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Abstract
Two approaches to motor redundancy, optimization and the principle of abundance, seem
incompatible. The former predicts a single, optimal solution for each task, while the latter assumes
that families of equivalent solutions are used. We explored the two approaches using a four-finger
pressing task with the requirement to produce certain combination of total normal force and a
linear combination of normal forces that approximated the total moment of force in static
conditions. In the first set of trials, many force-moment combinations were used. Principal
component (PC) analysis showed that over 90% of finger force variance was accounted for by the
first two PCs. The Analytical Inverse Optimization (ANIO) approach was applied to these data
resulting in quadratic cost functions with linear terms. Optimal solutions formed a hyperplane
(“optimal plane”) in the four-dimensional finger force space. In the second set of trials, only four
force-moment combinations were used with multiple repetitions. Finger force variance within each
force-moment combination in the second set was analyzed within the uncontrolled manifold
(UCM) hypothesis. Most finger force variance was confined to a hyperplane (the UCM)
compatible with the required force-moment values. We conclude that there is no absolute optimal
behavior, and the ANIO yields the best fit to a family of optimal solutions that differ across trials.
The difference in the force producing capabilities of the fingers and in their moment arms may
lead to deviations of the “optimal plane” from the sub-space orthogonal to the UCM. We suggest
that the ANIO and UCM approaches may be complementary in analysis of motor variability in
redundant systems.
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Introduction
One of the central problems of motor control is the problem of motor redundancy (Bernstein
1967). The problem implies that the number of variables produced by elements of the
system (elemental variables) at any level of analysis is higher than the number of constraints
imposed by typical tasks. Therefore, an infinite number of solutions are possible. Two
approaches have dominated the attempts at solving this problem.

One of the approaches implies that the central nervous system (CNS) defines and
implements a solution that optimizes a certain cost function (Seif-Naraghi and Winters
1990; Tsirakos et al. 1997; Rosenbaum et al. 2001; Raikova and Prilutsky 2001; Prilutsky
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and Zatsiorsky 2002; Ait-Haddou et al. 2004). A variety of cost functions have been offered
based on mechanical (e.g., energy, jerk, torque-change etc.), psychological (e.g., effort),
mathematical (e.g., norm), and physiological (e.g., fatigue) variables as well as on complex
functions representing combinations of several of the above. In most studies, optimized
functions have been selected rather arbitrarily based on intuition and theoretical views of
particular researchers and then tested using experimental data.

Recently, our group developed a method of identifying a cost function objectively based on
experimental observations and certain assumptions (Terekhov et al. 2010; see also similar
approaches developed by others, Sieminski 2006; Bottasso et al. 2006). This approach,
called analytical inverse optimization (ANIO), was successfully tested using static
prehension tasks that involved holding objects with different combinations of mass and
external torque.

The other approach to the problem of motor redundancy is based on the principle of
abundance (Gelfand and Latash 1998). It refutes the idea of the CNS finding a single
optimal solution and assumes that families of solutions are facilitated that are all equally
able to solve the task. In each specific trial, a single solution is selected from such a family
based on factors that may not be controlled in the study and/or by pure chance. A
computational method has been developed to identify and quantify such families of
solutions within the framework of the uncontrolled manifold (UCM) hypothesis (Scholz and
Schöner 1999; reviewed in Latash et al. 2002). The UCM hypothesis assumes that the CNS
acts in a space of elemental variables and organizes within that space a sub-space (UCM)
corresponding to a desired value of a potentially important performance variables. Further,
the CNS tries to limit variance across repetitive attempts at the task in directions orthogonal
to the UCM (“bad variance”) while it allows relatively large variance within the UCM
(“good variance”). A number of studies used the UCM hypothesis framework to analyze
multi-finger coordination during force and moment-of-force production tasks (reviewed in
Latash et al. 2007; Zatsiorsky and Latash 2008).

The two approaches to the problem of motor redundancy look incompatible. Indeed, the
former assumes that a single optimal solution is found by the CNS while the latter assumes
that families of equivalent solutions are generated. Assuming that a cost function produces a
single solution to a redundancy problem and that this solution is unaffected by such factors
as initial conditions and history effects, if the same magnitude of an important performance
variable is produced with different sets of values of elemental variables, only one of such
experimentally observed sets can be the optimal set while the other sets are not optimal.

In this study we pursued several goals. First, we wanted, for the first time, to apply both
methods - ANIO and UCM analysis - to the same redundant task. The task we selected —
pressing with four fingers in isometric conditions to satisfy two explicit constraints, the
prescribed total normal force and a linear combination of the normal forces approximating
total moment of the normal forces—has never been analyzed using these two methods. Our
first hypothesis has been that the ANIO will be able to identify an optimal analytical
function for this task, while the UCM method will show that variability across trials for a
given force/moment combination is structured in such a way that it is mostly confined to the
UCM computed for the two constraints.

Second, we explored the relative orientation of two sub-spaces in the four-dimensional space
of the elemental variables (individual finger forces), the UCM and the plane of optimal
solutions defined by the ANIO approach. The second hypothesis is based on the expectation
—stemmed from our previous findings on normal force sharing in the prehension tasks
(Terekhov et al. 2010)—that the optimal solutions lie on a plane, and not on a curved
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surface. We hypothesized that the two planes would be orthogonal. Indeed, the optimal
plane corresponds to optimal combinations of elemental variables (finger forces) that
produce different values of the two task variables, — the total force and total moment —
while the UCM, by definition, contains values of elemental variables that keep both task
variables unchanged. In other words, the orthogonal complement to UCM would be parallel
to the plane of optimal solutions if the second hypothesis is true.

Methods
Subjects

Eight right-handed male volunteers (age: 30.88 ± 3.52 years, weight: 69.40 ± 6.63 kg,
height: 175 ± 5.32 cm, hand length: 18.54 ± 1.40 cm, and hand width: 8.94 ± 0.29 cm; mean
± SD across subjects are presented) participated in the current experiment. The handedness
was determined by the Edinburgh Handedness Inventory (Oldfield 1971). No subject had a
previous history of neuropathies or traumas to their upper extremities. The hand length was
measured using the distal crease of the wrist to the middle fingertip when a subject
positioned the palm side of their right hand and the lower arm on a table with all finger
joints extended. The hand width was measured from the radial side of the index finger
metacarpal joint to the ulnar side of the little finger metacarpal joint. Before testing, the
experimental procedures of the study were explained to the subjects and the subjects signed
a consent form approved by the Pennsylvania State University.

Equipment
Four force sensors (Nano-17, ATI Industrial Automation, Garner, NC) were used to measure
pressing forces (i.e., normal forces) being attached to a customized flat panel (140 × 90 × 5
mm) as shown in Fig. 1c. Only normal forces (along Z-axis) were measured. Each sensor
was covered with a cotton pad in order to increase the friction. On the panel, there were four
slots along the X-axis, which were used to attach the sensors, and the sensor positions were
adjusted along the slots according to the individual hand and finger size of each subject. The
distance between the slots was 3.0 cm in the medio-lateral direction. The panel was
mechanically fixed to the immovable table.

A total of four analogue signals from the sensors related to the normal force components
were digitized with a 12-bit analogue-digital converters (PCI-6031 and PCI-6033, National
Instrument, Austin, TX) with the help of a customized LabVIEW program (LabVIEW 8.0,
National Instrument, Austin, TX). Before each trial, all signals from the sensors were
zeroed. Matlab (Matlab 7.4.0, Mathworks, Inc) programs were written for data processing as
well as analysis. The sampling frequency was set at 200 Hz.

Experimental procedures
Before experiments, the subjects washed their hands to normalize the skin condition. The
subjects sat in a chair facing the computer screen and positioned their right upper arm on a
wrist-forearm brace that was fixed to the table. Each subject had an orientation session to
become familiar with the experimental devices and to ensure that the subject was able to
perform the experimental tasks. The forearm was held stationary with Velcro straps to
prevent forearm and wrist movement, and the fingertips were placed on the centers of
sensors (Fig. 1b). A wooden piece was placed underneath the subject’s right palm (Fig. 1b)
in order to ensure a constant configuration of hand and fingers during finger force
production.

There were one auxiliary force-production task and two main force-moment production
tasks. The auxiliary force-production task included multi-finger maximal voluntary
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contraction (MVC) task by all four fingers (MVCIMRL) and index finger MVC task (MVCI).
The subjects were asked to increase force gradually and produce maximal force by either all
four fingers or the index finger only within 3 s. The maximal force during this time interval
was measured and used to determine target force and moment magnitudes in the two main
tasks. For the index-finger MVC (MVCI) task, the subjects were asked not to pay attention
to possible force production by the other fingers as long as all the fingers stayed on the
sensors.

The two main tasks required the subjects to produce various combinations of steady-state
levels of total normal force (FTOT) and moment of normal force (MTOT) simultaneously as
accurately as possible. Note that we use MTOT for a linear function of normal finger forces
that only approximated the actual moment of force; in particular, we did not consider
possible changes in the coordinates of finger force application and the contribution of shear
forces. In other words, both FTOT and MTOT were not measured but computed from normal
finger forces. So the subjects were given two constraints on normal force components only.
Their sum had to be a number (FTOT) and their linear combination multiplied by some
coefficients (nominal moment arms) had to be another number (MTOT). There was no
fulcrum; so, the subjects were free to vary other force components and points of force
application as they liked. The produced FTOT and MTOT in either pronation (PR) or
supination (SU) were displayed on the computer screen with the cursor showing FTOT along
the vertical axis and MTOT along the horizontal axis (Fig. 1a). During each trial, the subjects
were given 4 s to reach the target values of FTOT and MTOT as accurately as possible and
maintain these values for 2 s. Real-time FTOT and MTOT feedback was provided by a 19”
monitor screen positioned 0.8 m in front of the subject.

In the first main session (session-1), the force target levels included 20, 30, 40, 50, and 60%
of MVCIMRL measured earlier. The moment target levels included 2PR, 1PR, 0PR, 1SU,
and 2SU. 1PR was defined as the product of 7% of MVCI by the lever arm of the index
finger (di = −4.5 cm) into pronation with respect to the midpoint between the middle and
ring fingers. 1PR (pronation) and 1SU (supination) were equal in magnitude, but opposite in
direction. These particular target values were selected to cover a broad range of FTOT and
MTOT but not to lead to fatigue. There were 25 experimental conditions (5 levels of forces ×
5 levels of moments) in session-1. The subject performed three trials for each condition in a
row. Thus, each subject performed a total of 75 trials (5 levels of forces × 5 levels of
moments × 3 trials = 75 trials) during session-1.

For the second main session (session-2), the force levels included 20% and 40% of
MVCIMRL, and the moment levels included 2PR and 2SU. Each subject performed 25 trials
for each of the four conditions, therefore, a total of 100 trials (2 levels of forces × 2 levels of
moments × 25 trials = 100 trials) were collected during session-2 for each subject. The
purpose of collecting multiple trials in session-2 was to be able to apply the uncontrolled
manifold analysis of the finger force variance.

If the deviation of final FTOT and MTOT from the prescribed values exceeded the pre-

defined criteria ( , ), the data
collection stopped and the subject performed the trial again. This happened in 16 out of a
total of 1400 trials. After each trial, a 30-s break was given to avoid finger fatigue. The order
of FTOT, MTOT combinations was randomized.
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Data Analysis
Initial data processing—The data processing was limited to analysis of the normal
forces and moments of normal forces. The data were digitally low-pass filtered with a 4th

order Butterworth filter at 5 Hz. Further, the data from the main tasks were averaged over
1.5 s in the middle of the time period where steady-state values of force and moment were
observed. These averaged values were used for further analysis.

Task constraints—The main tasks required the subjects to satisfy two constraints.

1) The sum of the normal forces of all four fingers had to be equal to the prescribed values
decided by the percent force of the subject’s MVCIMRL:

(1)

where the subscripts i, m, r, and l stand for the index, middle, ring and little finger
respectively, and α indicates a given percentage (for session-1, α = 20%, 30%, 40%, 50%,
and 60%; for session-2, α = 20% and 40%).

2) The resultant moment of normal forces had to be equal to the prescribed values computed
as the product of 7% of MVCI of the subject by the lever arm of the index finger (di =
4.5cm):

(2)

where d and F stand for the lever arms and the normal force for corresponding finger,
respectively. Note that we assumed no changes in the points of force application on the
surface of sensor in the medio-lateral direction. Thus, the lever arms (di, dm, dr, and dl) were
constant with respect to the mid-way between the middle and ring fingers: di = −4.5 cm, dm
= −1.5 cm, dr = 1.5 cm, and dl = 4.5 cm in the medio-lateral direction. b = {−1, −2, 0, 1, and
2} for session-1, and b = {−2 and 2} for session-2. Again, 1PR was defined as the product
of 7% of MVCI by the lever arm of the index finger (di = − 4.5 cm) into pronation with
respect to the midpoint between the middle and ring fingers.

The ANIO approach—The ANIO requires knowledge of the surface on which the
experimental results are mainly located (explained in Terekhov et al. 2010). Because the
cited study of prehension tasks suggested that the surface was a plane, principal component
analysis (PCA) was performed on the finger force data. The purpose of the PCA analysis
was to check whether finger force data for session-1 were indeed confined to a plane. PCA
was performed on 75 observations (5 levels of forces × 5 levels of moments × 3 trials = 75
trials) for each subject, which covered all force and moment combinations in session-1.

The Kaiser Criterion (Kaiser, 1960) was employed to extract the significant principal
components (PCs), and the percent variance explained by the first two PCs was computed in
order to test if experimental observations were confined to a two-dimensional hyper-plane in
the four-dimensional force space.

The analytical inverse optimization (ANIO) is a mathematical tool, which has been
previously applied to the finger force data in prehension tasks (Terekhov et al. 2010). The
purpose of the ANIO is to determine an unknown objective function based on a set of
observed finger forces. The ANIO approach was applied to the data obtained in session-1
which covered a broad range of task FTOT and MTOT.
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Note that we assume non-sticking contact between the finger tips and force sensors
throughout the experiment. Therefore, forces could only be positive. The optimization
problem in the current study was defined as

(3)

The two linear constraints are expressed as

(4)

The task involved two constraints (FTOT and MTOT values) and four elemental variables
(finger forces). Thus, the solutions of this undetermined system were expected to be
confined to a two-dimensional hyperplane in the four-dimensional force space. The
following computational procedure explains how the optimization cost-function was
obtained.

First, we identified whether the optimization problem was splittable or not by observing the
(4×4) matrix:

(5)

(for more details, see Appendix 1)

Second, we checked whether the experimental data actually lied on a hyperplane (and not
for instance on a curved hypersurface) and then defined the observed hyperplane
mathematically as

(6)

where A is a 2×4 matrix composed of the transposed vectors of the two lesser principal
components obtained from the PCA from the finger force data in session-1. A large
percentage of the total variance (>90%) explained by the two first principal components was
considered an indicator that the data indeed were mostly confined to a hyperplane. However,
the data points showed deviations from the hyperplane due to the variability of performance
and instrumental noise. Also, the plane computed from Eq. 6 was affected by experimental
errors.

Third, we compared the experimentally determined hyperplane to the theoretical plane
derived from the Uniqueness Theorem (for more details, see Appendix 1). The experimental
data must be fitted by the following equation:
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(7)

where, , fi are arbitrary continuously differentiable
functions. Since the data were shown to lie on a plane, the functions  are linear:

(8)

where i = {index, middle, ring, and title}.

Therefore,

(9)

The values of the coefficients of the second-order terms ki can be determined by minimizing
the dihedral angle between the two planes: the plane of optimal solutions  and the
plane of experimental observations ( A·FT = 0). The values of the coefficients of the first-
order terms wi were found to correspond to a minimal vector length

( ) bringing the theoretical and the experimental plane as
close to each other as possible. Vector w satisfies the following equation:

(10)

where  and .

Then, the functions gi in Eq. 3 are:

(11)

where r is a nonzero number, consti can be any real number, and qi is any real number

satisfying the equation  (Terekhov et al., 2010). note that multiplication of the cost
function by a constant value or adding a constant value to it does change the cost function
essentially. Hence we can arbitrary assume r = 1 and consti = 0. According to the
Uniqueness Theorem, identification of the cost function can be performed only up to
unknown linear terms, which are parameterized by the values qi. We assume qi = 0 in order
to simplify gi(xi). It must be kept in mind, however, that the true cost function used by the
CNS might have these terms.

Therefore, the desired objective function is:

(12)
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where i = {index, middle, ring, and little}; kindex was set at 1 in order to normalize the
coefficients.

If the coefficients of the second-order terms are positive, the function complies with the
assumption of the objective function minimization. In the results, the coefficients of second-
order and first-order terms for each subject will be presented with the dihedral angle
between the plane of optimal solutions and the plane determined by the experimental
observations.

Analysis of finger force co-variation (the UCM method)—Prior to the analysis of
finger force co-variation, principal component analysis (PCA) was also performed on the
finger force data in session-2. Because there were two task constraints (FTOT and MTOT)
with four force variables, the finger force data across multiple trials with the same values of
the two constraints were expected to lie on a two-dimensional plane. Hence, four separate
PCAs were applied to 25 observations within each of {FTOT, MTOT} combinations.

Afterwards, the force data were analyzed within the framework of the uncontrolled manifold
(UCM) hypothesis (Scholz, Schöner 1999; reviewed in Latash et al. 2002, 2007). The
hypothesis offers a method to compute the extent to which the values of relevant
performance variables (FTOT and MTOT) are stabilized by the co-variation of individual
finger forces. Two components of finger force variance, VUCM and VORT, across the 25
trials for each condition were computed. The first component (VUCM) does not affect the
averaged across trials values of FTOT and/or MTOT. The other component (VORT) affects
those values. The two variances were computed with respect to FTOT, MTOT, and both
{FTOT, MTOT} simultaneously. This was done to explore whether the central nervous
system produces co-variation of finger forces to stabilize only FTOT, only MTOT, or both.
Note that results compatible with stabilization of {FTOT, MTOT} may be due to stabilization
of only one of those variables or of both variables. The computational details are shown in
Appendix 2. Further, an index reflecting the relative amounts of VUCM and VORT was
computed as:

(13)

where VTOT stands for the total finger force variance, and each variance index is computed
per degree-of-freedom in the corresponding spaces (Krishnamoorthy et al. 2003; Robert et
al. 2008). Prior to statistical analysis (see later), this index was transformed using a Fisher z-
transformation (ΔVz) adapted to the boundaries of ΔV.

The ANIO approach requires a data set that covers a broad range of FTOT and MTOT values.
The UCM analysis examines the variance in the finger force space for a fixed set of FTOT
and MTOT. So, session-1 involved trials at different {FTOT; MTOT} values and session-2
involved repetitive trials at a few combinations of {FTOT; MTOT}. The application of the
ANIO approach to the force data from session-1 resulted in the reconstruction of a
hyperplane, which we will refer to as “the optimal plane”. The application of the UCM
analysis to the data from session-2 resulted in the reconstruction of another hyperplane, the
UCM. The angle between the UCM and optimal hyperplanes was calculated in the four-
dimensional force space.

Statistics
To analyze the data in session-2, we explored how VUCM and VORT were affected by
different {FTOT, MTOT} combination with three separate ANOVAs with repeated measures
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with the factors FORCE (two levels: 20% and 40% of MVCIMRL), MOMENT (two levels:
2SU and 2PR), and VARIANCE (two levels: VUCM and VORT) for each of three analyses:
FTOT-related, MTOT-related, and {FTOT, MTOT}-related. We also performed an ANOVA
with repeated measures on the z-transformed ΔV index with factors FORCE (two levels:
20% and 40% of MVCIMRL), MOMENT (two levels: 2SU and 2PR), and ANALYSIS (three
levels: FTOT-related, MTOT-related, and {FTOT, MTOT}-related). The p-value of statistical
significance was set at p < 0.01. Tukey’s honestly significant difference tests and pairwise
contrasts were used to explore significant effects.

To test the hypothesis that the UCM and the plane of optimal solutions are orthogonal, the
angle between these two planes was compared to 90° using a single sample t-test.

Results
The average maximal voluntary contraction forces by all four fingers and by the index
finger, MVCIMRL and MVCI, across subjects were 71.13 ±14.00 N (mean ± standard
deviation) and 41.00 ± 6.76 N, respectively. In the main tasks, the subjects reached the
prescribed combinations of {FTOT, MTOT} with high accuracy. Figure 2 shows average
FTOT and MTOT across subjects (large black dots) with standard deviation bars and forces
and moments for individual subjects (small gray dots) during session-1.

Principal component (PC) analysis
The principal component analysis (PCA) was performed on the sets of 75 observations (5
force conditions × 5 moment conditions × 3 trials) in session-1, and on the four sets of 20
observations each in session-2 for each subject.

In general, the first two PCs accounted for more than 90% of the total variance in the finger
force space (Table 1). On average, PC1 accounted for 67.33 ± 8.17% of variance, while PC2
accounted for 27.29 ± 7.91% of variance. In addition, the number of significant PCs (i.e., the
Kaiser criterion, PCs with the eigenvalues over 1) was two for the analyses for both
session-1 and session-2. These imply that that the experimental observations were confined
to a two-dimensional hyperplane in the four-dimensional force space for each of the two
sessions.

For PCA performed on the data within session-1, all four finger forces had large loadings
with the same sign (i.e., positive loadings) in PC1 (Fig. 3). In PC2, the loadings of the index
and little finger forces were larger than those of the middle and ring finger forces (Fig. 3).
The loadings of the index and middle fingers were of the same sign, while the sign of the
loadings for the ring and little finger forces was opposite. These results may be interpreted
as PC1 producing primarily FTOT changes and PC2 producing primarily MTOT changes.

For session-2, the loadings of the index and little finger forces in PC1 were larger for all
four conditions as compared to the loadings of the middle and ring finger forces (Fig. 4a).
The middle finger force had a large loading with the sign opposite to the signs of index and
little finger during pronation effort, while the ring finger force had a large loading with the
opposite sign to the loadings of index and little finger during supination (Fig. 4a). In PC2,
the loadings of the index and ring finger forces had an opposite sign to the loadings of the
middle and little finger forces (Fig. 4b).

The ANIO approach
The PCA results show that the experimental data in session-1were mainly confined to a two-
dimensional plane spanned by PC1 and PC2. This indicates that the optimization cost
function is quadratic (this conclusion follows from ‘the Lagrange principle for the inverse

Park et al. Page 9

Exp Brain Res. Author manuscript; available in PMC 2011 December 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



optimization problem’ proved in Terekhov et al. 2010). Hence, the ANIO approach was
reduced to the determination of the coefficients at the quadratic (ki) and the linear terms (wi).
These coefficients were defined to fit the data best; they are presented in Table 2.

The cost-function for each subject in the current task could be represented as:

 where F stands for finger force, i = {index, middle, ring, and
little} (see Eq. 12 in Methods). The coefficients at the second-order terms were positive for
all subjects (Table 2), which supports the assumption of the objective function minimization
(see Appendix 1). The averages of the second-order term coefficients across subjects were
0.82 ± 0.22, 0.98 ± 0.35, and 1.79 ± 0.74 (mean ± standard error) for the middle, ring, and
little finger force, respectively. The average dihedral angle across subjects was 2.05° ± 0.59°
(mean ± standard error). The dihedral angles of subjects 5 and 8 were relatively large (≥
4.00° but less than 5.5°).

The UCM analysis
Two components of finger force variance, VUCM and VORT, were quantified per degree-of-
freedom with respect to FTOT, MTOT and their combination, {FTOT, MTOT}, using
observations in session-2 (see Methods for more details). Overall, VUCM was always greater
than VORT (Fig. 5). This means that most finger force variance was compatible with the
selected performance variable for all analyses. VUCM increased with the magnitudes of
prescribed force levels (20% and 40% of MVCIMRL), while it was not significantly different
between task moment conditions (2SU and 2PR). These results were supported by an
ANOVA on VUCM which showed significant main effects of FORCE (two levels: 20%
MVC and 40% MVC) [F[1,7] = 22.60, p < 0.001 for the FTOT analysis; F[1,7] = 30.06, p <
0.001 for the MTOT analysis; F[1,7] = 29.81, p < 0.001 for the {FTOT, MTOT} analysis],
VARIANCE (two levels: VUCM and VORT) [F[1,7] = 60.93, p < 0.0001; F[1,7] = 58.90, p <
0.0001; F[1,7] = 63.36, p < 0.0001 for the three analyses respectively], and a significant
interaction [F[1,7] = 37.47, p < 0.0001; F[1,7] = 29.20, p < 0.001; F[1,7] = 35.44, p < 0.001 for
the three analyses, respectively]. A significant interaction between FORCE and VARIANCE
reflects the fact that VORT did not increase with the magnitudes of prescribed force levels
(20% and 40% of MVCIMRL) while VUCM did. The pair-wise comparisons confirmed that
VORT at 20%MVC condition was not significantly different from VORT at 40%MVC
condition for the FTOT and {FTOT, MTOT} analyses. In MTOT analysis, however, VORT at
20%MVC with 2PR condition was significantly smaller than VORT at 40%MVC with both
2PR (p < 0.01) and 2SU (p < 0.01) conditions. VORT at 20%MVC with 2SU was not
statistically different from VORT at 40%MVC with 2PR, but smaller than VORT at 40%MVC
with 2SU (p < 0.01) in MTOT analysis.

The index ΔV was computed as the normalized difference between VUCM and VORT (Fig 6).
In general, ΔV increased with FTOT. In addition, ΔVM > ΔVF > ΔVFM for all experimental
conditions. A three-way repeated measures ANOVA with the factors FORCE (two levels:
20% MVC and 40% MVC), MOMENT (two levels: 2PR and 2SU), and ANALYSIS (three
levels: FTOT-related, MTOT-related, and FTOT+MTOT-related) was performed on z-
transformed ΔV values. The main effects of FORCE and ANALYSIS were significant
without a significant interaction [FORCE: F[1,7] = 36.02, p < 0.0001; ANALYSIS: F[2,14] =
27.86, p < 0.001]. The pair-wise comparisons within each combination of FORCE and
MOMENT confirmed that ΔVM > ΔVF > ΔVFM. The effect of FORCE reflected higher ΔV
values for the 40%MVC conditions.
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The angle between the UCM and optimal subspaces
The angle between two subspaces, UCM and optimal space (defined with the ANIO
approach), was computed. The average angle between the two planes across subjects was
79.81 ± 4.6 degrees (mean ± standard deviation). Note that the UCMs computed for
different {FTOT, MTOT} combinations were parallel to each other. In other words, the angle
between the optimal space and the subspace orthogonal to UCM was about 10 degrees. The
one-sample t-test with 90° as a test-value confirmed that the angle between the two planes
was significantly different from 90 degrees (p < 0.01).

Discussion
The results of the study allow answering the main questions formulated in the Introduction.
In support of our first hypothesis, the results show that the ANIO approach is able to identify
an optimal analytical function for the redundant task of multi-finger production of a
combination of total force and total moment of force. At the same time, the UCM method
has shown that variance across trials in the finger force space when the subjects performed
the same task several times was mostly confined to the UCM. The second hypothesis was
falsified. The angle between the plane defined by the ANIO approach and the UCM method
was significantly different from the predicted 90° (approximately 10° of difference). In the
rest of the Discussion, we address issues of interactions between optimality and variability
in human motor actions.

Variability of optimal behavior
The idea of defining a single optimal solution for a redundant task seems to leave little space
for motor variability. This is true, however, only if several consecutive attempts at a task are
performed in perfectly reproducible conditions, which is impossible to achieve. The ANIO
is based on an assumption that one and the same analytical function is applicable as the cost
function to a set of observations (Terekhov et al. 2010). According to this assumption, if the
values of the two constraints (FTOT and MTOT) are perfectly reproduced for two trials, the
observed combinations of finger forces should be exactly the same, for example defined by
the principle of minimization of the secondary moments (Li et al. 1998; Zatsiorsky et al.
2000). This is certainly not true, and experimental data in session-2 show substantial
variance in the finger force space that is organized to keep the important performance
variables, such as FTOT and MTOT, relatively invariant (cf. Scholz and Schöner 1999; Scholz
et al. 2000; Latash et al. 2001).

One interpretation of the across-trials variability may be that neuromotor noise (e.g., Harris
and Wolpert 1998) due to unavoidable variability of intrisnic and extrinsic variables
produces deviations from a single optimal solution. However, such noise is not expected to
show task-specific covariation among its contributions to the outputs of elements. In
particular, it is expected to lead to equal contributions to variance within the UCM and
orthogonal to it. This is not what we found. The across-trials variance for the same
constraints (same FTOT and MTOT values) was mostly within the UCM; so, we feel hesitant
to attribute these observations to neuromotor noise.

It is also possible that the cost function defined by the ANIO method is not the “true” cost
function, which may be related to optimization of some of the numerous physiological
variables within the body. Our analysis at the level of mechanical variables naturally looks
for a cost function expressed in the same variables. Across a broad range of {FTOT; MTOT}
combinations, the method may fit the data well, that is the differences between the dicovered
and “true” cost functions may be small. However, when the range of {FTOT; MTOT} is
reduced, as in the repetitive trials in session-2, the differences between the computed cost
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function and the “true” cost function may be large enough to cause the seeming problem
with the observation of data distributions elongated along the UCM.

Based on the observations of substantial variability across trials with the same values of the
two constraints, it is possible to conclude that optimality of the observed finger force
patterns is not absolute. It may depend on a particular state of the system when the task is
performed, for example on excitability of relevant neuronal pools, as well on the tiny
variations in the performance conditions. Hence, each trial is performed by the neuromotor
system starting from a unique state, and optimal solutions may vary across such states. The
ANIO allows determining the best fit to the family of such state-dependent optimal
solutions, but it cannot predict perfectly the finger force combinations for any given set of
values of the two task variables.

Optimality of variable behavior
Motor variability has been a rich source of information on the principles of control of natural
movements (reviewed in Newell and Corcos 1993; Latash et al. 2002). Most researchers
would agree that motor variability is not a result of a “neuromotor noise” (Schmidt et al.
1979; Newell and Carlton 1988). In particular, the patterns of variance quantified with the
help of the UCM hypothesis show that, across a variety of tasks, substantial amounts of
variability are present in the space of elemental variables that has no effect on important
performance variables (“good variance”), while variability that affects such variables (“bad
variance”) is kept low (Scholz and Schöner 1999 reviewed in Latash et al. 2007; Latash
2008, 2010). Several studies have documented an increase in “good variance” in conditions
of uncertainty and possible perturbations (Yang et al. 2006; Freitas and Scholz 2009).

Figure 7a illustrates typical data point distributions across several attempts to produce the
same total force level with two fingers (cf. Latash et al. 2001). These distributions are
typically elongated along the UCM for the target force, i.e. the line corresponding to the
equation F1+F2=FTOT (Latash et al. 2001; Scholz et al. 2002). The same figure shows curves
for certain values of a hypothetical cost functions corresponding to each FTOT level. We use
this illustration of a two-finger system and one constraint to illustrate the idea because
drawing two-dimensional hyperplanes on a four-dimensional space is beyond our abilities.

Note that each curve touches each UCM in only one point, at the optimal solution. However,
data points show a scatter, primarily along the UCM, which suggests that solutions other
than the optimal one were used. Note that the data in this mental experiment do not cover
the entire length of the F1+F2=FTOT line. For instance, the values F1=0; F2=FTOT are never
used. This is valid for real observations (Latash et al. 2001; Gorniak et al. 2009). Hence,
there is a factor that limits the variability range. It seems reasonable to assume that this
factor reflects an unknown optimization process.

We suggest that two potentially independent features of data distributions are defined by the
two principles, optimality and structured variance. The centers of the observed data
distributions correspond to average sharing patterns of the total force (and maybe other
variables) between the fingers reflecting an optimality criterion. The shape of the
distributions indicates desired stability properties of the system in producing the required
value of FTOT reflecting the relative amounts of “good” and “bad” variance.

Sub-spaces of optimal solutions, UCM, and range motion
The UCM hypothesis allows considering the space of elemental variables as two sub-spaces,
the UCM and its orthogonal complement. A change in the system’s coordinates within the
UCM does not produce changes in the performance variable for which the UCM was
computed. In contrast, a shift of the system orthogonally to the UCM produces the fastest
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change of that performance variable. This motion may correspond to one defined by the
Moore-Penrose pseudo-inverse method (Whitney 1969; Mussa-Ivaldi et al. 1988). For
example, for the two-finger force production, the Moore-Penrose method predicts equal
contributions of the fingers to changes in the total force. In actual experiments, fingers rarely
share force 50:50 because of the differences in their force generating capabilities (Zatsiorsky
et al. 1998). So, trajectories in the space of finger forces during changes in FTOT have
components both within the UCM (self-motion) and orthogonally to the UCM (range
motion). These terms come from robotics where they imply, for a multi-joint movement, a
component that keeps the endpoint of the limb motionless and the one that moves the
endpoint (Murray et al. 1994).

The sub-space defined by the ANIO approach may be viewed as a space of such preferred
trajectories, which reflect differences among the elements, for example, the differences
across the fingers in their force generating capabilities and the differences in the moment
arms. In our experiments, the plane defined by the ANIO approach and the plane orthogonal
to the UCM were not parallel: The angle between the “optimal plane” and the UCM was
close to 80° (Fig. 7b). We interpret the deviation of this angle from the predicted 90° by the
fact that the fingers were not equal contributors to the task. For example, the little finger is
known to be weaker than other fingers (Li et al. 1998), and the level arms of the little and
index fingers were longer than those for the middle and ring fingers.

Potential Mechanisms
There have been several atempts to link observed patterns of data distribution in redundant
systems to possible neural mechanisms. These included feedback-based models (Todorov
and Jordan 2002; Latash et al. 2005), a feed-forward model (Goodman and Latash 2006),
and a dynamic model incorporating the ideas of the equilibrium-point hypothesis (Martin et
al. 2009). Recently, direct links between the equilibrium-point (referent configuration)
hypothesis (Feldman 1986; Feldman and Levin 1995) and the idea of synergies stabilizing
features of performance have been suggested (Latash et al. 2010). Within the latter
approach, a hierarchical control system is implied that involves several steps of
transformation from a referent configuration at the level of most salient performance
variables (such as FTOT and MTOT in our study) to referent configurations at the level of
elemental variables and actual values of those variables.

One of the mentioned models (Latash et al. 2005) is based on a system of back-coupling
feedback loops resembling the well known system of Renshaw cells. Two types of control
variables are assumed in that model. One of them (CV1) defines a desired trajectory of
important variables (such as {FTOT, MTOT} in our study) and their average sharing among
the elemental variables (finger forces in our study), while the other one (CV2) defines
patterns of covariation of elemental variables that stabilize the {FTOT, MTOT} trajectory.
Within this simplified scheme, optimization is relevant to defining patterns of CV1 while the
relative amounts of VUCM and VORT variance components are defined by CV2. Within this
scheme, the ideas of optimization and variability are complementary, not competing, and the
seeming incompatibility of the two is resolved.
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Appendix 1

Uniqueness Theorem (for the mathematical proof see Terekhov et al. 2010)
The core of the ANIO approach is the theorem of uniqueness that specifies conditions for
unique (with some restrictions) estimation of the objective functions. The main idea of the
theorem of uniqueness is to find necessary conditions for the uniqueness of solutions in an
inverse optimization problem. An optimization problem (i.e., direct optimization problem)
with an additive objective function and linear constraints are defined as:

(A1)

where , gi is an unknown scalar differentiable function with g’(·)>0.
gi came from the Lagrange minimum principle, which has a unique solution. On the
contrary, the functions of gi can be computed from the set of solutions X* (e.g., experimental
data). This inverse procedure is called the inverse optimization problem. C is a k×n matrix
and B is a k-dimension vector, k<n.

First, assume that the optimization problem (A1) with k≥2 is non-splittable. If the inverse
optimization is splittable, the preliminary step is to split it until a non-splittable subproblem
is acquired. If the functions gi(xi) in problem (A1) are twice continuously differentiable (i.e.,
twice continuously differentiable functions fi) and  is not identically constant, complying

 for all ,

(A2)

(A3)

(A4)

for every , where  and X* is the set of the solutions for

all . The constants qi satisfy the equation  where . Primes
designate derivatives.

If the experimental data correspond to solutions of an inverse optimization problem with

additive objective function (gi) and linear constraints, equation  must be
satisfied (i.e., the Lagrange principle). The Uniqueness Theorem provides sufficient
condition (i.e., ) for solving the inverse optimization problem in a unique way up
to linear terms.
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Appendix 2

Uncontrolled manifold (UCM) analysis (see Latash et al. 2002, 2007 for
details)

For FTOT, changes in the elemental variables (finger forces) sum up to produce a change in
FTOT:

(B1)

The UCM was defined as an orthogonal set of the vectors ei in the space of the elemental
forces that did not change the net normal force, i.e.:

(B2)

These directions were found by taking the null-space of the Jacobian of this transformation

( ). The mean-free forces were then projected onto these directions and
summed to produce:

(B3)

where n=4 is the number of degrees-of-freedom of the elemental variables, and p=1 is the
number of degrees-of-freedom of the performance variable (FTOT). The component of the
de-meaned forces orthogonal to the null-space is given by:

(B4)

The amount of variance per degree of freedom parallel to the UCM is:

(B5)

The amount of variance per degree of freedom orthogonal to the UCM is:

(B6)

The normalized difference between these variances is quantified by a variable ΔV:

(B7)

where VTOT is the total variance, also quantified per degree of freedom. If ΔV is positive,
VUCM > VORT, caused by negative co-variation of the finger forces, which we interpret as
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evidence for a force-stabilizing synergy. In contrast, ΔV=0 indicates independent variation
of the finger forces, while ΔV < 0 indicates positive co-variation of the individual finger
forces, which contributes to variance of FTOT.

A similar procedure was used to compute the two variance components related to
stabilization of MTOT. The only difference was in using a different Jacobian corresponding

to the lever arms of individual finger forces, .

We also analyzed the data with respect to stabilization of both FTOT and MTOT

simultaneously. In that case, the Jacobian was . The
dimensionality of VUCM for the analysis with respect to FTOT and MTOT separately is three
(one constraint), while the dimensionality of VUCM with respect to FTOT and MTOT
simultaneously is two (two constraints).
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Figure 1.
A: The feedback during the MVC task, session-1 (5 levels of forces × 5 levels of moments),
and session-2 (2 levels of forces × 2 levels of moments). B: The experimental setup. A
wooden piece was placed underneath the subject’s right palm to ensure a constant
configuration of the hand and fingers. C: The finger pressing setup. The sensors, shown as
white cylinders, were attached to a wooden frame. The frame was fixed to the immovable
table.
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Figure 2.
Normalized FTOT and MTOT data during session-1. Force values were normalized by
MVCIMRL, and moment values were normalized by 1SU (see Methods). The large black
dots indicate average values across subjects with standard deviations bars, while the small
gray dots nested in the ellipses represent normalized force and moment values for individual
subjects. The ellipses were fit to contain more than 90% of experimental observations for
each condition.
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Figure 3.
The loading factors of PC1 and PC2 from session-1. The average PC loadings of individual
finger forces are presented with standard error bars. I, M, R, and L indicate index, middle,
ring, and little finger, respectively.
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Figure 4.
(a) Loading factors of PC1 and (b) of PC2 of individual finger forces for the four FTOT and
MTOT combinations in session-2. The average PC loadings of individual fingers are
presented with standard error bars. I, M, R, and L stand for index, middle, ring, and little
finger, respectively
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Figure 5.
Two components of variance, VUCM and VORT, in the finger force space computed with
respect to (a) FTOT, (b) MTOT, and (c) {FTOT, MTOT} as performance variables. Variances
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were normalized by degree-of-freedom of corresponding spaces. The average values (N2)
across subjects are presented with standard error bars.
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Figure 6.
Z-transformed ΔV (dimensionless) for the FTOT-related (ΔVF), MTOT-related (ΔVM), and
{FTOT, MTOT}-related (ΔVFM) analyses. Average ΔVZ across subjects are presented with
standard error bars.
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Figure 7.
(a) Typical data distributions over repetitions of the task are shown for three values of the
total force. The curves that touch each UCM in only one point, correspond to certain values
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of a hypothetical cost function. The dotted line indicates the optimal solution space. (b) An
illustration of two uncontrolled manifolds (UCM1 and UCM2) for two values of the total
force produced by two fingers. The two arrows indicate the space orthogonal to the UCM
and the (hypothetical) space of optimal solutions. The gray ellipses show hypothetical data
point distributions.
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