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CGene: an R package for implementation of causal
genetic analyses
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The excitement over findings from Genome-Wide Association Studies (GWASs) has been tempered by the difficulty in finding the

location of the true causal disease susceptibility loci (DSLs), rather than markers that are correlated with the causal variants. In

addition, many recent GWASs have studied multiple phenotypes – often highly correlated – making it difficult to understand

which associations are causal and which are seemingly causal, induced by phenotypic correlations. In order to identify DSLs,

which are required to understand the genetic etiology of the observed associations, statistical methodology has been proposed

that distinguishes between a direct effect of a genetic locus on the primary phenotype and an indirect effect induced by the

association with the intermediate phenotype that is also correlated with the primary phenotype. However, so far, the application

of this important methodology has been challenging, as no user-friendly software implementation exists. The lack of software

implementation of this sophisticated methodology has prevented its large-scale use in the genetic community. We have now

implemented this statistical approach in a user-friendly and robust R package that has been thoroughly tested. The R package

‘CGene’ is available for download at http://cran.r-project.org/. The R code is also available at http://people.hsph.harvard.edu/

~plipman.
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INTRODUCTION

The excitement over positive findings from recently published
Genome-Wide Association Studies (GWASs) has been tempered by
the difficulty in finding the location of the true causal disease
susceptibility loci (DSLs), rather than markers that are correlated
with the DSL.1 Complicating the picture is that many recent GWASs
have studied multiple phenotypes, which are often highly correlated.2–4

This has made it very difficult to understand which associations that
were discovered by GWASs are causal and which are seemingly causal,
induced by phenotypic correlations. The ability to distinguish between
causal genetic associations and seemingly causal associations induced
by the intermediate phenotypes can provide important clues into the
underlying genetic architecture of the disease. In addition, there is
much interest in identifying endo-phenotypes or expression profiles
that may lie in the ‘genetic path’ between the marker locus
and the phenotype of interest to better understand how the
genetic mechanisms influence the complex trait. The recent interest
in understanding causal genetic pathways has led to the development
of new statistical techniques that look to distinguish between direct
and indirect causal genetic mechanisms. For quantitative and binary
traits, VanSteenlandt et al5 proposed a regression adjustment
procedure that is applied to the quantitative phenotype of interest,
adjusting for the potential presence of an association between the
endo-phenotype and the test marker locus. Lipman et al6 generalized
this regression technique for age-at-onset (survival) phenotypes.
The rejection of the null hypothesis of no genetic association

by such a modified genetic association test implies a direct causal
effect of the marker locus on the quantitative phenotype of interest,
that is, an effect through pathways other than that of the intermediate
phenotype.

However, so far, no software implementation exists for these causal
genetic methods. With the R package ‘CGene’, we have provided such
a tool. The package allows users to implement statistical techniques to
understand the causal pathways between genetic markers and a
primary outcome when an intermediate phenotype is also associated
with both the marker the primary outcome. The package is available
for download at http://cran.r-project.org/.7 The R code is also available
at http://people.hsph.harvard.edu/~plipman.

MATERIALS AND METHODS

The functions provided by ‘CGene’ enable investigators to test if a genetic

marker is associated with a primary outcome through pathways other than that

of an intermediate secondary phenotype. The functions allow for the primary

outcome to be continuous or discrete as described by Vansteenlandt et al5 or

the primary outcome may be survival data modeled parametrically or semi-

parametrically as described by Lipman et al.6 The R package assumes the

situation modeled with the causal directed acyclic graph (DAG) in Figure 1. In

Figure 1, X represents the genetic marker, L represents the diagnostic criteria for

the secondary phenotype K, T represents the target phenotype, U represents an

unmeasured common cause, and P represents factors leading to population

stratification (that have been controlled for in the design stage). As currently

written, the package assumes population-based data. An example of

the scenario modeled by the DAG can be found in respiratory
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genetic epidemiology. There is currently much interest in genetic markers in the

15q25 locus, encompassing the cluster of nicotinic cholinergic receptor genes

CHRNA3/CHRNA5/CHRNB4, which have been associated with chronic

obstructive pulmonary disease (COPD) and smoking behavior.3,8 It has been

speculated that functional variants in this region may actually be primarily

influencing nicotine addiction, as observed in recent GWASs on smoking

intensity, and are thus only associated with COPD due to the well-known links

between smoking and COPD.9–11 To determine if the genetic marker influences

COPD through pathways other than smoking, the COPD case–control binary

variable has the role of target phenotype ‘T’, smoking, represented as cumulative

exposure to tobacco smoke (ie pack-years smoked) or number of cigarettes

smoked per day, has the role of secondary phenotype ‘K’, the well-known

diagnostic criteria for smoking, such as gender, has the role of variable ‘L’.

In order to test for the direct effect between the marker locus X to the target

phenotype T in Figure 1, it is not proper to simply have marker locus X,

secondary phenotype K, and diagnostic criteria L as covariates in the regression

model (thus checking for the conditional independence of X and T, given K

and L). This is because both secondary phenotype K and diagnostic criteria L

are colliders in Figure 1. It is well known in causal methodology that having

colliders as covariates in a regression model does not ‘block’ the path of

interest, but, in fact, may induce a spurious relationship. Therefore, if we

add secondary phenotype K and diagnostic criteria L into the model, the

coefficient for the marker locus X variable will not only quantify the direct

effect from the marker locus X to the target phenotype T, but will also quantify

the ‘opened’ paths from marker locus X (to secondary phenotype K) to

diagnostic criteria L to unmeasured common cause U to target phenotype T.

Because of the existence of these colliders, standard regression techniques

fail to properly quantify the effect of interest from marker locus X to target

phenotype T.6,12

To avoid the problems caused by the confounders, we first look to quantify

the direct effect of secondary phenotype K on target phenotype T. We

then adjust the target phenotype by subtracting out the direct effect of the

secondary phenotype. In order to properly quantify the direct effect of

the secondary phenotype on the target phenotype, one must model the effect

of the secondary phenotype K on target phenotype T while controlling for

marker locus X and diagnostic criteria L to block all backdoor paths that could

induce spurious associations. After subtracting out the effect of secondary

phenotype K on target phenotype T, we then test if the genetic locus X is

associated with the adjusted phenotype by running a simple univariate

regression. This is possible because there are no open backdoor paths between

genetic locus X and adjusted phenotype (and controlling for diagnostic criteria

L and secondary phenotype K may induce spurious relationships as described

above), thus testing for a direct causal effect, that is, through pathways other

than the secondary phenotype. Score tests are used to determine the statistical

significance of the parameters from the univariate regression, accounting for

the adjustment of the primary phenotype.6

The functions in the R package ‘CGene’ allow for the marker genotypes to be

in a matrix, where rows represent subjects and each column is a marker. The

intermediate phenotype K is modeled using any family of a generalized linear

model (GLM), as chosen by the investigator. The diagnostic criteria L may also

be in a matrix, where each row represents a subject and each column is a

different variable. When primary outcome T is continuous, the investigator

may choose to model it using any family of a GLM. When T is survival data,

separate functions exist for modeling it parametrically or semi-parametrically.

When investigators use a parametric model for the primary outcome, any

family allowed by the ‘Survreg’ function in the Survival package may be chosen.

A separate function allows for investigators to model the primary outcome with

a Cox Proportional Hazards model (semi-parametric). The package has been

carefully tested and debugged. To assure its correctness, the empirical

significance level was estimated under a variety of scenarios. The causal DAG

as in Figure 1 was simulated under the null hypothesis of no direct effect from

genetic marker X to primary phenotype T. Simulations showed that the proper

type-1 a level was maintained under realistic scenarios (where genotype–

phenotype effect sizes were roughly 1% and phenotype–phenotype effect sizes

were between 5% and 10%) when the secondary phenotype K was either binary

or continuous, and the primary phenotype was either a binary, continuous, or

time-to-event outcome. We do note here that the methodology has an

important limitation that the seemingly causal associations between the genetic

marker and the target phenotype may be driven by a separate causal genetic

locus that is correlated with the genetic marker tested.

RESULTS

Each function outputs a single P-value for each marker (column of X),
testing whether there is a direct effect of marker X on primary outcome
T through pathways other than that of secondary phenotype K.
The function also outputs an effect size estimate, which is the
regression coefficient of the genetic marker on the primary outcome,
after the primary outcome has been adjusted for the effect of the
secondary phenotype. This estimate is appropriate for population-
based data, assuming no population substructure.

DISCUSSION

We have developed an R package ‘CGene’ to implement the genetic
causal methodology developed by Vansteelandt et al5 and Lipman
et al.6 The R package is currently available for download at http://
cran.r-project.org/.7 The functions provided by ‘CGene’ allow the
researcher to test if a genetic marker is associated with a primary
outcome, accounting for the presence of an intermediate secondary
phenotype. The rejection of the null hypothesis of no genetic associa-
tion by these methods implies a direct causal effect of the marker locus
on the quantitative phenotype of interest, that is, an effect through
pathways other than that of the intermediate phenotype. The func-
tions allow for a wide range of models using different families of
GLMs for the intermediate phenotype and a wide range of models for
the primary outcome, which may be continuous, discrete, or survival
data. The ‘CGene’ library provides the genetics community with a
valuable set of tools for the identification of DSLs and ultimately the
pathways underlying complex phenotypes and diseases.
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