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Abstract
Traditionally molecular biology research has tended to reduce biological pathways to composite
units studied as isolated parts of the cellular system. With the advent of high throughput
methodologies that can capture thousands of data points, and powerful computational approaches,
the reality of studying cellular processes at a systems level is upon us. As these approaches yield
massive datasets, systems level analyses have drawn upon other fields such as engineering and
mathematics, adapting computational and statistical approaches to decipher relationships between
molecules. Guided by high quality datasets and analyses, one can begin the process of predictive
modeling. The findings from such approaches are often surprising and beyond normal intuition.
We discuss four classes of dynamical systems used to model genetic regulatory networks. The
discussion is divided into continuous and discrete models, as well as deterministic and stochastic
model classes. For each combination of these categories, a model is presented and discussed in the
context of the yeast cell cycle, illustrating how different types of questions can be addressed by
different model classes.

1. Introduction
Modern molecular biology technologies and the proliferation of Web-based resources
containing information on various aspects of biomolecular networks in living cells have
made it possible to mathematically model dynamical systems of molecular interactions that
control various cellular functions and processes. Such models can then be used to predict the
behavior of the system in response to different perturbations or stimuli and ultimately for
developing rational control strategies intended to drive the cellular system toward a desired
state or away from an undesired state that may be associated with disease. To this end,
various dynamical models have been studied, most commonly in the context of genetic
regulatory networks, for a variety of biological systems. Although there are a number of
natural ways to categorize and classify dynamical models of genetic networks, this chapter
presents a model class with an accompanying example in each combination of deterministic
versus stochastic and continuous versus discrete model categories. The example used in each
of the model classes is that of the yeast cell cycle, as this system has been extensively
studied from a variety of different perspectives and with different model classes. It is not the
intention of this chapter to go into an in-depth investigation of the cell cycle, but rather to
use it as a running example to illustrate the kinds of questions that can be addressed by the
different model classes considered.

A deterministic model of a genetic regulatory network may involve a number of different
mechanisms that capture the collective behavior of the elements constituting the network.
The models can differ in numerous ways, such as in the nature of the physical elements that
are represented in the model (i.e., genes, proteins, and other factors); the resolution or scale
at which the behavior of the network elements are captured (e.g., are genes discretized, such
as being either on or off, or do they take on continuous values?); and how the network
elements interact (e.g., interactions can either be present or absent or they may have a
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quantitative nature). The common aspect of deterministic models is the inherent lack of
randomness or stochasticity in the model. This chapter presents Boolean networks and
systems of differential equations as examples of discrete and continuous deterministic
models of genetic networks, respectively.

Stochastic models of genetic regulatory networks differ from their deterministic counterparts
by incorporating randomness or uncertainty. Most deterministic models can be generalized
such that one associates probabilities with particular components or aspects of the model.
Thus, stochastic models can also be categorized into discrete and continuous categories. The
stochastic or probabilistic components in such models can either be associated with model
structure, so that the interactions or rules of interaction are described by probability
distributions, or by the incorporation of noise terms that capture intrinsic biological
stochasticity or measurement uncertainty. Probabilistic Boolean networks (PBNs) and
stochastic differential equations are presented as examples of discrete and continuous
stochastic models of genetic networks, respectively.

2. Boolean Networks
Boolean networks are a class of discrete dynamical systems that can be characterized by the
interactions over a set of Boolean variables. Random Boolean networks (RBN), which are
ensembles of random network structures, were first introduced by Kauffman (1969a,b) as a
simple model class for studying dynamical properties of gene regulatory networks at a time
when the structure of such networks was largely unknown. The idea behind such an
approach is to define an ensemble of Boolean networks such that it fulfills certain known
features of biological networks and then study random instances of these networks to learn
more about general properties of such networks (Kauffman, 1974, 1993, 2004). Boolean
network modeling of genetic networks was further developed by Thomas (1973) and others.

The ensemble approach has been extraordinarily successful in shedding light on
fundamental principles of complex living systems at all scales of organization, including
adaptability and evolvability, robustness, coordination of complex behaviors, storage of
information, and the relationships between the structure of such complex systems and their
dynamical behavior. The reader is referred to several excellent review articles that cover the
ensemble properties of Boolean networks (Aldana et al., 2002; Drossel, 2007). However,
our focus here is on Boolean network models that can be used to capture the behavior of a
specific gene regulatory network.

Consider a directed graph where the vertices represent genes and the directed edges
represent the actions of genes, or rather their products, on other genes. For example, directed
edges from genes A and B into gene C indicate that A and B jointly act on C. The specific
mechanism of action is not represented in the graph structure itself, so an additional
representation is necessary. One of the simplest representation of frameworks assumes that
genes are binary-valued entities, meaning that they can be in one of two possible states of
activity (e.g., ON or OFF) at any given point in time, and that they act on each other by
means of rules represented by Boolean functions. For example, gene C may be determined
by the output of a Boolean function whose inputs areAandB.The underlying directed graph
merely represents the input–output relationships. We now present this idea more formally.

A Boolean network is defined by a set of nodes (genes) {x1, …, xn} and a list of Boolean
functions {f1, f2, …, fn}. Each gene xi ∈{0, 1} (i = 1, …, n) is a binary variable whose value
at time t + 1 is completely determined by the values of genes xj1, xj2, …, xjki at time t by
means of a Boolean function fi : {0, 1}ki → {0, 1}. That is, there are ki regulatory genes
assigned to gene xi that determine the “wiring” of that gene. Thus, one can write
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(13.1)

In an RBN, the functions fi are selected randomly as are the genes that are used as their
inputs. This is the basis of the ensemble approach mentioned above.

Each xi represents the state (expression) of gene i, where xi = 1 represents the fact that gene i
is expressed and xi = 0 means it is not expressed. Such a seemingly crude simplification of
gene expression has ample justification in the experimental literature (Bornholdt, 2008).
Indeed, consider the fact that many organisms exhibit an amazing determinism of gene
activity under specific experimental contexts or conditions, such as Escherichia coli under
temperature change (Richmond et al., 1999). The determinism is apparent despite the
prevalent molecular stochasticity and experimental noise inherent to measurement
technologies such as microarrays. Furthermore, accurate mathematical models of gene
regulation that capture kinetic level details of molecular reactions frequently operate with
expressed molecular concentrations spanning several orders of magnitude, either in a
saturation regime or in a regime of insignificantly small concentrations, with rapid switch-
like transitions between such regimes (Davidich and Bornholdt, 2008a). Further, even higher
organisms, which are necessarily more complex in terms of genetic regulation and
heterogeneity, exhibit remarkable consistency when gene expression is quantized into two
levels; for example, different subtypes of human tumors can be reliably discriminated in the
binary domain (Shmulevich and Zhang, 2002).

In a Boolean network, a given gene transforms its inputs (regulatory factors that bind to it)
into an output, which is the state or expression of the gene itself at the next time-point. All
genes are assumed to update synchronously in accordance with the functions assigned to
them and this process is then repeated. It is clear that the dynamics of a synchronous
Boolean network are completely determined by Eq. (13.1). The artificial synchrony
simplifies computation while preserving the qualitative, generic properties of global network
dynamics. Synchronous updating has been applied in most analytical studies so far, as it is
the only one that yields deterministic state transitions. Although the introduction of
asynchronous updating, which typically involves a random update schedule, renders the
system stochastic, asynchronous updating is not per se biologically more realistic and has to
be motivated carefully in every case not to fall victim to artifacts (Chaves et al., 2005).
Additionally, recent research indicates that some molecular control networks are so robustly
designed that timing is not a critical factor (Braunewell and Bornholdt, 2006), that time
ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in
the Boolean model (Alvarez-Buylla et al., 2008), and that simplified synchronous models
are able to reliably reproduce the sequence of states in biological systems. Nonetheless,
PBNs, presented in Section 4, are able to model asynchronous updating as well as other
stochastic generalizations of Boolean networks.

Let us start with a simple example to illustrate the dynamics of Boolean networks and
present the key idea of attractors. Consider a Boolean network consisting of five genes {x1,
…, x5} with the corresponding Boolean functions given by the truth tables shown in Table
13.1. Note that x4(t + 1) = f4(x4(t)) is a function of only one variable and is an example of
autoregulation. The maximum connectivity (i.e., maximal number of regulators) K = maxiki
is equal to 3 in this case.

The dynamics of this Boolean network are shown in Fig. 13.1. Since there are five genes,
there are 25 = 32 possible states that the network can be in. Each state is represented by a
circle and the arrows between states show the transitions of the network according to the
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functions in Table 13.1. It is easy to see that because of the inherent deterministic
directionality in Boolean networks as well as only a finite number of possible states, certain
states will be revisited infinitely often if, depending on the initial starting state, the network
happens to transition into them. Such states are called attractors and the states that lead into
them, including the attractors themselves, comprise their basins of attraction. For example,
in Fig. 13.1, the state (00000) is an attractor and together with the seven other (transient)
states that eventually lead into it comprise its basin of attraction.

The attractors represent the fixed points of the dynamical system, thus capturing the
system’s long-term behavior. The attractors are always cyclical and may consist of more
than one state. Starting from any state on an attractor, the number of transitions necessary
for the system to return to it is called the cycle length. For example, the attractor (00000) has
cycle length 1 while the states (11010) and (11110) comprise an attractor of length 2.

Real genetic regulatory networks are highly stable in the presence of perturbations, since the
cell must be able to maintain homeostasis in metabolism or its developmental program in the
face of such external perturbations and variety of stimuli. Within the Boolean network
formalism, this means that when a minimal number of genes transiently change value (say,
by means of some external stimulus), the system typically transitions into states that reside
in the same basin of attraction and the network eventually “flows” back to the same
attractor. Generally speaking, large basins of attraction correspond to higher stability. Such
stability of networks in living organisms allows the cells to maintain their functional state
within their environment.

Although in developmental biology, epigenetic, heritable changes in cell determination have
been well established, it is now becoming evident that the same type of mechanisms may
also be responsible in carcinogenesis and that gene expression patterns can be inherited
without the need for mutational changes in DNA (MacLeod, 1996). In the Boolean network
framework, this can be explained by so-called hysteresis; that is, a change in the system’s
state caused by a stimulus that does not change back when the stimulus is withdrawn
(Huang, 1999). Thus, if the change of some particular gene does in fact cause a transition to
a different attractor, the network will often remain in the new attractor even if that gene is
switched off. Thus, the structure of the state space of a Boolean network, in which every
state in a basin of attraction is associated with the corresponding attractor to which the
system will ultimately flow, represents a type of associative memory.

2.1. Attractors as cell types and cellular functional states
Real gene regulatory networks exhibit spontaneous emergence of ordered collective
behavior of gene activity, captured by the attractors. Indeed, recent findings provide
experimental evidence for the existence of attractors in real regulatory networks (Chang et
al., 2008; Huang and Ingber, 2000; Huang et al., 2005). At the same time, many studies
have shown (e.g., Wolf and Eeckman, 1998) that dynamical system behavior and stability of
equilibria can be largely determined from regulatory element organization. This suggests
that there must exist certain generic features of regulatory networks that are responsible for
their inherent robustness and stability. Since in multicellular organisms, the cellular “fate” is
determined by which genes and proteins are expressed, the attractors in the Boolean
networks should correspond to cell types, an idea originally due to Kauffman (2004). This
interpretation is quite reasonable if cell types are characterized by stable recurrent patterns
of gene expression (Jacob and Monod, 1961).

Another interpretation of attractors in Boolean networks is that they correspond to cellular
states, such as proliferation (cell cycle), apoptosis (programmed cell death), and
differentiation (execution of tissue-specific tasks) (Huang, 1999). Such an interpretation can
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provide new insights into cellular homeostasis and cancer progression, the latter being
characterized by a disbalance between these cellular states. For instance, an occurrence of a
structural mutation can result in a reduction of the probability of the network entering the
apoptosis attractor(s), making the cells less likely to undergo apoptosis and exhibiting
uncontrolled growth. Similarly, an enlargement of the basins of attraction for the
proliferation attractor would hyperstabilize it, resulting in hyperproliferation, typical of
tumorigenesis. Such an interpretation need not be at odds with the interpretation that
attractors represent cellular types. To the contrary, these views are complementary to each
other, since for a given cell type, different cellular functional states must exist and be
determined by the collective behavior of gene activity. Thus, one cell type can comprise
several “neighboring” attractors each corresponding to different cellular functional states.

Biological networks can often be modeled as logical circuits from well-known local
interaction data in a straightforward way. This is clearly one of the advantages of the
Boolean network approach. Though logical models may sometimes appear obvious and
simplistic, compared to detailed kinetic models of biomolecular reactions, they may help to
understand the dynamic key properties of a regulatory process. Further, a Boolean network
model can be formulated as a coarse-grained limit of the more detailed differential equations
model for a system (Davidich and Bornholdt, 2008a), discussed in Section 3. They may also
lead the experimentalist to ask new questions and to test them first in silico.

Let us consider a Boolean network model of the cell cycle control network in the budding
yeast Saccharomyces cerevisiae proposed in Li et al. (2004). The core regulatory network
involving activations and inhibitions among cyclins, transcription factors, and check points,
such as cell size, consists of 11 binary variables. The Boolean functions, Eq. (13.1), assigned
to each variable are chosen from the subclass of threshold Boolean functions (Muroga,
1971), which sum up their inputs with weights and if the sum exceeds a threshold, then the
output of the function is equal to 1, else it is equal to 0. This is equivalent to a perceptron
and represents a hyperplane that cuts the Boolean hypercube into two halves, zeros on one
side, and ones on the other. The model, shown in Fig. 1 in Li et al. (2004), also has self-
degradation loops such that nodes that are not negatively regulated by others are degraded at
the next time point. The dynamics of the model are described by

(13.2)

and the weights were all set to 1 or −1, depending on activation or inhibition, respectively
(Li et al., 2004).

Since there are 11 nodes in the network, there are 2048 states in total and all the state
transitions can be computed directly through Eq. (13.2). One of the attractors, among seven,
is the most stable and attracts approximately 86% of all states. This stable (fixed point)
attractor, in which the molecules Cdhl and Sicl are equal to 1 and all others (Cln3, MBF,
SBF, Cln1/2, Swi5, Cdc20, Clb5/6, Clb1/2, Mcml) are equal to 0, represents the biological
G1 stationary state (one of the four phases of the cell cycle process in which the cell grows
and can commit to division), guaranteeing cellular stability in this state. It is further
demonstrated in Li et al. (2004) that the dynamic state trajectories starting from each of the
states in the basin of attraction of the G1 stationary state converge rapidly onto an attracting
state trajectory that is highly stable, ensuring that starting from any point in the cell cycle
process, the system does not deviate from this trajectory. It is also shown, by comparison
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with random networks, that the highly stable attractor is unlikely to arise by chance (Li et
al., 2004). Additionally, the results were fairly insensitive to the values of the weights,
justifying setting them both equal to 1. Other similar studies have been carried out with the
cell cycle of the fission yeast Schizosaccharomyces pombe (Davidich and Bornholdt, 2008b)
and the mammalian cell cycle (Fauré et al., 2006). Recently, a new more accurate Boolean
network model, which can incorporate time delays, has been proposed as a model of the
budding yeast cell cycle (Irons, 2009).

3. Differential Equation Models
A model of a genetic network based on a system of differential equations expresses the rates
of change of an element, such as a gene product, in terms of the levels of other elements of
the network and possibly external inputs. In general, a nonlinear time-dependent differential
equation has the form

(13.3)

where x is a state vector denoting the values of the physical variables in the system, ẋ = dx/
dt is the elementwise derivative of x, u is a vector of external inputs, and t is time.

If time is discretized and the functional dependency specified by f does not depend on time,
then the system is said to be time-invariant. If f is linear and time-invariant, then it can be
expressed as

(13.4)

where A and B are constant matrices (Weaver et al., 1999).

When ẋ = 0, the variables no longer change with time and thus define the steady state of the
system, which is analogous to a fixed point attractor in a Boolean network. Consider the
simple case of a gene product x (a scalar) whose rate of synthesis is proportional, with
kinetic constant k1, to the abundance of another protein a that is sufficiently abundant such
that the overall concentration of a is not significantly changed by the reaction. However, x is
also subject to degradation, the rate of which is proportional, with constant k2, to the
concentration of x itself. This situation can be expressed as

(13.5)

Let us analyze the behavior of this simple system. If initially x = 0, then the decay term is
also 0 and ẋ = k1a. However, as x is produced, the decay term k2x will also increase thereby
decreasing the rate ẋ toward 0 and stabilizing x at some steady-state value x̄. It is easy to
determine this value, since setting ẋ = 0 and solving for x yields

(13.6)

This behavior is shown in Fig. 13.2, where x starts off at x = 0 and approaches the value in
Eq. (13.6). The exact form of the kinetics is
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(13.7)

Similarly, the derivative ẋ, also shown in Fig. 13.2, starts off at the initial value of k1a and
thereafter tends toward zero.

Now suppose that a is suddenly removed after the steady-state value x̄ is reached. Since a =
0, we have ẋ = −k2x and since the initial condition is x = k1a/k2, ẋ = −k1a initially. The
solution of this equation is

(13.8)

and it can be seen that it will eventually approach zero.

This example describes a linear relationship between a and ẋ. However, most gene
interactions are highly nonlinear. When the regulator is below some critical value, it has
very little effect on the regulated gene. When it is above the critical value, it has virtually
full effect that cannot be significantly amplified by increased concentrations of the regulator.
This nonlinear behavior is typically described by sigmoid functions, which can be either
monotonically increasing or decreasing. A common form is the so-called Hill functions
given by

(13.9)

The function F+ (x, 1) is illustrated in Fig. 13.3 for n = 1, 2, 5, 10, 20, 50, and 100. It can be
seen that it approaches an ideal step function with increasing n, thus approximating a
Boolean switch. In fact, the parameter θ essentially plays the role of the threshold value.
Glass (1975) used step functions in place of sigmoidal functions in differential equation
models, resulting in so-called piecewise linear differential equations. Glass and Kauffman
(1973) also showed that many systems exhibit the same qualitative behavior for a wide
range of sigmoidal steepnesses, parameterized by n.

Given that gene regulation is nonlinear, the differential equation models can incorporate the
Hill functions into their synthesis and decay terms. There are many available computer tools
for simulating and analyzing such dynamical systems using a variety of methods and
algorithms (Lambert, 1991), including DBsolve (Goryanin et al., 1999), GEPASI (Mendes,
1993), and Dizzy (Ramsey et al., 2005). Additionally, there are toolboxes available for
MATLAB® that can be used for modeling, simulating, and analyzing biological systems
with ordinary differential equations (Schmidt and Jirstrand, 2006). MathWorks’
SimBiology® toolbox (http://www.mathworks.com/products/simbiology) also provides a
graphical user interface for constructing models and entering reactions, parameters, and
kinetic laws, which can be simulated deterministically or stochastically. A useful review of
nonlinear ordinary differential equation modeling of the cell cycle is available in Sible and
Tyson (2007).
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3.1. Accurate description of cellular growth and division and prediction of mutant
phenotypes

Let us return to the regulatory network controlling the cell cycle in budding yeast. If the goal
of the modeling is to predict detailed quantitative phenomena, such as cell cycle duration in
parent and daughter cells, the length of the different phases of the cell cycle, or ratios
between certain regulatory proteins, then logical models such as Boolean networks are not
appropriate, and systems of ordinary differential equations with detailed kinetic parameters
must be used. Chen et al. (2004) constructed such a detailed model of the cell cycle
regulatory network containing 36 equations with 148 constants, in addition to algebraic
equations (available in Table 1 in that paper, with Table 2 containing parameter values). The
model incorporates protein concentrations, cell mass, DNA mass, the state of the emerging
bud, and of the mitotic spindle.

After manual fitting of some of the parameters, the dynamics generated by the model were
able to accurately describe the growth and division of wild-type cells. Remarkably, the
model also conformed to the phenotypes of more than 100 mutant strains, in terms of
experimentally observed properties such as size at bud emergence or at onset of DNA
synthesis, viability, or growth rate, relative to these properties in the wild type.

It should be pointed out that parameter estimation of the model must be approached with
care. First, the objective function, for example mean-squared error between the model
predictions and the experimental data, may have multiple local optima in the parameter
space. Thus, an apparently good model fit may nonetheless contain unrealistic sets of
parameters that will ultimately fail to generalize. For example, as was found in Chen et al.
(2004), changing parameters to “rescue” a model with respect to a mutant (i.e., make it agree
with experimental observations) often exhibit unintended and unanticipated effects on other
mutants. Second, model selection must be carefully considered, since a model that is overly
complex, meaning that it has many degrees of freedom, is likely to “overfit” the data and
thereby, sacrifice predictive accuracy. In other words, the model may appear to predict very
well when tested against data on which it was trained, but when tested against data under
new conditions, the model will predict very poorly. There are powerful tools, such as
minimum description length, and indeed, entire frameworks based on algorithmic
information theory and Bayesian inference, devoted to these fundamental issues (Rissanen,
2007).

4. Probabilistic Boolean Networks
PBNs are probabilistic or stochastic generalizations of Boolean networks. Essentially, the
deterministic dynamics are replaced by probabilistic dynamics, which can be framed within
the mature and well-established theory of Markov chains, for which many analytical and
numerical tools have been developed. Recall that Markov chains are stochastic processes
having the property that future states depend only on the present state, and not on the past
states. The transitions from one state to another (possibly itself) are specified by state
transition probabilities. Boolean networks are special cases of PBNs in which state transition
probabilities are either 1 or 0, depending on whether Eq. (13.1) is satisfied for all i = 1,…,n.
The probabilistic nature of this model class affords flexibility and power in terms of making
inferences from data, which necessarily contain uncertainty, as well as in terms of
understanding the dynamical behavior of biological networks, particularly in relation to their
structure.

Once the state transition probabilities for a Markov chain corresponding to a PBN are
determined, it becomes possible to study the steady-state (long-run) behavior of the
stochastic system. This long-run behavior is analogous to attractors in Boolean networks or
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fixed points in systems of differential equations. Kim et al. (2002) investigated the Markov
chain corresponding to a small network based on microarray data observations of human
melanoma samples. The steady-state behavior (distribution) of the constructed Markov chain
was then compared to the initial observations. If the Markov chain is ergodic, meaning that
it is possible to reach any state from any other state after an arbitrary number of steps, then
the steady-state probability corresponds to the fraction of the time that the system will spend
in that particular state.

The remarkable finding was that only a small number of all possible states had significant
steady-state probabilities and most of those states with high probability were observed in the
data. Furthermore, it was found that more than 85% of those states with high steady-state
probability that were not observed in the data were very close to the observed data in terms
of Hamming distance, which is equal to the number of genes that “disagree” in their binary
values. Based on the transition rules inferred from the data, the model produced localized
stability, meaning that the system tended to flow back to the states with high steady-state
probability mass if placed in their vicinity. Thus, the stochastic dynamics of the Markov
chain were able to mimic biological regulation. It should be noted that Markov chains are
commonly used to model gene expression dynamics using so-called dynamic Bayesian
networks (Murphy and Mian, 1999; Yu et al., 2004; Zou and Conzen, 2005). Indeed, PBNs
and dynamic Bayesian networks are able to represent the same joint probability distribution
over their common variables (i.e., genes) (Lähdesmäki et al., 2006).

Except in very restricted circumstances, gene expression data refute the determinism
inherent to the Boolean network model, there typically being a number of possible successor
states to any given state. Consequently, if one continues to assume the state at time t + 1 is
independent of the state values prior to time t, then, as stated above, the network dynamics
are described by a Markov chain whose state transition matrix reflects the observed
stochasticity. In terms of gene regulation, this stochasticity can be interpreted to mean that
several regulator gene sets are associated with each gene and at any time point one of these
“predictor” sets, along with a corresponding Boolean function, is randomly chosen to
provide the value of the gene as a function of the values within the chosen predictor set. It is
this reasoning that motivated the original definition of a PBN in which the definition of a
Boolean network was adapted in such a way that, for each gene, at each time point, a
Boolean function (and predictor gene set) is randomly chosen to determine the network
transition (Shmulevich et al., 2002a,c).

Rather than simply randomly assigning Boolean functions at each time point, one can take
the perspective that the data come from distinct sources, each representing a “context” of the
cell. From this perspective, the data derive from a family of deterministic networks and, in
principle, the data could be separated into separate samples according to the contexts from
which they have been derived. Given the context, the overall network would function as a
Boolean network, its transition matrix reflecting determinism (i.e., each row contains one 1,
in the column that corresponds to the successor state, and the rest are 0s). If defined in this
manner, a PBN is a collection of Boolean networks in which a constituent network governs
gene activity for a random period of time before another randomly chosen constituent
network takes over, possibly in response to some random event, such as an external stimulus
or the action of a (latent) regulator that is outside the scope of the network. Since the latter is
not part of the model, network switching is random. This model defines a “context-
sensitive” PBN (Brun et al., 2005; Shmulevich et al., 2002c). The probabilistic nature of the
constituent choice reflects the fact that the system is open, not closed, the idea being that
changes between the constituent networks result from the genes responding to latent
variables external to the model network.
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We now formally define PBNs. Although we retain the terminology “Boolean” in the
definition, this does not refer to the binary quantization assumed in standard Boolean
networks, but rather to the logical character of the gene predictor functions. In the case of
PBNs, quantization is assumed to be finite, but not necessarily binary. However, we restrict
ourselves to the binary domain here for simplicity. Formally, a PBN consists of a sequence

 of n nodes, where xi ∈ {0, 1}, and a sequence  of vector-valued functions,
defining constituent networks. In the framework of gene regulation, each element xi
represents the expression value of a gene. Each vector-valued function

 determines a constituent network, or context, of the PBN. The

function  is a predictor of gene i, whenever network l is selected. At each
updating epoch, a decision is made whether to switch the constituent network. This decision
depends on a binary random variable ξ: if ξ = 0, then the current context is maintained; if ξ =
1, then a constituent network is randomly selected from among all constituent networks
according to the selection probability distribution

(13.10)

The switching probability q = P(ξ = 1) is a system parameter. If the current network is
maintained, then the PBN behaves like a fixed network and synchronously updates the
values of all the genes according to the current context. Note that, even if ξ = 1, a different
constituent network is not necessarily selected because the “new” network is selected from
among all contexts. In other words, the decision to switch is not equivalent to the decision to
change the current network. If a switch is called for (ξ = 1), then, after selecting the
predictor function fl, the values of genes are updated accordingly; that is, according to the
network determined by fl. If q < 1, the PBN is said to be context-sensitive; if q = 1, the PBN
is said to be instantaneously random, which corresponds to the original definition in
Shmulevich et al. (2002a).

Whereas a network switch corresponds to a change in a latent variable causing a structural
change in the functions governing the network, a random perturbation corresponds to a
transient value change that leaves the network wiring unchanged, as in the case of activation
or inactivation owing to external stimuli such as stress conditions, small molecule inhibitors,
etc. In a PBN with perturbation, there is a small probability p that a gene may change its
value at each epoch. Perturbation is characterized by a random perturbation vector γ = (γ1,
γ2, …, γn), γi ∈ {0, 1}, and P(γi = 1) = p, the perturbation probability; γi is also known as a
Bernoulli(p) random variable. If x(t) is the current state of the network, and γ (t + 1) = 0,
then the next state of the network is given by x(t + 1) = fl(x(t)), as in Eq. (13.1); otherwise,
x(t + 1) = x(t) ⊕ γ(t + 1), where ⊕ is componentwise exclusive OR. The probability of no
perturbation, in which case the next state is determined according to the current network
function fl, is (1 − p)n and the probability of a perturbation is 1 − (1 − p)n. The perturbation
model captures the realistic situation where the activity of a gene undergoes a random
alteration (Shmulevich et al., 2002b).

As with Boolean networks, attractors play a major role in the study of PBNs. By definition,
the attractor cycles of a PBN consist of the attractor cycles of the constituent networks, and
their basins are likewise defined. Whereas in a Boolean network two attractor cycles cannot
intersect, attractor cycles from different contexts can intersect in a PBN. The presentation of
the state transition probabilities of the Markov chain corresponding to the (context-sensitive)
PBN is beyond the scope of this chapter, and the reader is referred to Brun et al. (2005).
Suffice it to say that from the state transition matrix of the Markov chain, which is
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guaranteed to be ergodic under a gene perturbation model as described above, even for very
small p, one can compute the steady-state distribution. A Markov chain is said to possess a
steady-state distribution if there exists a probability distribution π = (π1, π2, …, πM) such
that for all states i, j ∈{1, 2, …, M},

(13.11)

where  is the r-step transition probability between states i and j. If there exists a steady-
state distribution, then regardless of the initial state, the probability of the Markov chain
being in state i in the long run can be estimated by sampling the observed states in the
simulation (by simply counting the percentage of time the chain spends in that state). Such
an approach was used to analyze the joint steady-state probabilities of several key molecules
(NFκB; Tie-2 and TGFB3) in a 15-gene network derived from human glioma gene
expression data (Shmulevich et al., 2003).

4.1. Steady-state analysis and stability under stochastic fluctuations
The Boolean network model of the cell cycle, discussed in Section 2.1, was generalized in
Zhang et al. (2006) such that network dynamics are described by a Markov chain with
transition probabilities:

(13.12)

and

(13.13)

The term T appears in Eq. (13.2). Note that this is essentially a way of introducing noise and
therefore making the Markov chain ergodic, so that a steady-state distribution exists. The
positive number β plays the role of temperature that characterizes the strength of the noise
introduced into the system dynamics. The parameter α is used to characterize the
stochasticity when the input to a node is zero and determines the probability for a protein to
maintain its state when there is no input to it. It should be noted that when α, β → ∞, the
stochastic model converges to the deterministic Boolean network model in Li et al. (2004).

The state transition probabilities allow the computation of the steady-state distribution in Eq.
(13.11). In addition, the so-called net probability flux πi Pij —πj Pji from state i to state j can
be determined, where Pij is the state transition probability. The steady-state probability of
the stationary G1 phase of the cell cycle was studied relative to the noise level determined by
β. It was found that this state is indeed the most probable state of the system and that it
decreases with increasing noise strength, as expected, since random perturbations will tend
to move the system away from the attractor (Zhang et al., 2006). Interestingly, a type of
phase transition was found whereby at a critical value of the parameter β, the steady-state
probability of the stationary G1 state virtually vanishes and the system becomes dominated
by noise and cannot carry out coordinated behavior. Nonetheless, this critical temperature is
quite high and the system is able to tolerate approximately 10% of its rules misbehaving,
implying that the cell cycle network is robust against stochastic fluctuations (Zhang et al.,
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2006). Additionally, the probability flux from states other than those on the cell cycle
trajectory from the excited G1 state is convergent onto this trajectory, implying homeostatic
stability.

5. Stochastic Differential Equation Models
The stochastic generalization of Boolean networks, leading to Markovian dynamics, is
intended to capture uncertainty in the data, whether due to measurement noise or biological
variability, intrinsic or extrinsic, the latter being caused by latent variables external to the
model. On the other hand, if the intention of the modeling is to capture quantitative
molecular or physical details, as in systems of ordinary differential equations discussed in
Section 3, then stochastic fluctuations on the molecular level can be incorporated explicitly
into the model using stochastic differential equations. For example, as most regulatory
molecules are produced at very low intracellular concentrations, the resulting reaction rates
exhibit large variability. Such intrinsic molecular noise has been found to be important for
many biological functions and processes (Ozbudak et al., 2002; Raser and O’Shea, 2005).

There exist powerful stochastic simulation methods for accurately simulating the dynamics
of a system of chemically reacting molecules that can reflect the discrete and stochastic
nature of such systems on a cellular scale. A recent review of such methods is available in
Cao and Samuels (2009). However, there are undoubtedly other intrinsic and extrinsic
contributions to variability in gene and protein expression, for example, due to spatial
heterogeneity or fluctuations in cellular components (Swain et al., 2002). Stochastic
differential equations allow for a very general incorporation of stochasticity into a model
without the need to assume specific knowledge about the nature of such stochasticity.

Manninen et al. (2006) developed several approaches to incorporate stochasticity into
deterministic differential equation models, obtaining socalled Itô stochastic differential
equations, and applied them to neuronal protein kinase C signal transduction pathway
modeling. By a comparative analysis it was shown that such approaches are preferred to the
stochastic simulation algorithm methods, as the latter are considerably slower by several
orders of magnitude when simulating systems with a large number of chemical species
(Manninen et al., 2006). The stochastic differential equation framework additionally allows
the incorporation of stochasticity into the reaction rates, rate constants, and concentrations.

The basic model can be written as a Langevin equation with multiplicative noise (Rao et al.,
2002), so that for a single species

(13.14)

where fi(x, u, t) is the deterministic model and ξi(t) is zero mean unit variance Gaussian
white noise. The function g(xi) represents the contribution of the fluctuations and it is
commonly assumed to be proportional to the square root of the concentration, that is,

. The solution to such stochastic differential equations can be obtained by
numerical integration using standard techniques.

5.1. The influence of noise on system behavior
Let us turn to the cell cycle control network of the fission yeast S. pombe, for which a
system of ordinary differential equations was proposed (Novak et al., 2001), consisting of
eight deterministic differential equations and three algebraic equations. We mention in
passing that a Boolean network model for this network is available in Davidich and
Bornholdt (2008b). The differential equation model in Novak et al. (2001) was found to be
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in good agreement with wild-type cells as well as with several mutants. Steuer
(2004)converted this model to a system of stochastic differential equations and compared
the simulations with experimental data. It was found that the cycle time and division size
distributions within a cell population were predicted well by the model; for example, the
model predicted a negative correlation between cycle time and mass at birth, meaning that
the cells that are large at birth have shorter cycle times, which ensures homeostasis in
successive generations (Steuer, 2004). The stochastic model also accounted for a
characteristic ratio of the coefficients of variation for the cycle time and division length.

The stochastic differential equation model was also applied to study a certain double mutant
(wee1− cdc25 Δ) that exhibits quantized cycle lengths. A deterministic model of the mutants
can be obtained by removing the corresponding parameters from the system of differential
equations. However, the simulation of the deterministic differential equation model of the
double mutant results in periodically alternating long and short cycle times, which are
determined exclusively by cell mass at birth, meaning that small cells have long cycles and
have large daughters, and large cells have short cycles and give rise to small daughters. The
simulation of the stochastic differential equation model produces very different results: cell
mass at birth no longer determines the length of the next cycle and the (nonintuitive)
characteristic clusters (i.e., “quantization”) in a plot of cycle time versus mass at birth are in
good agreement with experimental observations (Steuer, 2004). Additionally, in the
stochastic model, the oscillation between long and short cycles disappears, which is
consistent with experimental observations. Thus, the inclusion of stochastic fluctuations in
the model was able to account for several features not accounted for by the deterministic
model. The fact that noise is able to qualitatively alter macroscopic system behavior
suggests that stochastic fluctuations play a key role in modulating cellular regulation.
Stochastic differential equation models provide a powerful framework for gaining an
understanding of these phenomena.
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Figure 13.1.
The state-transition diagram for the Boolean network defined in Table 13.1 (Shmulevich et
al., 2002c).
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Figure 13.2.
The behavior of the solution to ẋ = k1a − k2x, x(0) = 0, where k1 = 2, k2 = 1, and a = 1. As
can be seen, the gene product x, shown with a solid plot, tends toward its steady-state value
given in Eq. (13.6). The time derivative ẋ, which starts at initial value of k1a and tends
toward 0, is shown with a dashed plot.
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Figure 13.3.
The function F+ (x, θ) for θ = 1 and n = 1, 2, 5, 10, 20, 50, and 100. As n gets large, F+ (x, θ)
approaches an ideal step function and thus functions as a Boolean switch.
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