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Chimeras are organisms composed 
of at least two genetically distinct 

cell lineages originating from different 
zygotes. In the laboratory, mouse chi-
meras can be produced experimentally; 
various techniques allow combining dif-
ferent early stage mouse embryos with 
each other or with pluripotent stem cells. 
Identification of the progeny of the dif-
ferent lineages in chimeras permits to 
follow cell fate and function, enabling 
correlation of genotype with phenotype. 
Mouse chimeras have become a tool to 
investigate critical developmental pro-
cesses, including cell specification, differ-
entiation, patterning and the function of 
specific genes. In addition, chimeras can 
also be generated to address biological 
processes in the adult, including mecha-
nisms underlying diseases or tissue repair 
and regeneration. This review summa-
rizes the different types of chimeras and 
how they have been generated and pro-
vides examples of how mouse chimeras 
offer a unique and powerful system to 
investigate questions pertaining to cell 
and tissue function in the developing and 
adult organism.

Introduction

Chimeras are organisms composed of two 
or more genetically distinct cell lineages. 
In mammals, the natural formation of 
chimeras is unusual, and in many cases 
erroneous. Directed production of labora-
tory mouse chimeras, however, has had an 
enormous impact on biological research. 
Beyond serving as a means to propagate 
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mutations through germ line contribution 
of mutated pluripotent stem cells, mouse 
chimeras have become a valuable tool to 
study cellular processes and gene func-
tion. Questions such as how cells become 
allocated to lineages, whether or not a 
gene is important for the formation of a 
specific lineage or tissue, or how genetic 
or epigenetic changes can influence the 
differentiation ability of cells within the 
organism, have been effectively addressed 
in chimeras.1,2 Key elements to using chi-
meras to answer such questions are the 
directed combination of genetically differ-
ent mouse embryos or embryos with plu-
ripotent stem cells such as embryonic stem 
(ES) cells, the use of markers to identify 
their progeny in the mixed organism, and 
the subsequent correlation of cell geno-
type with phenotype.

The chimera approach is not new—
many techniques for mouse chimera pro-
duction were developed decades ago—but 
remains uniquely useful, as illustrated 
by several recent studies on organ regen-
eration from pluripotent stem cells. These 
studies used mouse chimeras generated 
with pre-implantation stage embryos, in 
which different lineages co-develop from 
early stages onwards, to investigate the 
ability of induced pluripotent stem (iPS) 
cells to regenerate the liver in a mouse 
model of a fatal human liver disease,3 or to 
form an entire pancreas.4 In the following 
we introduce the different chimera types 
and their method of generation and discuss 
how mouse developmental chimeras can be 
used to study cell and tissue function, dis-
ease mechanisms and organ regeneration.
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the mixing of entirely maternally derived 
XX and XY cell lineages in a rare human 
parthenogenetic chimera.16 Another 
hypothesis suggests parthenogenetic 
oocyte activation and subsequent fertil-
ization by two different sperm to produce 
two separate lineages with the same mater-
nal but two paternal contributions.15,17

Human chimerism or mosaicism 
involving cells with only sperm-derived 
(androgenetic) genomes is predominantly 
found in the placenta. Androgenetic cell 
contribution can result in complete hyda-
tidiform mole with no fetal tissue or cause 
substantial placental defects, with vary-
ing effects on the fetus—from completely 
normal development to fetal death.14,18 
Because sperm are haploid, androgenetic 
mosaicism and chimerism are not always 
unequivocally distinguishable.18 For ex-
ample, a growth retarded twin fetus that 
had been spontaneously aborted at 15 
weeks of gestation, with a grossly enlarged 
and cystic placenta, consisted of both 
androgenetic and biparental cells in pla-
cental and fetal cell lineages. As the andro-
genetic cells had genetic contribution 
from different sperm, this chimera may 
have formed through fertilization of an 
anucleate egg with two sperm, and subse-
quent aggregation with a second zygote.19 
However, such a scenario could also result 
from uneven distribution of pronuclei 
during cleavage of a single oocyte fertil-
ized by multiple sperm, a condition that is 
not strictly chimerism or mosaicism.

Twin blood chimerism, arising from 
the exchange of fetal hematopoietic stem 
cells between siblings through blood 
vessel anastomoses in the placenta, is 
common in some mammalian species, 
particularly marmoset and cattle. The 
incidence in humans is unknown. Studies 
of human multiple pregnancies using a 
sensitive method that can identify low lev-
els of hematopoietic chimerism indicate 
that the frequency of blood chimerism in 
twin pairs (8%) and triplets (21%) may be 
quite substantial.20 Because both mono-
zygotic and dizygotic human twins can 
share a placenta (monochorionic diamni-
otic placenta), hematopoietic chimerism 
may be more prevalent than assumed, as 
suggested by case reports of hematopoietic 
chimerism of dizygotic multiple births 
after assisted reproduction.21,22

Spontaneous Chimerism  
in Mammals

In most mammalian species, naturally 
occurring developmental chimeras are 
considered unusual,5 rendering the recent 
discovery of extensive natural chimerism 
in marmosets (callitrichid primates) very 
intriguing.12 Marmoset mothers typically 
give birth to fraternal twins, and most 
twins exhibit hematopoietic chimerism 
due to intraplacental blood exchange 
with their sibling. In addition, microsat-
ellite analysis of various other tissues has 
revealed extensive somatic and germ line 
chimerism of marmoset twin pairs—
more than half of the males studied were 
functionally chimeric in the germ line.12 
Marmosets frequently exhibit placental 
fusion as well as delayed development at 
the time of chorionic fusion, which pre-
sumably permits cell exchange between 
twins at very early stages of development 
leading to chimerism.

The rare cases of spontaneous devel-
opmental chimerism documented in 
humans are typically diagnosed based 
on a discrepancy between cytogenetic 
and apparent gender, ambiguous genita-
lia, hermaphroditism or hematopoietic 
chimerism. Same-sex chimerism with 
no apparent clinical phenotype is rarely 
identified, and if so, inadvertently. In one 
such case, the results of histocompatibil-
ity antigen blood testing of a family sug-
gested that two of three sons could not be 
the biological offspring of the mother.13 
However, microsatellite analysis of vari-
ous tissues from the mother revealed 
that she was chimeric for two different 
46,XX/46,XX cell lineages, with only one 
of these forming the blood.

About 40 cases of human whole body 
46,XX/46XY chimerism have been 
documented. In about one fifth of these 
cases, chimerism identified by analysis 
of polymorphic genetic markers could 
be attributed to the spontaneous fusion 
of two separate zygotes to form a single 
embryo.14,15 Other potential mechanisms 
underlying XX/XY chimerism include the 
participation of parthenogenetic, that is 
oocyte-only, derived lineages. The spon-
taneous parthenogenetic activation of 
an oocyte followed by fertilization and 
endoreplication of pronuclei could explain 

Definition and Types of Chimeras

Both chimeras and mosaics contain more 
than one genetically distinct cell lineage 
within the same organism. In chime-
ras, these lineages stem from different 
zygotes or at least two different fertiliza-
tion events, while mosaics result from a 
mitotic event in the same zygotic lineage.5 
Thus, successful aggregation of two pre- 
implantation stage embryos can produce 
an animal chimeric for all lineages. In 
contrast, transgenic founder mice result-
ing from pronuclear injection of DNA 
fragments are often mosaics due to 
delayed integration of the injected trans-
gene into the genome of some but not all 
blastomeres during cleavage stages.

Developmental (or primary) chime-
ras are formed at early embryonic stages; 
their different lineages co-develop and 
can potentially mix throughout all tissues. 
Transplantation (or secondary) chimerism 
results from spontaneous or directed tissue 
transfer at stages post organogenesis, and 
is therefore mostly limited to the trans-
planted tissue, for example hematopoietic 
chimerism as a consequence of intrapla-
cental blood exchange between twins or 
after bone marrow transplantation. While 
all known naturally formed chimeras 
occur within the same species (intraspe-
cific chimeras), experimentally induced 
chimerism can also include the mixing of 
tissues of different species (interspecific 
chimeras), both as developmental and 
transplantation chimeras. The production 
of interspecific transplantation chimeras 
relies on using immune-deficient ani-
mals as tissue recipients. Engraftment and 
expansion of human hematopoietic stem 
cells or hepatocytes in immune-deficient 
mice with bone marrow or liver failure, 
respectively, yields “humanized mice” in 
which most immune cells6 or hepatocytes7 
are derived from the human cell trans-
plant. The efficiency of this organ-specific 
transplantation approach is high and thus 
in stark contrast to the extremely limited 
contribution of human cells to animals 
derived from mouse blastocysts injected 
or aggregated with human pluripotent 
stem cells.8 The generation, application 
and potential of human-animal trans-
plantation chimeras have been extensively 
reviewed in references 9–11.
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expressed markers considered develop-
mentally neutral, such as ROSA26 or 
GFP, have been used extensively to inves-
tigate cell growth patterns, origin of cell 
populations, clonality, cell mixing, migra-
tion of precursor cells and overall tis-
sue formation during organogenesis, for 
example of the eye,29 kidney,30 pancreas,31 
intestine32 or heart.33

Although nowadays less used due to 
the development of ES cell technology 
and ease of production of chimeras by 
blastocyst injection, aggregation chimeras 
retain their utility. Aggregating primary 
embryos largely circumvents the poten-
tial problem that epigenetic changes in 
ES cells affect their properties indepen-
dently of the mutation in question. For 
example, parthenogenetic (PG) chimeras 
(between normal cells and those with only 
maternally derived genomes) produced 
by aggregation exhibit a number of phe-
notypes, including growth restriction, 
which are absent in chimeras produced 
by injection of PG ES cells into blasto-
cysts.34,35 Because the contribution of PG 
cells to TE derivatives is very limited in 
aggregation chimeras,36,37 these pheno-
typic differences are likely not a conse-
quence of the different chimera approach, 
but are instead caused by divergent prop-
erties of PG embryos and PG ES cells 
associated with epigenetic changes in the  
latter.

Aggregation chimeras. Aggregation 
chimeras result from combining cleavage 
stage embryos either at equal (synchro-
nous) or unequal (asynchronous) stages. 
Because cleavage stage blastomeres are 
still totipotent, aggregation chimeras are 
potentially highly chimeric throughout 
all derivatives of the epiblast, primitive 
endoderm (PE) and trophectoderm (TE). 
Therefore, in contrast to chimeras gener-
ated by injection of ES cells into blasto-
cysts, aggregation chimeras can be useful 
for the analysis of extraembryonic tis-
sues, but require that secondary effects of 
fetal-placental interactions be considered. 
The distribution of derivatives of mutant 
embryos in aggregation chimeras with 
normal embryos can reveal preferential 
or restricted differentiation as a conse-
quence of the mutation, and can elucidate 
phenotypes masked by compensatory 
mechanisms or early demise in whole null 
mutant animals. For example, embryos 
with a deletion of the platelet-derived 
growth factor receptor β (PDGFRβ), 
an embryonic lethal mutation, exhibit 
substantially reduced ability to contrib-
ute to blood vessel walls and most other 
muscle lineages in aggregation chimeras 
with wild-type embryos, exposing a previ-
ously masked role of PDGFRβ in muscle 
development.28

Chimeras generated by aggregation of 
embryos distinguishable by ubiquitously 

Approaches to Producing Mouse 
Developmental Chimeras

The production of mouse developmen-
tal chimeras requires combination of the 
different lineages at pre-implantation 
stages to facilitate joint post-implantation 
development. Commonly used experi-
mental approaches to achieve this include 
aggregation of cleavage stage embryos, 
combination of pluripotent stem cells 
with pre-implantation embryos, fre-
quently by injection into blastocysts or 
morulae, and the combination of cleav-
age-stage diploid embryos or pluripo-
tent stem cells with tetraploid embryos  
(Fig. 1).

The different genetic lineages can be 
distinguished using various markers of 
cellular origin established in the mouse, 
including eye pigment and coat color,5 
mouse-strain-specific variants of glucose 
phosphate isomerase 1 (GPI1),23 repeat 
markers,24 retroviral insertion marking,25 
or transgenic markers such as ubiquitously 
expressed lacZ (ROSA2626) or green fluo-
rescent protein (GFP27), as well as cell-
type specific transgenic markers. GPI1 
and retroviral insertion permit quantifi-
cation of overall tissue contribution levels 
but do not allow resolution at the cellular 
level that can be obtained with markers 
compatible with microscopy, such as lacZ 
or fluorescent proteins.

Figure 1. The method of chimera generation determines the origin of embryonic and extraembryonic lineages.
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as well as co-culture experiments, suggest 
that the normal ES cells afford this phe-
notypic rescue by altering gene expression 
in the mutant cells in a non-cell-autono-
mous manner through secreted factors, 
including long-ranging IGF1 and locally, 
WNT5a.

Conversely, the injection of mutant 
pluripotent stem cells into normal blasto-
cysts can reveal properties of mutant cells, 
often at stages beyond which the mutant 
would develop. In the central nervous sys-
tem of fetal and adult blastocyst injection 
chimeras, derivatives of retinoblastoma 
(Rb) gene null mutant ES cells continued 
to exhibit abnormal entry into the cell 
cycle, identifying this property as a cell-
autonomous defect. Yet, the normal cells 
provided non-cell-autonomous rescue by 
suppressing apoptosis in RB deficient cells 
which survived and differentiated into 
neurons.51

Similarly, chimeras between normal 
embryos and ES cells deficient for the 
Ena/VASP proteins, a family of actin reg-
ulatory proteins, were used to investigate 
the role of these proteins in the nervous 
system; both normal and mutant cells 
contained an axon-specific fluorescent 
transgenic marker, and the absence of the 
mutant cell marker in axons of chimeric 
mice demonstrated a cell-autonomous 
requirement for Ena/Vasp proteins for 
axon fiber tract formation during cortical 
development.52

Addition of normal cells by blastocyst 
injection has also been used in an attempt 
to rescue more complex developmental 
defects, such as those of embryos pro-
duced by somatic cell nuclear transfer. 
Clone blastocysts injected with normal ES 
or inner cell mass cells formed more early 
stage fetuses than non-injected clones, 
suggesting that peri-implantation epiblast 
defects in clones are non-cell autonomous 
and can be complemented by normal cells. 
However, midgestation and term chimeras 
exhibited abnormal morphology and low 
viability similar to clones, without detect-
able rescue, presumably related to defi-
ciencies of the trophoblast lineage.53

How many different genomes can con-
tribute to developmental chimeras? Both 
chimeras and mosaics have been used to 
trace lineage formation during mamma-
lian development and to determine the 

Tetraploid complementation also facil-
itates rapid generation of mutant mice 
derived only from pluripotent stem cells, 
avoiding the extensive breeding required 
to obtain mutant mice from germ line 
chimeras. However, only a minority of 
pluripotent stem cell lines is capable of 
producing entirely pluripotent stem cell-
derived mice by tetraploid complementa-
tion. Even in those lines proven effective, 
the frequency of viable fetuses is low, ren-
dering this benchmark a definitive but 
time and resource-consuming proof of 
pluripotency of ES44,45 or induced pluripo-
tent stem (iPS) cell lines.46-48

Tetraploid complementation has also 
been used to improve the efficiency of 
somatic cell nuclear transfer (cloning) 
in the mouse; tetraploid complementa-
tion of ES cells derived from blastocyst-
stage clones can generate viable animals at 
higher numbers than direct embryo trans-
fer of clone blastocysts.45

Questions that can be  
Effectively Addressed  

in Developmental Chimeras

Looking at compensation in chimeras. 
Analysis of cell fate in the mixed tissues 
of developmental chimeras can permit 
distinction of cell-autonomous from non-
cell-autonomous effects. Embryos defi-
cient for the transcription factor forkhead 
box D3 (FOXD3), which would normally 
die early after implantation due to lack of 
epiblast maintenance, can be rescued to 
reach later developmental stages by injec-
tion of normal ES cells at the blastocyst 
stage, suggesting that the requirement 
for FOXD3 for epiblast maintenance is 
non-cell autonomous and can be compen-
sated by wild-type cells.49 This approach 
has been used in other null mutants, such 
as mice lacking at least two of the three 
inhibitor of DNA binding (Id) genes, 
which exhibit severe cardiac defects and 
midgestation lethality, but can survive 
to term when rendered chimeric by blas-
tocyst injection of wild-type ES cells.50 
Although term ID chimeras are substan-
tially smaller and almost half die within 
the first 4 weeks of life, surviving chime-
ras catch up in growth and exhibit normal 
adult heart morphology and size. Gene 
expression analyses of fetal-stage chimeras, 

Blastocyst injection chimeras. When 
pluripotent cells such as ES cells are 
injected into the blastocoel cavity of a blas-
tocyst, they can combine at peri-implan-
tation stages with the inner cell mass to 
form the epiblast, but will not contribute 
to PE or TE derivatives. When working 
with genetically modified mouse models, 
two variants are possible. First, injection 
of mutant ES or other pluripotent stem 
cells into normal blastocysts produces 
chimeras with normal extraembryonic tis-
sues such that consequences of the muta-
tion or type of injected cells will only be 
detectable in epiblast-derived tissues. Such 
chimeras can be the founders of mutant 
mouse lines, through the contribution of 
the injected cells to the germ line, but can 
also be utilized to investigate phenotypes 
beyond the stages to which the mutant 
embryos would develop, or to test the dif-
ferentiation ability of presumptive plurip-
otent cells.38-42 Second, normal ES or other 
pluripotent stem cells can be injected into 
mutant blastocysts. In this scenario, all 
PE and TE derivatives are mutant, and 
the epiblast a presumptive mixture of nor-
mal and mutant cells. In particular cases, 
the deficiency of the host blastocyst pro-
vides an “empty” developmental niche 
that can be “filled” by the progeny of the 
injected normal ES or other pluripotent 
stem cells. Approaches taking advantage 
of this so-called “blastocyst complemen-
tation” will be discussed in more detail  
below.

Tetraploid complementation. Electro-
fusion of blastomeres of a two-cell stage 
embryo can be used to produce an embryo 
with a tetraploid (4n) genome. Tetraploid 
mouse embryos can form blastocysts and 
implant, but do not develop much there-
after. In chimeras with diploid embryos 
or cells, tetraploid cells are excluded from 
the epiblast, but can form PE and TE 
derivatives. Thus, injection of ES or other 
pluripotent stem cells into tetraploid blas-
tocysts or aggregation of diploid with tet-
raploid embryos yields chimeras in which 
the embryo proper is derived exclusively 
from the diploid cells, while the tetraploid 
cells form or contribute to the extraem-
bryonic tissues.43 This approach has been 
instrumental in the analysis of phenotypic 
consequences of a mutation in epiblast-
derived lineages.1
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producing an entirely rat-derived pancreas 
in mouse.4 Mice deficient for the tran-
scription factor pancreatic and duodenal 
homeobox 1 (Pdx1) gene are incapable of 
pancreatogenesis and die soon after birth 
due to pancreatic insufficiency. However, 
complementation by injection of normal 
mouse ES or iPS cells into Pdx1-/- blasto-
cysts permitted survival of chimeric mice 
to adulthood. In these mice, all pancre-
atic cell types except cell lineages form-
ing blood vessels, nerves and connective 
tissue were pluripotent stem cell-derived, 
and transplantation of isolated pluripotent 
stem cell-derived islets into diabetic mice 
afforded protection from hypoglycemia, 
thus providing proof-of-principle for the 
generation of a functional organ from 
ES and iPS cells using chimera comple-
mentation. Furthermore, the authors 
succeeded in producing pancreatic tis-
sue derived entirely form rat pluripotent 
stem cells in Pdx1-/- mice, thereby gener-
ating rodent interspecific chimeras. The 
authors injected mouse pluripotent stem 
cells into normal rat blastocysts and vice 
versa, and transferred these into recipi-
ents of the blastocyst species. In contrast 
to previous unsuccessful attempts at pro-
ducing mouse-rat chimeras by injection 
of inner cell masses into blastocysts,65,66 
some of the injected blastocysts devel-
oped into fetal and postnatal chimeras. 
However, these interspecific chimeras 
exhibited high embryonic lethality and 
poor postnatal survival. In general, a high 
contribution of cells of the other rodent 
species was associated with morphologi-
cal abnormalities and lethality. Surviving 
postnatal chimeras exhibited contribution 
to various organs, including composite 
structures such as pancreatic islands of 
mixed mouse and rat origin, but never to 
the germ line. One key observation made 
in these interspecific chimeras was that the 
instructive ability of the blastocyst host 
not only determines overall animal size 
but also organ morphology. Mice, but not 
rats, have a gallbladder and this organ was 
only formed when mouse blastocysts were 
used as hosts. This result may explain why 
the new approach of producing chimeras 
by injecting ES or iPS cells into blastocysts 
prevailed in contrast to previous attempts 
based on injecting inner cell masses.67 
Remarkably, the authors also succeeded in 

be filled entirely by the pluripotent stem 
cell progeny, for example T and B lym-
phocytes,56 the lens57 or pancreas.58 Such 
complementation models provide unique 
tools to test the ability of mutant or pre-
sumptive pluripotent stem cells to form 
the cell type or organ in question.

Adult tissue complementation using 
blastocyst injection chimeras. A promi-
nent example for this approach is the 
complementation of Rag2 (recombination-
activating gene 2)-deficient host embryos. 
Mice lacking RAG2 are devoid of mature 
T and B lymphocytes due to inability for 
VDJ recombination, such that the injec-
tion of RAG2-deficient blastocysts with 
ES cells produces mice with entirely ES 
cell-derived T and B cells. Termed RAG 
complementation, this model has been 
instrumental for assaying the function of 
various genes in lymphocytes, by comple-
menting RAG2-deficient blastocysts with 
ES cells carrying varying mutations.56,59-62

Similarly, mice with a hematopoietic 
stem cell deficit due to homozygous muta-
tion of the c-kit receptor (W41/W41) have 
been used in a combined complementation 
and transplantation approach to generate 
mice in which the entire hematopoietic 
system is derived from ES cells.63 In chi-
meras of W41/W41 blastocysts injected 
with normal ES cells, fetal liver hemato-
poiesis is dominated by ES cell derivatives. 
Transplantation of fetal liver cells from 
these chimeras into irradiated adult wild-
type mice provides a rapid method for 
producing large numbers of animals with 
entirely ES cell-derived hematopoiesis.

Beyond the hematopoietic system, 
complementation has been achieved 
in homozygous aphakia (ak) mice, 
which fail to develop an ocular lens.57,64 
Complementation of ak/ak blastocysts 
with normal ES cells results in pheno-
typic rescue and mice with entirely ES 
cell-derived lenses. Although primarily 
designed to investigate lens differentiation 
during development, this chimera model 
can also be used for postnatal studies such 
as adult lens regeneration.

Interspecific chimeras to produce 
xenogenic organs. A recent study used 
developmental chimeras to study pan-
creas regeneration from iPS cells and 
to provide proof-of-principle for organ 
production in interspecific chimeras by 

number of founder cells of cell lineages.5 
Aggregation chimera experiments sug-
gested that at least three cells constitute 
the founder cells of the epiblast from which 
all somatic lineages are derived,54 while 
analysis of mice rendered mosaic through 
retroviral marking, an approach that 
obviated the need to disrupt the embryo, 
indicated that eight cells form all somatic 
lineages of the mouse.55 To answer the 
question of how many ES cells contribute 
to chimeras produced by blastocyst injec-
tion, in which the injected ES cells (usu-
ally 10–15) mix with the existing inner 
cell mass to form a combined epiblast, 
Wang et al. performed tetraploid and nor-
mal blastocyst injection experiments with 
varying numbers of cells from an ES cell 
mixture in which the individual cells and 
their derivatives could be distinguished by 
different retroviral marker insertion sites. 
The outcomes were indicative of a surpris-
ingly low number of ES cells that contrib-
ute to the resulting entirely ES cell-derived 
mice or chimeras: in most cases, only one 
or two ES cells contributed, and three at a 
maximum.25 Thus, although mouse devel-
opment is sufficiently flexible to allow the 
generation of chimeric animals through 
various approaches, it appears to limit the 
number of different genomes that can be 
combined. In the case of blastocyst injec-
tions, this could be a constraint imposed 
by the competition that occurs between 
the cells of the host blastocyst and the 
injected cells which compete for the devel-
opmental niche of the few cells that will 
form the embryo.25,54

Using Developmental Chimeras  
to Investigate Adult Cell  

and Tissue Function

Developmental chimeras are typically 
being used to address questions about pro-
cesses that occur during embryonic and 
fetal stages. However, they are also effec-
tive systems for investigating processes in 
the adult, in particular, when combining 
pluripotent stem cells with blastocysts 
with a mutation known to cause a specific 
defect in a postnatal tissue, for example 
injury of hepatocytes lacking the enzyme 
fumarylacetoacetate hydrolase (FAH).3 
In some cases, a mutation can even leave 
an empty developmental niche that can 
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Chimera analysis has also contributed 
substantially to the understanding of dis-
ease mechanisms in mouse mutants with 
a CNS phenotype, such as mutations of 
ion channels and neurotransmitter recep-
tors. For instance, aggregation chimeras 
between normal and weaver mutant mice 
that are ataxic due to a near complete lack 
of granule cells in the cerebellum showed 
that this phenotype was caused by a cell-
intrinsic defect within the granule cells 
leading to premature death.74 Similar 
experiments with other ataxic mice such 
as lurcher and scrambler have provided the 
basis for subsequent identification of the 
genes and mechanisms involved.75,76

Wound repair. Adult chimeras can 
be used to investigate the function of 
mutant versus normal cells in response to 
a stimulus, such as an injury. For example, 
analysis of PDGFRβ-deficient cells in 
chimeras with normal cells has revealed 
roles of PDGF signaling in adult tissues. 
Although PDGFRβ-deficient cells form 
fibroblasts and endothelial lineages in 
chimeras during development, they are 
excluded from granulation tissue forma-
tion during wound repair in adult chi-
meras, indicating that PDGF signaling 
is required for connective tissue repair in 
the adult, but not for connective tissue 
formation in the embryo.77 In response to 
arterial injury, PDGF signaling appears to 
function largely in a chemotactic manner 
to attract smooth muscle cells to the newly 
forming neointima, based on the migra-
tion patterns of PDGFRβ-positive and 
PDGFRβ-negative smooth muscle cells in 
chimeric animals.78

How many normal cells are required 
for phenotypic rescue? The stochastic dis-
tribution of cells within chimeras allows 
for a variation in contribution, such that 
phenotypes can vary. This variation can 
be used to investigate the proportion of 
cells required for phenotype induction 
or rescue, thus providing an estimate for 
the level of therapeutic engraftment that 
would be needed to restore normal tissue 
function.

Two studies have used injection of nor-
mal ES cells into blastocysts from shiverer 
homozygous mice (shi/shi) to correlate 
phenotypic rescue with the degree of nor-
mal cell distribution.79,80 Shiverer mice do 
not produce myelin basic protein (MBP) 

chimeric tissues composed of normal 
and GFP transgenic or otherwise mutant 
cells can elucidate mechanisms of tis-
sue homeostasis. Imaging analysis of size 
and distribution of chimeric patches in 
the lung epithelium of aggregation chi-
meras between normal and GFP-tagged 
cells in tissue homeostasis or after slight 
injury suggested the involvement of many 
widely distributed progenitors, rather 
than airway stem cells, as patches were 
small and widely distributed. In contrast, 
severe injury resulted in the formation of 
large patches near presumptive stem cell 
niches, suggesting they may be of stem cell 
origin.70

Due to the monoclonal origin of crypts 
in the small intestine, chimeras are also 
excellent tools to investigate consequences 
of mutations in the intestinal epithe-
lium, by comparison of adjacent mutant 
and non-mutant populations. Analysis 
of various mutants of the GTPase RAC1 
using blastocyst injection chimeras sug-
gested a crucial role of RAC1 in the 
regulation of normal intestinal stem cell 
differentiation.71

In a different approach, aggregation 
of two different mouse mutants—T and 
B cell-deficient (RAG or SCID) with thy-
mus-deficient mice—followed by analy-
sis of T cell repertoire selection in adult 
chimeras provided evidence that thymus 
epithelial cells were not required for major 
histocompatibility complex selection.72

Chimera analysis of cells mutant for 
zonula occludens (ZO) proteins illus-
trates how this approach can identify non-
redundant functions of proteins in adult 
tissues that are masked by early embryonic 
lethality as well as compensatory mecha-
nisms. Embryos deficient for either the 
ZO-1 or ZO-2 protein die shortly after 
implantation, but injection of ZO-2 null 
mutant ES cells into normal blastocysts 
resulted in viable term chimeras with 
extensive ES cell contribution, suggest-
ing that ZO-2 function is more critical for 
extraembryonic tissues than the epiblast.73 
In adult chimeras, reduced levels of ZO-2 
in tissues were associated with abnormal 
kidneys, and male chimeras exhibited 
small testes and reduced fertility due to a 
deficient blood-testis barrier, demonstrat-
ing a non-redundant role of the ZO-2 pro-
tein in specific adult tissues.

demonstrating interspecific chimera com-
plementation; rat iPS cells injected into 
Pdx1-/- mouse blastocysts produced Pdx1-/- 
neonates with pancreatic epithelia derived 
entirely from rat iPS cells. Survival of the 
animals into adulthood was rare, but two 
viable chimeras were obtained. Thus, this 
landmark study established the feasibility 
and highlighted the clinical potential of 
generating an entire organ from xenogenic 
pluripotent stem cells in chimeras.

Organ regeneration in the adult. 
Developmental chimeras can be used to 
explore the potential of new pluripotent 
stem cell types such as iPS cells for cell 
replacement strategies. The liver is a par-
ticularly promising target for cell trans-
plantation because of its natural ability 
to support and integrate large numbers 
of newly generated hepatocytes. Because 
the adult human liver contains billions of 
hepatocytes, the efficacy of liver cell ther-
apy would be greatly enhanced if pluripo-
tent stem cell-derived hepatocytes were as 
capable of post-transplant expansion as 
primary hepatocytes.68 The FAH-deficient 
mouse provides a rigorous system to test 
the proliferative capabilities of hepatocytes 
derived from pluripotent stem cells; the 
liver injury inflicted by FAH deficiency 
confers a selective growth advantage on 
wild-type hepatocytes.69 Thus, postnatal 
expansion of iPS cell-derived hepatocytes 
in chimeric mice derived from injection 
of wild-type iPS cells into FAH-deficient 
blastocysts showed that these cells rep-
licate the ability of primary hepatocytes 
to proliferate extensively.3 Because only 
differentiated hepatocytes, but not liver 
progenitor cells, are efficiently expanded 
in the FAH-deficient liver, liver repopula-
tion with iPS cell-derived hepatocytes also 
suggests that these cells are fully differen-
tiated. Along these lines, livers of chimeric 
mice in which virtually all FAH-deficient, 
blastocyst-derived hepatocytes were 
replaced by iPS cell-derived hepatocytes 
provided normal liver function. In the 
absence of compensation by blastocyst-
derived hepatocytes and biases potentially 
introduced by imperfect in vitro differen-
tiation protocols, these results provided 
evidence for the principal efficacy of iPS 
cells for liver cell therapy.

Tissue homeostasis and function 
in the adult. Investigations of adult 
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not derived by ES cell targeting, produc-
tion and analysis of aggregation chimeras 
can be a much easier and faster approach 
than derivation and/or conditional tar-
geting of ES cells, or the only approach if 
the mutation is unknown. Thus, chimera 
approaches support both classic and novel 
applications for exploring various aspects 
of mammalian biology.
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