariance that goes beyond the tuning curve
invariance of previous studies. These results could explain why
quadratic divisive normalization has been reported not only in
early sensory areas but throughout the nervous system of mam-
mals and insects, since marginalization is a form of probabilistic
computation central to a remarkably wide range of seemingly
unrelated tasks, including motor control, cognitive reasoning,
decision making, navigation, and low-level perceptual learning.

What makes our results appealing from a biological point of
view is that both divisive normalization and quadratic nonlin-
earities are commonly observed in neural circuits. Divisive nor-
malization (the denominator in Egs. 8, 15, and 22) has been
reported in the primary visual cortex (Heeger, 1992; Carandini et
al., 1997; Tolhurst and Heeger, 1997), the extrastriate visual cor-
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tex (Miller et al., 1993; Rolls and Tovee, 1995; Missal et al., 1997;
Recanzone et al., 1997; Treue et al., 2000; Heuer and Britten,
2002; Zoccolan et al., 2005), the superior colliculus (Basso and
Wurtz, 1997), and the antenna lobe of the Drosophila (Olsen et
al., 2010). The circuit implementation of this normalization is
still being debated, but several possibilities have been explored
(Heeger, 1992; Nelson, 1994; Chance et al., 2002). With regard to
the quadratic nonlinearity, the numerator in Equations 8, 15, and
22, and the quadratic term in Equation 19, require a specific form
of quadratic interaction in which firing rates are combined either
multiplicatively or via the action of a quadratic nonlinearity. Such
multiplicative interactions between sensory evoked signals and
posture signals have been reported in multiple locations, includ-
ing V1(Trotter et al., 1996; Trotter and Celebrini, 1999), V3 (Gal-
letti and Battaglini, 1989), MT (Bremmer et al., 1997), MST
(Bremmer et al., 1997; Ben Hamed et al., 2003), LIP (Andersen et
al., 1985; Stricanne et al., 1996), VIP (Avillac et al., 2005),
V6a(Battaglia-Mayer et al., 2001), premotor cortex (Boussaoud
et al., 1993), area 5 (Buneo et al., 2002), the primary auditory
cortex (Werner-Reiss et al., 2003), and the inferior colliculus
(Groh et al., 2001).

As we have seen, marginalization through the use of divisive
normalization is near optimal for a linear PPC, a population
coding scheme that is associated with constant Fano factors and
contrast-invariant tuning curves. Both are consistent with exper-
imental data (Sclar and Freeman, 1982; Tolhurst et al., 1983; Gur
etal., 1997; Buracas et al., 1998; Gershon et al., 1998; Anderson et
al., 2000; Maimon and Assad, 2009), so spike trains in cortex
appear to be consistent with the requirements of our theory.
Nevertheless, it is important to develop further tests to confirm
whether the variability in cortex, and in other neural circuits, is
indeed close to a linear PPC.

Finally, although here we have assumed that variables are en-
coded in linear PPCs, our approach can be extended to other
forms of neural variability, such as tuning curves that are not
contrast invariant, or variability that differs strongly from Equa-
tion 4. It will be particularly interesting to identify neural systems
with variability that deviates strongly from linear PPCs, to see
whether circuit nonlinearities take the appropriate form to im-
plement near-optimal probabilistic inference, or perhaps trans-
form these nonlinear PPCs into linear ones.

Notes

Supplemental material for this article is available at http://www.gatsby.
ucl.ac.uk/beck_latham_pouget_SI.pdf. It contains all the derivations for
the results presented here, along with the details of the implementation.
This material has not been peer reviewed.
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