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Abstract

Exposure of J774 mouse macrophages to stepwise increasing concentrations of ciprofloxacin, an antibiotic inhibiting
bacterial topoisomerases, selects for resistant cells that overexpress the efflux transporter Abcc4 (Marquez et al. [2009]
Antimicrob. Agents Chemother. 53: 2410–2416), encoded by the Abcc4 gene located on Chromosome 14qE4. In this study, we
report the genomic alterations occurring along the selection process. Abcc4 expression progressively increased upon
selection rounds, with exponential changes observed between cells exposed to 150 and 200 mM of ciprofloxacin,
accompanied by a commensurate decrease in ciprofloxacin accumulation. Molecular cytogenetics experiments showed that
this overexpression is linked to Abcc4 gene overrepresentation, grading from a partial trisomy of Chr 14 at the first step of
selection (cells exposed to 100 mM ciprofloxacin), to low-level amplifications (around three copies) of Abcc4 locus on 1 or 2
Chr 14 (cells exposed to 150 mM ciprofloxacin), followed by high-level amplification of Abcc4 as homogeneous staining
region (hsr), inserted on 3 different derivative Chromosomes (cells exposed to 200 mM ciprofloxacin). In revertant cells
obtained after more than 60 passages of culture without drug, the Abcc4 hsr amplification was lost in approx. 70% of the
population. These data suggest that exposing cells to sufficient concentrations of an antibiotic with low affinity for
eukaryotic topoisomerases can cause major genomic alterations that may lead to the overexpression of the transporter
responsible for its efflux. Gene amplification appears therefore as a mechanism of resistance that can be triggered by non-
anticancer agents but contribute to cross-resistance, and is partially and slowly reversible.
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Introduction

Overexpression of multidrug transporters (MDR) from the

ATP-binding cassette (ABC) family is now widely recognized as a

mechanism of resistance to cytotoxic drugs and is associated with

therapeutic failures in patients receiving anticancer chemotherapy

[1]. Several mechanisms have been described as leading to the

overexpression of multidrug transporters, like induction of gene

transcription (possibly caused by the drug itself ([2] for review)),

increase in mRNA stability [3], epigenetic changes [4,5], or gene

amplification [6]. These mechanisms have been explored so far

mainly in hepatocytes exposed to different xenobiotics, where

activation of gene transcription by nuclear receptors has been well

documented [7]. In cells exposed to anticancer agents, chromo-

somal alterations have also been reported after selection in vivo [8]

or in vitro upon chronic exposure to drugs [9], but the underlying

mechanisms can be much more diverse (see for a few examples

[10–12]).

By its efflux properties, the multidrug transporter ABCC4

(MRP4) protects cells against toxicity induced by antimetabolites,

such as methotrexate or analogues of purines and nucleosides, or

by type I topoisomerase inhibitors, such as camptothecins [13–15].

ABCC4 overexpression has been reported in cancer cells, such as

in prostate tumors [16] or human leukemic cells (with in vitro

acquired resistance to 6-mercaptopurine [17]), and is associated

with a poor clinical outcome in neuroblastoma [18]. Moreover,

single nucleotide polymorphisms in ABCC4 gene have been shown

to modulate the therapeutic response to methotrexate in children

suffering from acute lymphoblastic leukemia [19].

Because of their broad substrate specificity, multidrug trans-

porters can also reduce the cellular accumulation of other drugs

and impair their activity if their pharmacological target is
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intracellular [2]. Conversely, these drugs can also trigger the

overexpression of their transporters, as demonstrated for ABCC4

with the antiviral agent adefovir [20] and the fluoroquinolone

antibiotic ciprofloxacin [21]. Fluoroquinolones are potent and

widely used antibacterial agents that show a marked accumulation

in eukaryotic cells, which explains their activity against a large

array of intracellular bacteria (see [22] for review). Fluoroquino-

lones act by inhibiting the prokaryotic type II topoisomerase

enzymes (DNA gyrase and topoisomerase IV). Although 100 to

1000-fold more active against bacterial enzymes than against their

mammalian homologue topoisomerase II [23], fluoroquinolones

can also cause genotoxic and clastogenic effects in eukaryotic cells

at high concentrations [24], which has raised concerns about

potential toxicities if used at supratherapeutic concentrations [25].

Applying to J774 macrophages a method widely used in vitro to

select tumor cell lines resistant to anticancer drugs [26] and which

consists in exposing cells to progressively increasing concentrations

of the drug of interest, we were able to select, after about 50

passages in the presence of ciprofloxacin, cell lines in which the

accumulation of this fluoroquinolone was markedly reduced [27].

This phenotype is associated with an accelerated efflux of

ciprofloxacin that has been ascribed to an increased expression

of Abcc4 (Mrp4) mRNA [21]. We also showed that Abcc4 protein

overexpression was only slowly reversible, as more than 60

passages in the absence of ciprofloxacin were needed to obtain

cells displaying a phenotype similar to that of the wild-type cell line

(similar level of ciprofloxacin accumulation [27] despite a residual

slight increase in Abcc4 protein content [21]). All together these

data suggested that overexpression of Abcc4 could be driven

through gene amplification.

The present study therefore focuses on the characterization of

the progressive acquisition of multidrug resistance in J774

macrophages collected along the selection process with ciproflox-

acin and examines possible genomic amplification of Abcc4 in these

cells by fluorescence in situ hybridization (FISH) and multicolor

FISH (mFISH). Our data show that Abcc4 gene amplification

indeed occurs in the resistant cells and that it is slowly reversible.

We also evidence other clonal chromosomal alterations developing

along the selection process, which may reflect the genomic

instability induced in eukaryotic cells when exposed to high

concentrations of ciprofloxacin.

Results

Characterization of ciprofloxacin accumulation and
Abcc4 expression in cell lines resistant to different
concentrations of ciprofloxacin

We showed previously that mouse J774 macrophages resistant

to 200 mM ciprofloxacin were characterized by a markedly

reduced accumulation of this drug [27] that was attributed to

the overexpression of the ABC transporter Abcc4 [21].

To further understand the mechanisms leading to this

overexpression, we have now compared the accumulation of

ciprofloxacin and the expression of Abcc4 (protein and mRNA

levels) in wild-type cells vs. cells resistant to ciprofloxacin

concentrations of 100, 150 and 200 mM. The data illustrated in

Figure 1 show that the accumulation of ciprofloxacin was

decreased in parallel with the increased level of resistance.

However, the process was not linearly related to the drug

concentration used for selection, most of the effect being obtained

only in cells resistant to the highest concentration. This reduction

of ciprofloxacin accumulation was associated with a commensu-

rate increase in the expression of Abcc4, both at the mRNA and

protein levels. The lowest panel of Figure 1 shows the correlation

between ciprofloxacin accumulation and protein levels of Abcc4.

Characterization of the Abcc4 locus amplification in
ciprofloxacin-resistant and revertant cell lines compared
to wild-type macrophages

Conventional karyotype coupled to Multicolor FISH (mFISH)

showed that the wild-type J774 cell line was characterized by a

near-triploid karyotype (Figure S1) and exhibited particularly a

Figure 1. Relationship between cellular accumulation of
ciprofloxacin and Abcc4 expression. A. Upper panel: western blot
of Abcc4 (and actin as loading control) in cell lysates from wild-type
(WT) macrophages and from cells resistant to different concentrations
of ciprofloxacin (100 mM [CR100], 150 mM [CR150] and 200 mM [CR200]).
B. Ciprofloxacin accumulation and Abcc4 mRNA and protein relative
expression in cells made resistant to increasing concentrations of
ciprofloxacin; (i) left axis (open bars): accumulation of ciprofloxacin in %
(mean 6 SD [n = 3]) of the value measured in wild-type cells incubated
during 2 h with 50 mM ciprofloxacin [absolute value: 162 ng/mg prot.]);
(ii) right axis: Abcc4 mRNA (grey bars) and protein (black bars) levels as
a ratio to the value observed in wild-type cells (set to 1). C. Correlation
between ciprofloxacin residual accumulation and Abcc4 relative
expression in these cells. The curve corresponds to a best fit based
on an inverse logarithmic function (y = 11.56e20.3037 X+14.92).
doi:10.1371/journal.pone.0028368.g001

Ciprofloxacin and Abcc4 Gene Amplification
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derivative of Chr 14 characterized by the replacement of its

telomeric end by a part of Chr 3 (Figure 2, Chr B) in addition to

the two apparently normal Chromosomes 14. The Abcc4 locus

localized at Chr 14qE4 was analyzed by FISH using BAC

(Bacterial Artificial Chromosome) probes, on metaphases in

comparison to a more centromeric control locus (see Figure S2

for typical images and Figure 3 for a schematic representation of

chromosomes with Abcc4 loci observed in the different cell lines

and a quantification of the different clones).

Wild-type macrophages remained disomic for Abcc4 locus, as we

observed 2 different copies of Abcc4 on two apparently normal

Chromosomes 14 (Figure 2, Chr A), in comparison to the control

probe (normally located at Chr 14qA3), which exhibited a third

signal on the derivative Chromosome 14 (Figure 2, Chr B). In the

intermediate resistant cell line CR100, we predominantly observed

the wild-type pattern (almost 67% of the metaphases). A third copy

of the Abcc4 locus was identified in about 1/3 of the cells, either on

an additional apparently normal Chromosome 14 with both Abcc4

and control probes (27% of the metaphases, Figure 3), or on a

marker Chromosome (7% of the metaphases). At the next step of

selection with ciprofloxacin (CR150 cells), only 21% of the

analyzed metaphases displayed the wild-type pattern while all the

others showed different clones characterized by a low level

chromosomal amplification of Abcc4 (approximately 3 copies)

located either on one or on two Chromosomes 14, or associated to

a marker Chromosome which did not exhibit the Chromosome 14

centromeric control probe.

In the fully ciprofloxacin-resistant cell line CR200, we observed

Abcc4 high-level amplification as a homogenous staining region

(hsr) in all metaphases (Figure S2) on different marker Chromo-

somes that did not exhibit the Chromosome 14 centromeric

control probe. Of note, all metaphases observed for the CR200

cell line displayed 2 apparently normal Chr 14 and no Abcc4 copy

on the derivative Chr 14, as in wild-type cells. To identify the

marker Chromosomes with Abcc4 hsr, we performed a mFISH

analysis followed by Abcc4 hybridization (Figure 2 and Figure S2).

Upon examination of 73 metaphases, the hsr was found with a

localization that was either centromeric to a derivative Chr 5

(72.5% of the metaphases, clone I) (Figure 2, Chr C) or telomeric

to a derivative Chr 16 (10%, clone III) (Figure 2, Chr D).

Interestingly, in 13.5% and 4% of the observed metaphases, the

Abcc4 amplification was found on either two (clone II) or one (clone

IV) smaller marker Chromosome(s) (Figure 2, Chr M). These

contained three heterochromatic regions aside of the centromere

and were suspected to correspond to a derivative of Chr 13 by

mFISH, although the chromosomal origin of the centromeric

region remained uncertain (Figure 2, Chr M). Other additional

genomic alterations were acquired in the resistant cells, namely

2der(9)T(9;19),+13,2idic(13) in all clones, +9, in clones I and II,

and +der(1)T(1;2)(H?;?) in clone III, as identified by mFISH.

In the revertant cell line Rev200 for which 31 metaphases were

examined, we observed the wild-type phenotype (2 apparently

normal Chr 14, and one without the Abcc4 locus) in around half of

them (16), but 9 metaphases displayed a remaining high-level

amplification of Abcc4 on the small marker Chr M (Figure 3), as

already observed in the CR200 cell line. Moreover, in the

remaining 6 metaphases, we observed an additional copy of Abcc4,

located on a very small unidentified marker Chromosome (Chr N;

Figures 2 and S2). All these observations were in agreement with

the analysis of interphasic cells, made on a larger cell population

(200 nuclei), for each cell line (data not shown).

Characterization of the DnajC3 locus amplification in
resistant cell lines

As DnajC3 is located close to Abcc4 at Chromosome 14qE4, and

because we already detected DnajC3 protein overexpression in the

Figure 2. Molecular cytogenetics of relevant chromosomes in wild-type, fully ciprofloxacin-resistant, and revertant macrophages.
mFISH and FISH experiments (red: control probe; green: Abcc4 probe) for relevant chromosomes in wild-type macrophages, in the clones of the fully
ciprofloxacin-resistant macrophages CR200, and in the revertant macrophages (Rev200). Karyotypes of the cell lines (abnormalities illustrated in the
figure are highlighted in bold): a) wild-type cells: 72,3n.,X,der(X)T(X;11)(E or F1;?B5),der(1)T(1;6)(C?;B?3), +der(1)(1A1R1C?::6B?3R6D,F::X?
RX?),23,+der(5;17)(5A1R5C2::17A1R17?), der(6)T(1;6)(?D;B3),+der(6),+der(9)T(9;19)(?B;C2),+?Del(12)(?B),213,idic(13), der(14)T(3;14)(E2;C?1),idi-
c(15),218,219,idic(19),ace(3)x2,ace(18)x2; b) CR200 cells (‘‘idem’’ refers to the chromosomal abnormalities stated in the wild-type cells karyotype):
– clone I: 72,idem,Is(5;14)(B;?),+9,2der(9)T(9;19),+13,2idic(13),ace(3)x2,3, ace(?14)x0,2,ace(18)x1,2[cp17]; – clone II: 72,idem,?+9,2der(9)-
T(9;19),+13,2idic(13),mar1x2,3, ace(?14)x1,2,ace(18)x1,2[cp3]; – clone III: 71,idem,+der(1)T(1;2)(H?;?),2der(9)T(9;19),+13, 2idic(13),
der(16)T(14;16)(?;C4),ace(3)x3,ace(?14)x0,2[cp2].
doi:10.1371/journal.pone.0028368.g002

Ciprofloxacin and Abcc4 Gene Amplification
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Figure 3. Abcc4 copies detected by FISH on metaphases of cultured macrophage cell lines. A. Relative abundance of the clones according
to number of Abcc4 copies detected by FISH in the different cell lines (WT: wild-type cells; CR100, 150, and 200: cells resistant to 100, 150, and 200 mM
of ciprofloxacin; Rev200: revertant cells). Hsr, homogeneous staining region. B. Schematic representation of chromosomes with Abcc4 copies in the
same cell lines (only chromosomes with Abcc4 copies are shown; Chr der(14)T(3;14)(E2;C?1) (Chr B), present in almost all clones, but which lacks Abcc4
locus, is not represented). Percentages refer to the relative abundance of each clone, and letters between brackets to Chromosomes as identified in
Figure 2.
doi:10.1371/journal.pone.0028368.g003
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fully ciprofloxacin-resistant cells in an ongoing proteomic study

[Caceres et al., in preparation], we looked for a possible co-

amplification of DnajC3 with Abcc4. FISH analysis with the DnajC3

specific probe combined with the control probe on Chromosome

14 indeed revealed similar patterns of gene amplification in all the

resistant cell lines, like those observed with Abcc4 probe (data not

shown). Moreover, when we hybridized together Abcc4 and DnajC3

probes, we observed the co-localization of both probes in amplified

regions, either at Chromosome 14 in intermediate resistant cells

(CR150 cell line, Figure 4, left panel), or in the hsr in the fully

ciprofloxacin-resistant CR200 cell line (Figure 4, right panel).

Influence of ABCC4 on ciprofloxacin accumulation in
murine and human cells

As all the work presented so far had been performed with a

murine cell line, we examined whether ciprofloxacin is also a

substrate of the human homologue transporter. To this effect, we

compared the accumulation of ciprofloxacin (a) in wild-type J774

macrophages (basal expression of Abcc4) and in J774 macrophag-

es resistant to 200 mM of ciprofloxacin and (b) in HEK293 human

cells and HEK293/4.63 transduced with the cDNA coding for

human ABCC4 and expressing it to high levels [28]. The

accumulation of ciprofloxacin was drastically reduced in

HEK293/4.63 cells compared to HEK293 cells, and was

increased by gemfibrozil, a broad-spectrum inhibitor of MRP

transporters (see Figure S3), demonstrating that ciprofloxacin is

also a substrate of the human homologue of Abcc4.

Discussion

The present study shows that an antibiotic is capable of

inducing at large concentrations a series of clonal chromosomal

alterations in an eukaryotic cell, leading, among other changes, to

the overexpression of a multidrug transporter responsible for its

efflux. This effect is slowly and only partially reversible at the

genomic level. The demonstration remains so far limited to

ciprofloxacin and the murine multidrug transporter Abcc4 (Mrp4).

However, we show here that ciprofloxacin is also substrate for

ABCC4, the human homologue of this transporter (as also found

by others [29]), suggesting that similar mechanisms could possibly

take place in humans. This opens interesting perspectives in terms

of interactions of antibacterial agents with the host in relation to

potential cell toxicity, and, in a broader context, in the manner

eukaryotic cells deal with exogenous compounds.

ABCC4 gene amplification as an hsr has already been described

in a human T lymphoid cell line made resistant to the antiviral

drug adefovir [20], another well known ABCC4 substrate. In this

case, however, amplification was located at the distal end of

chromosome arm 13q, which is compatible to the normal location

of human ABCC4 (13q32). Hsr and double minute chromosomes

are the two common patterns of gene amplification observed upon

selection by anticancer agents [6]. Interestingly, we do not observe

double minute chromosomes at any step of the selection, in

contrast with what has been shown for Abcb1 (P-glycoprotein) in

colchicine-resistant J774.2 cells [30], or for ABCG2 in mitoxan-

trone-resistant glioblastoma cells [31], which display double

minutes at low drug concentrations, but hsr at high concentra-

tions. In other instances, both patterns are present at the same

time, as described for ABCC1 in a doxorubicin-resistant human

tumor cell line [32].

We showed that the karyotypes of the fully resistant clones

mainly differ from the one of the wild-type cell line by 3 different

marker Chromosomes with Abcc4 high level amplification. These

observations suggest a random chromosomal insertion of the

14qE4 genomic amplification as an hsr, which provides a

proliferative advantage by enabling cells to resist to the strong

pressure of selection and leading to clonal expansions. Of interest,

gene amplification was not restricted to Abcc4, since DnajC3,

another gene located at 14qE4, was co-amplified, and the

corresponding protein overexpressed [Caceres et al., in prepara-

tion]. Since both Abcc4 and DnajC3 genes are constitutively

expressed in the wild-type macrophages, they do not need another

genetic event in addition to genomic amplification for overex-

pression, such as a ‘‘switch on’’ induced by a promoter capture or

by insertion of retroviral sequences [33,34]. We did not observe

extrachromosomal elements, such as double minutes (dmin) or

episomes that are classically reported [6]. However, we cannot

exclude their occurrence at the first steps of selection before

integration of the amplicons within chromosomes detected in

CR200 cells. In cancer cells, genomic amplification has been

shown to occur at common chromosomal fragile sites, or to result

from defects in DNA replication or telomere dysfunction. It is

noteworthy to mention that the chromosomal band 14qE4, with

Abcc4 and DnajC3 loci, has been shown to be a common fragile

site that may favor genomic instability [35].

The phenotypic reversion is associated with a drastic regression

of the Abcc4 amplification, with loss of the hsr-like amplification of

Abcc4 to Chr 5 and to Chr 16. The persistence of a copy of a

marker Chromosome (Chr M, with Abcc4 hsr) in nearly 30% of the

revertant cells, and the time required to obtain phenotypic

reversion, underline the stability of the gene amplification. As the

revertant cells display a similar phenotype as wild-type cells

regarding ciprofloxacin accumulation [27] and almost similar

levels of Abcc4 mRNA [21], it is likely that the Abcc4 amplification

observed on this marker in single copy is not associated with

efficient transcription.

In vitro, gene amplification is likely to be initiated by a DNA

double-strand break in cells that lack appropriate cell-cycle

checkpoints [6]. Chemotherapeutic drugs targeting topoisomerase

II promote DNA double-strand break, favoring thereby the

development of therapy-related leukaemias. In bacteria, fluoro-

Figure 4. DnajC3 and Abcc4 FISH analysis in selected resistant
cell lines. Metaphase spreads of CR150 (left) and CR200 (clone II; right)
cells were subjected to FISH analysis with an Abcc4 BAC probe (green)
and a DnajC3 BAC probe (red). Chromosomes were counterstained with
DAPI. Colocalization of both probes in amplified regions is highlighted
with white circles; green arrow indicates Chr 14 with Abcc4 and DnajC3
copies.
doi:10.1371/journal.pone.0028368.g004
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quinolones form a reversible ternary complex linking together

DNA and prokaryotic type II topoisomerase enzymes to impair

the progression of the replication fork. This leads to several lethal

damages, including SOS response induction and, possibly

chromosome fragmentation, which explains their rapid bacteri-

cidal activity [36]. While no genotoxicity has been reported so far

for ciprofloxacin in vivo or in cultured cells [37–39], chromosomal

aberrations have been described in cultured human lymphocytes

exposed to supratherapeutic concentrations similar to those used

in this study [40,41], as well as an increase of sister-chromatid

exchange [42] and in DNA single strand breaks frequencies [43] in

mouse bone marrow cells. Although the concentrations needed to

observe these alterations (100–200 mM, i.e. 40–80 mg/L) are well

above the serum levels observed in patients receiving conventional

therapies (1–4 mg/L), one needs to take into consideration that

ciprofloxacin accumulates in tissues (with tissular levels reaching

values 2–7 fold higher than serum levels) as well as in body fluids,

with the highest concentrations (200–900 mg/L) being found in

urine. This suggests that in vivo exposure may be more important

than anticipated based on serum levels only.

Although pending for further investigations aimed at elucidating

the mechanism leading to gene amplification, our data thus

indicate that ciprofloxacin may induce in eukaryotic cells

chromosomal aberrations leading to overexpression of the

transporter responsible for its efflux. Whether such alterations

may occur in vivo will clearly depend on the concentration of the

drug, and probably also on a combination of its recognition by

efflux transporters and its capacity to interact with DNA-

topoisomerase complexes. Other fluoroquinolones may, indeed,

be much more toxic than ciprofloxacin in this context [41,44],

with many of them having been withdrawn or not accepted for

registration in many countries for unsatisfactory benefit to risk

ratio involving, among other untoward reactions, clastogenic

effects (see [45] for an example with gemifloxacin). It is interesting

to note that N-substituted piperazinyl quinolones derived from

ciprofloxacin or other clinically-used fluoroquinolones show in vitro

cytotoxicities that are as high as those seen with etoposide, a well

known inhibitor of topoisomerase II [46,47]. These compounds

are now evaluated as potential anticancer agents.

Materials and Methods

Chemicals
All cell culture reagents were purchased from Invitrogen

(Carlsbad, CA). Ciprofloxacin HCl (potency 85%) was received

from Bayer HealthCare (Wuppertal, Germany) as microbiological

standard. Other chemical products were purchased from Sigma-

Aldrich (St. Louis, MO).

Cell lines and culture conditions
J774 mouse macrophage-like cells [48] (referred to as wild-type

cells) were cultured and maintained as already described [49].

Ciprofloxacin-resistant macrophages and their revertant were fully

described in a previous publication of our group [27]. Resistant

cells were obtained by chronic exposure to progressively increasing

concentrations of ciprofloxacin (100 mM, 150 mM, and 200),

yielding to cell lines referred to here as CR100 (used at the 5th

passage), CR150 (used at the 3rd passage) and CR200 (used at the

76th passage) respectively. Revertant cells (referred to here as

Rev200) were obtained by returning CR200 cells to ciprofloxacin-

free and used here at their 84th passage in the absence of selective

pressure. Human Embryonic Kidney HEK293 cells and

HEK293/4.63 cells transduced with human ABCC4 cDNA were

obtained from P. Borst (Het Netherlands Kanker Instituut, Amsterdam,

The Netherlands). They were cultivated in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal calf serum [28].

Accumulation and efflux of fluoroquinolones
These experiments were performed exactly as previously

described [21,27,50]. Cell-associated ciprofloxacin was assayed

by fluorimetry (lexc = 275 nm and lem = 450 nm) and its cellular

concentration expressed by reference to the total cell protein

content as measured by the Lowry’s method [51].

Quantification of Abcc4 by real-time PCR and Western
blot Analysis

Abcc4 expression was assessed at mRNA and proteins levels,

as described previously [21]. Real-time PCR experiments were

performed starting from 1 mg of total purified RNA transcribed

into cDNA, and using SYBR Green detection. Two house-

keeping genes, Ywhaz and Rpl13a (mouse geNorm normaliza-

tion kit, PrimerDesign Ltd., Southampton, UK) were used for

normalization. The relative quantification of Abcc4 gene in cell

lines of interest was done using levels measured for wild-type

J774 macrophages as baseline, based on Pfaffl’s equation [52].

Western-blots were performed on cell crude extracts. After

electrophoresis on acrylamide gel and transfer to nitrocellulose

membrane, proteins of interest were detected using anti-

ABCC4 monoclonal antibody (M4I-10; Alexis Biochemicals,

Lausen, Switzerland) or anti-actin polyclonal antibodies (Sig-

ma-Aldrich) (dilution 1/1000), followed by appropriate horse-

radish peroxidase-coupled secondary antibodies (dilutions 1/

600). Blots were then revealed by chemiluminescence assay

(SuperSignal West Pico, Pierce, Thermo Fisher Scientific Inc.,

Rockford, IL).

Cytogenetic analysis
Metaphase chromosomes were obtained according to standard

methods for mouse cell lines [53]. Cells were grown for 48 h into 6-

well plates (initial density of 56104 cells per cm2) and fed with fresh

medium 4 h before addition of a mitotic spindle inhibitor

(KaryoMAXH ColcemidTM Solution, Invitrogen) at a final

concentration of 0.02 mg/ml. After 45 min of incubation at 37uC,

cells were washed with PBS, detached by trypsinization and

collected by centrifugation (900 rpm, 10 min). They were then

submitted to hypotonic choc by resuspension in KCl 75 mM and

incubation for 10 min at room temperature. After centrifugation

(900 rpm, 5 min), cell pellets were resuspended in Carnoy’s fixative

(methanol/glacial acetic acid, 3/1) and incubated 15 min at room

temperature. This fixation step was repeated three times. Metaphase

chromosomes were obtained after spreading and air-drying of fixed

cells onto microscope glass slides. Metaphase cells were banded with

trypsin denaturation followed by a Wright staining. Metaphases

were analysed with Ikaros Imaging System (MetaSystems, Altlus-

sheim, Germany). Karyotypes were described according to The

Rules for Nomenclature of Chromosome Aberrations (Revised:

January 2005) from the International Committee on Standardized

Genetic Nomenclature for Mice (http://www.informatics.jax.org/

mgihome/nomen/anomalies.shtml). A total of 8 and 21 metaphasic

cells were analyzed, for wild-type and resistant macrophage (CR200)

cell lines, respectively.

Fluorescence in situ hybridization analysis
Fluorescence in situ hybridization (FISH) analysis was per-

formed using Bacterial Artificial Chromosome (BAC) probes (from

the Roswell Park Cancer Institute, Buffalo, NY) specific for Abcc4

(clone RP23-390O15) and DnajC3 loci (clone RP23-378H12) (both
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located at Chr 14qE4), and for a more centromeric locus of

Chromosome 14 which served as control (clone RP23-364J13,

located at Chr 14qA3). BAC localizations have been checked by

end sequencing analysis on a Beckman CEQ2000 sequencer

(Beckman Coulter, Fullerton, CA). After extraction, BAC probes

were labeled by random priming with fluorescent dUTP (Cy3-

dUTP [red] or fluorescein-12-dUTP [green]), using the BioPrimeH
DNA Labeling System (Invitrogen). Hybridization and fluores-

cence detection were carried out according to standard procedures

[54]. Briefly, fluorescent probes (Abcc4 or DnajC3 probes: 20 ng/ml;

control probe: 24 ng/ml), denatured at 70uC for 5 min and

preannealed with a 50-fold excess of mouse Cot-1 DNA

(Invitrogen), were hybridized overnight at 37uC to cytogenetic

slides pretreated with pepsin 0.01%/HCl 0.01 M at 37uC for

13 min, and then denatured at 75uC for 2 min 20 sec in 70%

formamide/2xSSCP (saline sodium citrate phosphate buffer).

After washing (2 min in 0.4xSSC [saline sodium citrate buffer]

at 30uC), cells were counterstained with 4,6-diamidino-2-pheny-

lindole (DAPI) and observed with a Zeiss Axioplan2 microscope

equipped with a HBO103W lamp (Zeiss, Oberkochen, Germany).

Images were captured with the Isis Imaging System (MetaSys-

tems). For each hybridization, a minimum of 30 metaphases and

of 200 interphasic cells were analyzed.

Multicolour FISH (mFISH)
Fresh metaphase spreads were pretreated with RNase A

(100 mg/ml)/2xSSC for 45 min at 37uC, then denatured as

previously described. The multicolour probe kit (21XMouse,

MetaSystems) was denatured according to manufacturer’s instruc-

tions, and then hybridized to metaphases at 37uC for 3 to 4 days.

Post-hybridization washes and counterstaining were performed

according to manufacturer’s instructions, using DAPI/antifade

(MetaSystems). Ten metaphases were analyzed for wild-type

macrophage cells, and more than 20 for resistant cells CR200.

When mFISH was combined with Abcc4 probe hybridization, we

compared metaphases hybridized first with mFISH probes, then

washed and hybridized again with the Abcc4 probe.

Supporting Information

Figure S1 mFISH karyotype of wild-type J774 macro-
phages. Chromosomes are displayed with false colors, as

indicated by rounds; squares indicate the combination of true

colors given by the probes.

(TIF)

Figure S2 Abcc4 FISH and mFISH analysis in wild-type
J774 macrophages, in cells resistant to increasing
concentrations of ciprofloxacin, and in revertant cells.
A: Metaphase spreads of J774 wild-type (upper left panel), CR100

(upper right panel), CR150 (middle panel) and Rev200 (lower

panel) cells were subjected to FISH analysis with an Abcc4 BAC

probe (green) and a control BAC probe located on Chr 14 (red).

Chromosomes were counterstained with DAPI. Representative

metaphases of the different clones observed are shown. Green

arrow indicates Chr 14 with Abcc4 copy, red arrow points to the

control BAC probe (red) located on Chr 14, green circle indicates

Abcc4 amplification, and green square Abcc4 additional copy. B:

Metaphase spreads of the main three clones (I, II, III) observed in

CR200 cells hybridized first with mFISH probes and subsequently

with the Abcc4 BAC probe (green) and the control BAC probe (red)

located on Chr 14 (chromosomes counterstained with DAPI).

(TIF)

Figure S3 Comparison of ciprofloxacin accumulation in
murine and human cells with basal or overexpression of
Abcc4/ABCC4. Cellular accumulation of ciprofloxacin in J774

mouse macrophages (WT or CR200) and in human embryonic

kidney cells (HEK293, parental cells; HEK293/4.63 transduced

with the human cDNA coding for ABCC4 and overexpessing the

transporter to high levels [28,29]). Cells were incubated during 2 h

with an extracellular concentration of 20 mg/L (50 mM) of

ciprofloxacin in the absence of in the presence of 500 mM

gemfibrozil. Data are expressed in percentage of the value

measured in control condition in the parental cell line and are

the mean 6 SD of 3 independent determinations.

(TIF)
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