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Abstract

The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic
fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East
Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to
antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the
induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using
transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like
protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected
cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in
the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action.
Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit
ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2
interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than
ubiquitin and ISG15 may be involved in the actions of the viral OTU.
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Introduction

Nairobi sheep disease virus (NSDV) is a member of the genus

Nairovirus within the family Bunyaviridae and causes acute

hemorrhagic gastroenteritis in sheep and goats, with very high

morbidity and mortality rates in susceptible animals [1]. It was

originally isolated in Nairobi, Kenya in 1910 by inoculation of

sheep with the blood of sheep suffering from acute gastroenteritis.

NSDV was originally thought to be endemic only in East Africa;

recent sequence data showed that the same virus can also be found

in many places in India and Sri Lanka where it is called Ganjam

virus (GV) [2]. Daubney and Hudson showed that NSDV is

primarily transmitted in East Africa by the hard tick Rhipicephalus

appendiculatus, and that animals that were bred in areas where this

tick was prevalent were immune, but animals that were moved

into such areas died in large numbers [3,4]. The virus is therefore

only of limited effect on stable populations, but can be a severe

limitation on trade or attempts to improve stocks through

introduction of new animals. There is no current vaccine. In

India, the virus is found in a number of tick species, primarily

Hemaphysalis intermedia [5]. Sheep and goats are the only known

vertebrate hosts of NSDV/GV [6,7], although one or two cases of

human infection through needle-stick injury have been reported as

leading to mild febrile illness [8,9].

Nairoviruses are small, enveloped RNA viruses in which the

genome consists of three segments of single stranded, negative

sense RNA, designated Large (L), Medium (M) and Small (S) [10].

The S, M and L segments encode, respectively, the nucleocapsid

protein (N), at least two envelope glyoproteins (Gn and Gc) and

the viral RNA-dependent RNA-polymerase (L). The L segment is

unusual among bunyaviruses, being extremely long (.12 kb),

encoding a single protein of .450 kDa. The carboxyterminal half

of this protein contains most of the polymerase motifs, while the

amino-terminal part is largely of unknown function. The genus

contains more than 30 different virus isolates, loosely grouped

based on serum cross-reactivity and hemagglutination inhibition

[11], since sequence data on all but a few of these viruses has been

limited or missing until recently. The most important serogroups

are the NSDV serogroup, which also includes Dugbe virus

(DUGV) and Kupe virus, and the Crimean Congo hemorrhagic

fever virus (CCHFV) serogroup, which contains CCHFV and

Hazara virus, both human pathogens. CCHFV causes a severe

disease in human beings, with a reported mortality rate of 3–30%

[12]. The disease is very similar to that caused in sheep by NSDV

infection and is characterised by haemorrhage, myalgia, and fever.

The first line of defence against virus infections is innate

immunity. The key players are interferons (IFNs) and other

cytokines that are rapidly produced in virus infected cells

(Reviewed in [13]). Three major classes of IFNs are known. Type

I IFNs comprise the largest group, with multiple distinct IFNa
genes, one to three IFNb genes and other genes (IFNv, -e, -d, -k).

The first two are induced directly in response to viral infection
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whereas the others play less defined roles. Type II IFN has a single

member, namely IFNc, which is secreted by activated T cells and

natural killer cells rather than in direct response to virus infections.

A third class of IFNs has been described recently that shares the

same pathway to sense viral infection as type I IFNs and is also

induced directly in response to viral infection [14,15,16]. After an

infected cell senses a viral infection, IFNs are produced and

released from the cell to induce an antiviral state in both itself and

neighbouring cells. Both type I and type II IFNs bind to their

cognate cell-surface receptors, thereby activating a signal-trans-

duction pathway that triggers the transcription of several hundreds

of genes [17]. These IFN-stimulated genes (ISGs) have either IFN-

stimulated response elements (ISRE) or GAS (Gamma-activated

sequence) elements in their promoter region. Type I IFNs such as

IFNa can lead to transcription of ISGs with ISRE or GAS

elements, whereas IFNc can only induce ISGs with GAS elements

(reviewed in [18]).

It seems that most viruses studied so far have developed a

strategy to counteract the host innate immune system [13]. Two

Nairoviruses (CCHFV, DUGV) have been shown to be inhibited

by MxA, a protein induced by type I IFNs [19,20]. Since the

viruses are inhibited by IFN-induced proteins, viral virulence will

depend at least in part on the ability of the virus to avoid or block

the type I IFN response, and it is therefore very likely that

Nairoviruses have developed tactics against this host defence

mechanism. The current knowledge on how Nairoviruses

manipulate the host innate immune system comes mostly from

studies with CCHFV. Andersson et al. have shown that CCHFV

showed a markedly delayed type I IFN response in cell culture, up

to 48 hours after infection, possibly by interfering with the

pathway that leads to activation of interferon regulatory factor 3

(IRF3) [21]. In addition they found that CCHFV is insensitive to

IFNa treatment applied six hours post-transfection. One possible

explanation for the delay in the IFN response is given by another

study showing that CCHFV has developed a mechanism to

remove the 59-terminal triphosphate group from its genome

segments, thereby avoiding retinoic acid inducible gene I protein

(RIG-I)-dependant IFN induction [22]. Another possible expla-

nation may be the activity of the ovarian tumour-like (OTU)

domain found in the amino-terminus of the viral L protein.

Sequence analysis of the L proteins of Nairoviruses identified this

domain, which represents a unique class of deubiquitinating

enzymes (DUBs) [23]. Recent studies with the CCHFV OTU-

containing L protein showed that it decreases the coupling of

ubiquitin (Ub) and the ubiquitin-like protein (Ubl) encoded by

interferon stimulated gene 15 (ISG15) to cellular proteins [24].

The post-translational modification of proteins by Ub and Ubls

regulates essential processes in the type I IFN response to viral

pathogens [25,26]. Cellular DUBs have been found which appear

to act as part of negative feedback control systems for IFN

induction pathways [27,28]. Removal of Ub and/or ISG15 from

their protein conjugates will disrupt a number of elements of the

IFN induction pathway, and targeting the ISG15 and/or the

ubiquitin system is a common strategy used by different viruses to

inhibit innate immune responses [29,30,31,32].

Up till now there is no information available on if and how

NSDV/GV manipulates the host innate immune system. Because

of the difficulties in handling CCHFV, there is only limited

correlation of studies on virus and on viral proteins. We provide

here the evidence that NSDV/GV is able to inhibit IFN induction

as well as IFN action. We could identify the viral L protein as

being responsible for these inhibitory effects. Furthermore NSDV

is able to reduce total protein ubiquitination and ISG15ylation in

infected cells. This deconjugating activity, as with CCHFV, is

located in the N-terminal part of the NSDV L protein containing

the OTU domain. Inactivation of the OTU enzymatic activity

resulted in loss of its ability to antagonise IFN responses.

Results

Delayed IFNb induction in NSDV-infected Vero cells
Two isolates of NSDV/GV were available to us for these

studies, one a highly tissue-culture passaged isolate of the virus

from Uganda (and therefore notionally NSDV), the other an

isolate from India (and therefore notionally GV) which had been

passaged a limited number of times in mouse brain or BHK 21

cells. Although these two isolates have been shown phylogeneti-

cally to be the same virus [2], we will refer to them as GV and

NSDV in this paper to indicate the two isolates. The GV isolate

proved to be still pathogenic in sheep, while the NSDV isolate was

nearly completely attenuated, and the GV isolate is therefore

probably nearer to wild type virus.

As described in the Introduction, studies with CCHFV have

shown it has a delayed IFN response in infected cells [21]. We

wanted to know if NSDV/GV is able to interfere with the early

induction of type I IFNs. To address this question we transfected

Vero cells with a reporter gene construct containing the firefly

luciferase under the control of the IFNb promoter. Luciferase

expression is taken as a measure of protein production from this

specific promoter after activation of transcription, which in turn is

taken as a measure of IFNb induction. Although this system is

commonly used to study the control of IFN induction, we

recognise that failure to express luciferase could reflect viral effects

at a number of different points in the induction, transcription and

protein synthesis pathway. As a positive control for the induction

of IFNb we used Newcastle disease virus (NDV), a paramyxovirus

which has been reported as being unable to block IFN induction in

mammalian cells [33] and therefore is frequently used as a model

stimulator of cytoplasmic PRRs. Vero cells lack a functional IFN-b
gene [34,35] which made them a useful tool for our experiment

because they allowed us to measure direct activation of the IFNb
promoter in infected cells excluding any indirect effect of IFN

synthesis in neighbouring uninfected cells. The transfected Vero

cells were infected with the NSDV or GV isolate or with NDV and

the amount of synthesised luciferase was determined at the

indicated time points (fig. 1a&b). Infection with NDV induced a

rapid activation of the IFNb promoter (fig. 1a); after 4.5 and

6.5 hours of NDV infection very high amounts of luciferase are

already detected when compared to mock-infected cells, with

levels of luciferase already decreasing at 9hpi. In contrast, at 4.5hpi

there was no increase in promoter activity detectable in GV/

NSDV-infected cells when compared to mock-infected cells

(fig. 1b). A very slight increase in luciferase was seen at 10hpi in

NSDV-infected cells, and at 14 hpi there is a clear significant

increase in the reporter gene activity induced by NSDV or GV

infection with further increases up to 24 hours of infection. Recent

evidence suggests that many negative-strand RNA viruses do not

generate dsRNA during infection [36] and only induce IFN

rapidly if they contain defective interfering particles (DIs) [37]. It is

likely therefore that our NDV preparation is acting through a

significant content of such DIs. Neither NSDV/GV isolate,

however, induced interferon until later stages in the infection

cycle. There was a significant difference between the two isolates,

NSDV and GV, regarding the kinetics of activation of the IFNb
promoter. Activation by the GV isolate was later than that induced

by the NSDV isolate and also the transcriptional activation

observed was lower when compared to the NSDV isolate (fig. 1b).

This might be due to the fact that the NSDV isolate was previously

Nairovirus Inhibition of Interferon
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passaged over 60 times in cell culture, in contrast to the GV isolate

which has primarily been maintained in mouse brain culture and

has been passed twice in BHK-21 culture in our hands; this

difference may have resulted in the NSDV isolate having a

reduced efficiency to evade IFN induction, or a more rapid growth

in the cultured cells, leading to a more rapid production of one or

more PAMPs recognised by the host cell. This second possible

explanation is supported by the growth kinetics of GV and NSDV

in Vero cells, which showed that NSDV replication rates were

faster compared to GV, although both isolates grew to the same

final titer (Lidia Lasecka, pers. communication).

NSDV/GV is able to block transcription from the IFNb
promoter at early stages of infection

Next we wanted to examine if the absence of IFNb promoter

activation in early stages of NSDV infection upon NSDV/GV

infection is due to an active block or if NSDV/GV is rather

avoiding the activation of the IFNb promoter by a similar

mechanism as already described for CCHFV [21]. On that

account we transfected Vero cells with the IFNb reporter gene

plasmid. One day later cells were infected with the GV or NSDV

isolate, and subsequently super-infected with NDV. Immunoflu-

orescence experiments showed that approx 85% of cells were

infected with NSDV/GV, and that prior infection with NSDV/

GV did not block NDV infection in these cells (data not shown).

The reporter gene activity was determined as described in material

and methods (fig. 2). In cells infected with NDV alone the

expected increase in the activity of the IFNb promoter was

observed when compared to uninfected cells. Interestingly, when

the NDV infection was preceded by infection with GV or NSDV

there was a clear reduction in the promoter activation detectable

compared to cells infected solely with NDV. The reduction in the

effects of NDV in these assays was only 40% even though about

85% of the cells were infected with NSDV/GV. This may have

been because there was insufficient NSDV/GV protein at the time

of the NDV superinfection to provide a complete block of the IFN

induction pathway inside each infected cell; the reduction in

reporter gene activity was indeed less pronounced if NDV was

applied after shorter periods of GV or NSDV infection such as

four hours post infection (data not shown), showing that it takes

some time for the active block of the IFN induction pathway to

take effect. This discrepancy may also reflect the limited nature of

the block provided by NSDV/GV, which is unable to completely

prevent activation of the IFN-beta promoter later in its own

infection (FIg 1b), as well as the very strong stimulus provided by

the NDV superinfection in these experiments. Nevertheless, these

results indicate that NSDV and GV are able to actively suppress

activation of the IFNb promoter, and are not simply avoiding

detection by cellular PRRs.

NSDV/GV inhibits action of type I and II IFNs
We wanted to know if NSDV is able to interfere with type I and

type II IFN signalling. Vero cells were transfected with plasmids

having the luciferase ORF under the control of the mouse Mx1

Figure 1. Delayed IFNb induction in GV and NSDV-infected cells. Vero cells were transfected with 400 ng of pIFNb-luc and 200 ng pJATLacZ.
After 24 hours of transfection, the cells were infected with (a) NSDV or GV, or (b) NDV at an MOI of 1 TCID50 unit per cell, or left uninfected. At the
indicated time points cells were lysed and assayed for luciferase and b-galactosidase activities. The ratio of these two activities was taken as the
relative luciferase activity (in RLU). Shown are the data from a representative experiment in triplicates; error bars represent one standard error of the
mean.
doi:10.1371/journal.pone.0028594.g001

Figure 2. NSDV and GV suppress transcription from the IFNb
promoter. Vero cells were transfected with 500 ng each pIFNb-luc and
pJATLacZ. After 24 hours of transfection cells were infected with GV
and NSDV at an MOI of 1 TCID50 unit per cell or left uninfected. Eight
hours after infection with NSDV or GV, cells were superinfected with
Newcastle disease virus (NDV) at an MOI of 1 TCID50 unit per cell or left
uninfected, and finally lysed four hours after infection with NDV. The
luciferase and b-galactosidase activities of the cell extracts were
determined. Results from three separate experiments were combined
by setting the RLUs induced by NDV in uninfected cells to 100%; all
experiments were performed in triplicate wells. Error bars show
standard errors of the normalised data.
doi:10.1371/journal.pone.0028594.g002
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promoter (a promoter strongly activated by type I IFN) or one

containing multiple copies of a GAS element (responds to type II

IFN). Those cells were subsequently infected with either the GV or

the NSDV isolate. After eighteen hours of infection cells were

treated with IFNa or IFNc or left untreated. Finally the luciferase

activity was determined as described in material and methods.

Treatment of cells with IFNa induced high levels of luciferase

activity in cells transfected with the Mx-1 reporter plasmid (fig. 3a)

which is in accordance with the literature [38]. Infection with

either GV or NSDV resulted in a significant reduction in IFN-

induced Mx-1 promoter activity when compared to uninfected

cells. The same effect could be observed when cells were treated

with IFNc to induce the GAS element (fig. 3b). GV and NSDV

were similarly effective in reducing the promoter activity in the

presence of IFNc to less than forty percent of the activity in IFNc-

stimulated uninfected cells. These data strongly suggest that

NSDV/GV is able to counteract the type I and II IFN induced

transcription of genes that have an ISRE or GAS element in their

promoters.

NSDV/GV inhibits the phosphorylation of STAT1 and
STAT2 in type I and II IFN-stimulated Vero cells

The binding of IFNa/b to the type I IFN receptor results in the

autophosphorylation and activation of JAK (Janus activated

kinase) 1 and tyrosine kinase 2, which are both members of the

JAK family and associated with the receptor (reviewed in [18]).

The activated JAKs phosphorylate specific tyrosines of STAT1

(signal transducer and activator of transcription 1) and STAT2.

Upon phosphorylation, STAT1 and STAT2 form heterodimers

and, in association with other factors, translocate to the nucleus to

bind to ISREs to initiate transcription of ISGs. Binding of IFNc to

its receptor similarly induces phosphorylation of STAT1 which

then forms homodimers that translocate to the nucleus to activate

the transcription of genes with GAS elements. Targeting the

activation of STAT proteins or their transfer to the nucleus are

efficient ways to block innate immunity that are used by several

different viruses (reviewed in [13]). To investigate whether

NSDV/GV are inhibiting IFN action through an effect on STAT

phosphorylation, we infected Vero cells with NSDV or GV for

16 hours and then stimulated the infected cells with IFNa or

IFNc. Samples from those cells were subjected to immunoblot

analysis to check the phosphorylation status of STAT1 and

STAT2 (fig. 4). In uninfected cells IFNa treatment induced

phosphorylation of STAT1 and 2 (fig. 4a). An almost complete

block of STAT1 phosphorylation was observed in NSDV infected

cells, especially at later time points. The GV isolate also inhibited

STAT1 phosphorylation, though was clearly less effective. This

reduced effectiveness of the GV isolate corresponds to a reduced

ability to block IFN action in the reporter gene assay (fig. 3), and

may be due to the slightly slower growth of this isolate in cell

culture; at later time points of infection (18hpi) the GV isolate was

Figure 3. GV and NSDV inhibit the induction of expression from IFN-responsive promoters. Vero cells were transfected with 500 ng
pJATLacZ and (a) 500 ng pGL3-Mx-1-luc or (b) pGAS-luc. 30 hours post transfection cells were infected with GV or NSDV at an MOI of 1 or left
uninfected. 18 hours post infection cells were treated for 6 hours with IFNa (a) or IFNc (b), lysed, and the luciferase and b-galactosidase activities
determined. Results from two (for IFNa) or three (for IFNc) separate experiments were combined by setting the RLUs induced by IFNa or IFNc in
uninfected cells to 100%; all experiments were performed in triplicate wells. Error bars show standard errors of the normalised data.
doi:10.1371/journal.pone.0028594.g003

Figure 4. GV and NSDV infection interfere with the tyrosine phosphorylation of STAT1 and STAT2 in response to IFNa or IFNc. Vero
cells were infected with GV or NSDV at an MOI of 1 TCID50 unit per cell or left uninfected (mock). At the indicated time post-infection cells were
treated with or without IFNa (a) or IFNc (b) for 30 min. The cells were harvested and the levels of STATs and tyrosine-phosphorylated STAT proteins
were determined by Western blot analysis with the corresponding specific antibodies. The data shown are from a representative experiment.
doi:10.1371/journal.pone.0028594.g004
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equally effective as the NSDV (fig. 4a). Interestingly neither virus

was as effective at inhibiting the phosphorylation of STAT2

(fig. 4a). Treatment with IFNc leads to the rapid phosphorylation

of STAT1 in uninfected cells (fig. 4b). A clear reduction of

phosphorylated STAT1 can be detected in NSDV- and GV-

infected cells stimulated with IFNc when compared to uninfected

cells. No degradation of STAT 1 or 2 was observed in infected

cells. This reduction in phosphorylation of the STAT proteins

gives a possible explanation of the inhibitory effects of NSDV and

GV on the GAS and ISRE promoter activity shown previously

(fig. 3).

The GV L protein inhibits transcription from the IFNb
promoter

So far the viral RNA-dependent RNA polymerase (RdRP) from

CCHFV and DUGV are the only nairoviral proteins known to

interfere with the host innate immune response [24]. We wanted

to identify the NSDV protein(s) that is/are responsible for the

inhibitory effects on IFN induction and action in infected cells. For

that reason we made viral protein expression plasmids that were

derived from the GV isolate as it is far less tissue culture adapted

than the NSDV isolate. We cloned the open reading frame (ORF)

of the S and M segments of GV into a mammalian expression

vector under the control of a CMV promoter and with a V5-tag in

frame at the C-terminus of each protein. For the M segment,

which is translated into a polyprotein that produces at least two

glycoproteins, this produces a V5 tag at the C terminaus of Gc, the

most distal of the glycoproteins produced from this segment. We

were unable to clone the complete ORF of GV (or NSDV) L into a

plasmid due to recombination events that took place in Escherichia

coli, even in strains such as STBL2, SURE2, ABLE K, XL-10 and

MDS42 which are engineered to support unstable DNA. We

mapped the toxic/unstable sequence to a region of approximately

1 kb found roughly in the middle of the L ORF. We were able to

construct plasmids containing either half of this sequence but not

the whole piece, and were therefore able to prepare expression

constructs encoding the amino- and carboxy-terminal parts of GV

L protein (aa L1-1757 and aa L1749-3391 respectively), thereby

covering the whole protein with a short overlap between the

constructs. In addition we cloned two shorter fragments of the

amino terminal part of the viral polymerase that contained

the OTU domain (aa L1-169) or the OTU domain and the

following zinc-finger domain (aa L1-667). We transfected different

amounts of these expression plasmids to approximately equalize

the expression levels of the individual viral proteins in the reporter

gene assays. In fig. 5a typical protein expression levels are shown

that were used in our studies. Only the expression of the

glycoprotein Gc which had the carboxy-terminal V5 tag could

be analysed. The level of Gn could not be checked due to the lack

of glycoprotein-specific antibodies for NSDV. However we

assumed that the expression levels of the two glycoproteins are

similar as they are expressed as a single polyprotein.

We wanted to know if one of these viral proteins is able to block

the transcription from the IFNb promoter in Vero cells infected

with NDV. To address this question we co-transfected these viral

protein expression constructs together with our reporter plasmids

pIFNb-luc and pJATLacZ into Vero cells. Then the transfected

cells were infected with NDV and luciferase activity in cell extracts

was analysed (fig. 5b). Neither the nucleoprotein nor the

glycoproteins could impede NDV-induced transcriptional up-

regulation of the IFNb promoter. All three amino-terminal

expression constructs containing the OTU domain of the GV L

protein (L1-169, L1-667 and L1-1757) were able to significantly

decrease luciferase expression, whereas the C-terminal part of L

(L1749-3391), which contains parts of the polymerase but no

OTU domain, showed no effects on NDV-induced reporter gene

expression. The protein L1-169 was more effective than L1-667

and L1-1757 in blocking NDV-induced IFNb-promoter activity.

These data strongly suggest that the GV OTU domain is

responsible for the inhibitory effects on type I interferon induction

observed in infected cells (fig. 2).

The OTU domain of the GV L protein blocks type I and II
IFN action

Our previous experiments have shown that NSDV is able to

inhibit the action of type I and type II IFNs in infected cells (fig. 3).

To identify the viral protein that is responsible for this effect we

transfected Vero cells with reporter plasmids carrying a luciferase

Figure 5. Ganjam L protein inhibits transcription from IFNb-
promoter in response to NDV infection. (a) Vero cells were
transfected with 350 ng pIFNb-luc, 200 ng pJATLacZ and 1.2 mg of a
plasmid driving the expression of the indicated viral protein, with the
exception of pcDNA6-GV-L1-169 and pcDNA6-GV-N where 700 ng and
300 ng respectively were used in transfection experiments. All
transfections were made up to the same amount of DNA using empty
vector. After 40 hours of transfection cells were infected with NDV
(MOI = 1). After a further 5 hours the cells were (a) lysed with SDS-PAGE
sample buffer and the expression of viral proteins detected by Western
blot using a monoclonal antibody to the V5 epitope or to the His
epitope as required, or (b) lysed with NP40 lysis buffer as described in
Methods and the luciferase and b-galactosidase activities determined.
Results from two or three separate experiments were combined by
setting the RLUs induced by NDV in cells transfected with empty vector
to 100%. Error bars show standard errors of normalised data.
doi:10.1371/journal.pone.0028594.g005
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gene under the control of type I and II IFN-responsive promoters

(pGL3-Mx-1-luc and GAS-luc) together with the viral protein

expression plasmids. The cells were treated with IFNa or IFNc to

induce transcription from the IFN-responsive promoters and the

luciferase induced was measured (fig. 6). The reporter gene activity

in cells treated with IFNa or IFNc was significantly reduced in the

presence of the GV L protein constructs containing the OTU

domain (L1-169, L1-667 and L1-1757) compared to cells

transfected with empty plasmid only, whereas in cells expressing

the nucleoprotein, the glycoproteins or the carboxy-terminal part

of the L protein, treatment with IFNa or IFNc induced

comparable levels of reporter gene activity to that found in cells

expressing no viral protein. As in the studies of IFN induction, the

two shortest versions of the GV L protein were the most efficient in

blocking the action of IFNa and IFNc.

Infection with NSDV/GV reduces total protein
ubiquitination and ISG15ylation

Data from studies with CCHFV L protein showed that the

OTU domain is enough to inhibit total protein ubiquitination

and ISG15ylation in 293T cells [24]. We wanted to know if

NSDV/GV has any effects on total protein ubiquitination and/

or ISG15ylation in cells. We investigated this using Vero cells

transfected with expression constructs for tagged forms of Ub or

ISG15, with appropriate supporting plasmids as required for the

ISG15 system [24,39]. Cells were transfected with a plasmid

expressing HA-tagged ubiquitin and subsequently infected

with the GV or NSDV isolates. Twelve hours post-infection

cell extracts were prepared and the expression of ubiquitin

conjugated-proteins determined by immunoblotting (fig. 7a),

showing that infection with either isolate caused a decrease in

total protein ubiquitination compared to uninfected cells. In a

similar way we studied the effects of NSDV/GV on ISG15yla-

tion of proteins in infected host cells. ISG15 is a Ubl that is very

rapidly induced in type I IFN-treated cells [40] and is thought to

play important roles in anti-viral responses, either as a monomer

or by conjugation to host cell proteins (reviewed in [41]). ISG15

conjugation to host cell proteins exerts antiviral activity against

influenza virus [42] and Sindbis virus [43]. For our studies on

NSDV and its effects on host ISGylation during infection we

made use of the fact that ISG15ylation can also be generated by

transfecting expression constructs for ISG15 along with

plasmids encoding the core components of the ISG15 conjuga-

tion system, the E1 activating protein (mUBE1L), E2 conjugat-

ing protein (UbcM8) and E3 ligase (mHerc6) into cells in the

absence of IFN [39]. After transfecting these four plasmids into

Vero cells, the cells were subsequently infected with the GV or

NSDV isolates or left uninfected. Twelve hours post-infection

cells were lysed and the level of ISG15-conjugates were

examined by immunoblotting (fig. 7b). Infection of NSDV/

GV resulted in a drastic decrease in ISG15-conjugates found in

Vero cells when compared to uninfected cells. Importantly, the

infection with NSDV itself did not cause a reduction in the total

amount of mono-ISG15 expressed from the transfected plasmid,

as shown by tracks 5-7 of fig. 7b, where the helper plasmids

were omitted, so one is simply comparing ISG15 expression in

uninfected and infected cells. This excludes any indirect effect of

infection on ISGylation through an effect on ISG15 expression

or stability.

Since the virus itself reduces Ub and ISG15 coupling to cell

proteins, we wanted to confirm that the OTU domain is

responsible for these decreased levels of conjugates in NSDV/

GV as it is for CCHFV. For these studies we used 293 cells, as

those were the cells used in the studies on CCHFV proteins. We

determined the level of ubiquitination in the presence of the GV

L1-169 protein in 293FT cells and compared it to the level found

in cells transfected with empty plasmid or with the CCHFV L1-

354 protein (containing the OTU domain of CCHFV) (fig. 7c).

The CCHFV OTU-containing protein contains an HA tag and so

appears in the same blots as the HA-Ub and HA-Ub conjugates.

The CCHFV OTU completely abolished ubiquitination as

previously shown [24]. The GV OTU was also effective in

decreasing the levels of cellular Ub-conjugates, but was less

effective compared to the CCHFV OTU domain. In the same way

we investigated whether the OTU domain of NSDV/GV was

responsible for the reduction in ISG15ylation. For this purpose we

transfected 293FT cells with the core components of the ISG15

Figure 6. GV L protein inhibits transcription from IFN-responsive promoters. (a) Vero cells were transfected essentially as for Figure 5
except that 100 ng of the reporter gene plasmid pGL3Mx-1-lucwas used. All transfections were made up to the same amount of DNA using empty
vector where required. After 40 hours of transfection cells were incubated with or without IFNa. After a further 8 hours the cells were lysed and the
luciferase and b-galactosidase activities determined as described in material and methods. (b) Vero cells were transfected essentially as for Figure 5
except that 400 ng of the reporter gene plasmid pGAS-luc was used. 40 hours post-transfection cells were treated with IFNc. After a further 6 hours
cells were lysed and the luciferase and b-galactosidase activities determined. Results from separate experiments were combined by setting the RLUs
induced by IFNa in cells transfected with empty vector to 100%. Error bars show standard errors of normalised data.
doi:10.1371/journal.pone.0028594.g006
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system in conjunction with plasmids expressing either the

GV or CCHFV OTU domain or empty plasmid (fig. 7d).

Expression of the GV OTU domain efficiently blocked

conjugation of ISG15 to cellular proteins. The CCHFV

OTU also blocked ISG15ylation in 293FT cells as already

published [24]. Again the CCHFV OTU was more efficient

than the GV OTU in reducing the amounts of ISG15-

conjugated proteins in the cell. Both virus isolates of NSDV

are therefore able to decrease total cellular ubiquitination and

ISG15ylation levels during infection. The GV OTU domain,

when expressed alone, could reproduce these effects exerted by

the virus during infection.

The catalytic activity of the OTU domain is necessary but
not sufficient for antagonising IFN action

To determine the role of the catalytic activity of the OTU

domain in IFN antagonism, we changed the cysteine at position 40

and the histidine at position 151, two components of the catalytic

triad, to alanine (C40A and H151A respectively). A third mutant

was created where glutamine 16 was replaced by arginine (Q16R);

Q16 has been described as important for the binding of the

CCHFV OTU to ubiquitin but with little importance for the

binding of ISG15 [44,45], so this mutation was designed to allow

us to study solely the effects of deISG15ylation on the innate

immune system. The mutations were introduced individually into

Figure 7. GV and NSDV inhibit ubiquitination and ISG15ylation. (a) Vero cells were transfected with 500 ng pHA-Ub. 14 hours post
transfection cells were infected with NSDV or GV at an MOI of 1 TCID50 unit per cell. After a further 12 h cells were lysed in SDS PAGE sample buffer
and total protein ubiquitination was analysed by Western blot using anti-HA. Lane 1: Untransfected cells; Lanes 2-4:transfected with pUb-HA; Lane 3:
GV-infected; Lane 4: NSDV-infected. (b) Vero cells were transfected with 250 ng pHis-mISG15 with 750 ng empty vector (Lanes 5–7) or with 250 ng
each HA-mHerc6, mUBE1L-HA and UbcM8 (Lanes 2-4) or left untransfected (Lane 1). After 14 hours of transfection cells were infected with GV (Lane 3,
6) or NSDV (Lane 4, 7) at an MOI of 1 TCID50 unit per cell or left uninfected (Lanes 1, 2, 5). Twelve hours after infection, samples were analysed by
Western blot using anti-6His antibody. Samples were also probed for the presence of viral protein (N) to confirm infection. (c) 293FT cells were
transfected with 400 ng pUb-HA and with 500 ng empty vector (Lane 2) or with 500 ng of plasmid expressing CCHFV L1-354-HA (Lane 3) or GV L1-
169-V5 (Lane 4) or left untransfected (Lane 1). 30 hours post transfection cells were lysed and total protein ubiquitination was determined by Western
blot using anti-HA. The expression of GV L1-169 was detected by using anti-V5. (d) 293FT cells were transfected with 250 ng each pHis-mISG15, HA-
mHerc6, mUBE1L-HA, UbcM8 alone (Lane 2) or together with 250 ng of plasmid expressing CCHFV L1-354-HA (Lane 4) or GV L1-169-V5 (Lane 5) or left
untransfected (Lane 1). As extra negative control cells were transfected with 250 ng pHis-mISG15 and 750 ng empty plasmid (Lane 3). After 30 h of
transfection cells were lysed and total ISG15ylation was analyzed by Western blot using anti-6His. The expression level of GV L1-169 and CCHFV L1-
354 were assayed by using anti-V5 and anti-HA respectively. PCNA levels served as loading control in all experiments.
doi:10.1371/journal.pone.0028594.g007
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the GV L1-169 construct, and transfected into 293FT cells to

examine their effect on ubiquitination and ISGylation (fig. 8a, b).

Mutation of C40 or H151 resulted in a complete loss of

deubiquitinating (fig. 8a) and deISG15ylating (fig. 8b) activity.

The Q16R mutant performed like the wildtype regarding its

ability to remove ISG15 from cellular substrates (fig. 8b) while its

deubiquitinating activity was only slightly reduced when compared

to the wildtype OTU (fig. 8a). In previous studies on CCHFV a

similar mutant was described as being unable to hydrolyze a

fluorogenic model DUB substrate (Ub-AMC) [44]. The difference

might be explained by the fact that we are using the OTU domain

from a different virus and also a different assay for DUB activity.

We tested these mutants regarding their ability to interfere with

IFN induction. For this purpose, cells were transfected with L1-

169 or the catalytic mutants C40A, H151A or Q16R, along with

the reporter plasmids pIFNb-luc and pJATLacZ (fig. 8c). The

IFNb promoter was activated by infection of cells with Sendai

virus (SV) for eight hours. Interestingly all three mutants lost their

Figure 8. The OTU enzymatic activity is required for inhibition of IFN induction and action. (a) 293FT cells were transfected with 400 ng
pHA-Ub and with 500 ng empty vector (Lane 2) or with 500 ng of plasmid expressing GV L1-169-V5 wildtype (Lane 3) or with the mutants C40A (Lane
4), H151A (Lane 5) or Q16R (Lane 6) or left untransfected (Lane 1). Thirty hours post-transfection, cells were lysed and total protein ubiquitination was
determined by Western blot using anti-HA. (b) 293FT cells were transfected with 250 ng each pHis-mISG15, HA-mHerc6, mUBE1L-HA, UbcM8 alone
(Lane 3) or together with 500 ng of plasmid expressing GV L1-169-V5 (Lane 4) or with one of the following mutants C40A (Lane5), H151A (Lane 6) or
L16R (Lane 7), or left untransfected (Lane 1). As an extra negative control, cells were transfected with 250 ng pHis-mISG15 and 1250 ng empty
plasmid (Lane 2). After 30 h of transfection cells were lysed and total ISG15ylation was analyzed by Western blot using anti-6His. The expression level
of GV L1-169 and its mutants were assayed by using anti-V5. PCNA levels served as loading control in all experiments. (c) Vero cells were transfected
with 350 ng of the reporter plasmid pIFNb-luc plus 200 ng pJATLacZ combined with 700 ng of pcDNA6-GV-L1-169 or of one of the mutants C40A,
H151A, or Q16R, or empty vector. After 24 hours of transfection cells were infected with Sendai virus (SV) or left uninfected. Eight hours post-infection
the cells were lysed with NP40 lysis buffer and the luciferase and b-galactosidase activities determined as described in material and methods. (d) Vero
cells were transfected essentially as in (c) except that 100 ng of the reporter plasmid pGL3Mx-1-luc was used. After 24 hours of transfection cells were
incubated with or without IFNa. After a further 8 hours the cells were lysed and the luciferase and b-galactosidase activities determined as described
in material and methods. (e) Vero cells were transfected essentially as in (c) except that 400 ng of pGAS-luc was used as the reporter plasmid. After
24 hours of transfection cells were incubated with or without IFNc. After a further 8 hours the cells were lysed and the luciferase and b-galactosidase
activities determined as described in material and methods. Error bars in (c-e) show standard error of the mean of normalised data. Results from three
separate experiments were combined by setting the RLUs induced by SV or IFN in cells transfected with empty vector to 100%.
doi:10.1371/journal.pone.0028594.g008
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ability to block SV-induced IFNb promoter activity when

compared to the wildtype. These results showed that the catalytic

activity of the OTU is necessary to counteract IFN induction. The

results with the Q16R mutant were interesting, as it retained its

deubiquitinating and deISG15ylation activity but, despite that,

was not able to block IFN induction.

We also examined the ability of L1-169 C40A, H151A, and

Q16R to block type I (fig. 8d) and II (fig. 8e) IFN action. We used

the same experimental setup as described before when we tested

the different viral proteins for their ability to block IFN action

(fig. 6). The catalytic site mutants of L1-169 no longer blocked type

I IFN-induced gene expression (fig. 8c). The Q16R mutant did

block the induced transcription from the Mx-1 promoter to some

extent, but not as efficiently as the wildtype. All mutants lost their

ability to block type II IFN-induced gene expression (fig. 8d).

These data show that the enzymatic activity of the OTU domain

in the nairovirus L protein plays a pivotal role in antagonizing IFN

induction and action. In addition, the data from the Q16R mutant

strongly suggests that specific, yet different, targets are involved in

antagonising these three activities, since this protein is still able to

remove ubiquitin and ISG15 from the dominant cellular

substrates, but lost its ability to antagonize IFN induction and

type II IFN action while retaining some ability to block type I IFN

action.

Discussion

NSDV is regarded as one of the most pathogenic diseases in

sheep and goats with mortality rates ranging from 40% in Merino

sheep to 90% in Masai sheep [1]. Judging by its high pathogenesis,

NSDV has most likely developed efficient mechanisms to

circumvent or inhibit innate immunity. The first response of the

immune system against virus infections is the production and

secretion of type I IFNs. We could show that the induction of

transcription from the IFNb promoter in infected cells by NSDV/

GV is delayed and reduced when compared to another negative

strand RNA virus (fig. 1). We do not observe the extensive delay

described previously in CCHFV infected cells [21]; however, that

observed in our studies would give the NSDV enough time to

establish its infection and produce progeny virions (which takes

approx 12 hours in Vero or BHK21 cells).

A possible reason for the delayed induction could be a reduced

production of PAMPs by the virus, such as the removal of the 59

triphosphate from progeny viral genome transcripts, as observed

for CCHFV [21]. Interestingly our results showed that NSDV is

able to actively suppress the induction of IFNb in infected cells, as

both isolates were clearly able to reduce the NDV-induced

transcription from the IFNb promoter by approximately 40%

(fig. 2) when assayed at 8-12hpi, before either NSDV/GV isolate

showed strong induction of IFN.

Expression of the N-terminal part of the RNA-dependent RNA

polymerase (L), which contains the OTU domain, was sufficient to

reproduce the antagonistic effect on IFN induction in a reporter

gene-based assay (fig. 5), and we could show that mutations that

affected the catalytic site of the OTU protease were no longer

antagonists (fig. 8). Ubiquitination and modification of cellular

proteins with ubiquitin-like molecules such as ISG15 play

important roles in regulating IFN induction through both the

Toll-like receptor (TLR) and RIG-I-like receptor (RLR) pathways

[46,47]. Lys-63-linked polyubiquitination of RIG-I has been

shown to be crucial for its ability to induce type I IFNs [48].

Arimoto et al. [49] showed that virus-induced IRF3 and NF-kB

activation is dependent on the polyubiquitination of the protein

NF-kB essential modulator (NEMO). Furthermore NF-kB

activation is known to depend on ubiquitination of the inhibitor

protein I-kB, targeting it for degradation [50], while ISG15ylation

enhances NF-kB activity by conjugating to and suppressing

protein phosphatase 2Cb, which suppresses dephosphorylation

of I-kB [51]. ISG15ylation positively regulates IRF-3 activation by

preventing its interaction with PinI [52]. Wholesale removal of

conjugated ubiquitin and ubiquitin-like modifiers would therefore

greatly inhibit the IFN induction pathway. Indeed we observed a

significant reduction in the levels of cellular ISG15- and ubiquitin-

conjugates during NSDV/GV infection (fig. 7a, b) which could be

attributed to the OTU domain of the L protein (fig. 7c, d). The

enzymatic activity proved to be essential for the observed

inhibition of IFN induction (fig. 8e).

Several other viruses have exploited this mechanism of ne-

gatively regulating the IFN induction by encoding proteases of the

OTU family [24,30,53,54]. All these proteases exert deconjugating

activities towards ubiquitin or the ubiquitin-like (ubl) molecule

ISG15 or both. Interestingly, cells themselves make use of DUBs

to regulate the IFN pathway but, in contrast to nairoviral OTUs,

cellular DUBs tend to have highly specific targets [27,55,56,57].

For example, deubiquitinating enzyme A (DUBA) selectively

cleaved polyubiquitin chains on tumor necrosis factor receptor-

associated factor 3 (TRAF3) and was identified in a small

interfering RNA-based screen as a negative regulator of type I

IFN production [27]. The crystal structure of the CCHFV OTU

domain revealed a unique structure allowing it to bind ISG15 as

well as ubiquitin, and this ability to interact with both conjugating

proteins is one of the underlying reasons for the promiscuous

activity of the nairovirus OTUs [44,45,58].

We also found that NSDV is able to inhibit the action of type I

and II IFNs, and that this activity involves the inhibition of

phosphorylation of both STAT1 and STAT2. The mechanism(s)

of this inhibition remains to be determined. There is no reduction

in the levels of STAT1/2, and an inhibition of their phosphor-

ylation suggests either binding/sequestration of one or both

STATs or inhibition of the IFN receptor-associated JAKs. We

observed that IFNc-induced STAT1 phosphorylation was blocked

similarly by both isolates at all times post infection, whereas IFNa-

induced STAT1/2 phosphorylation was dependent the degree of

growth of the virus, the block developing more slowly in cells

infected with the slower-growing GV isolate. This suggests that the

mechanisms by which the virus exerts the blockade of type I and 2

IFNs are not the same. Further evidence for this came from the

GV L1-169 Q16R mutant, which retained most of its DUB

activity and its full deISG15ylating activity and still shows

significant blockade of IFNa-induced gene expression but no

longer blocks IFNc-induced gene expression (fig. 8c, d). It could be

that this part of the N-terminus contains a specific-substrate

binding site in addition to the catalytic core of the OTU domain,

contributing to the effect of the OTU domain on specific cellular

substrates; in this case the Q16R mutation exerts a steric inhibition

on binding to the target involved in blocking type II IFN action,

rather than an inhibition which is dependent on the OTU

enzymatic activity. For the herpesvirus-associated ubiquitin-

specific protease (HAUSP or USP7), an additional binding site

with affinity for its target protein has been described in addition to

its catalytic protease domain [59].

The virus had a stronger effect on IFNa-induced STAT1

phosphorylation than on STAT2 phosphorylation at all times,

suggesting that STAT1 is the primary target. As with the block of

IFN induction, the blockade of both type I and type II IFN actions

mapped to the OTU domain of the L protein and required a

functional OTU catalytic site. So far no definitive role for

ubiquitination or ISG15ylation in type I or type II IFN signalling
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has been shown. JAK1 and STAT1 have been shown to be

conjugated by ISG15 [60,61]; however, STAT1 phosphorylation

in response to IFN is normal in cells from ISG15 knock-out mice

[62], suggesting that ISG15 plays no role in the immediate cell

response to IFN.

Differences were seen in the effectiveness of the different

OTU-containing fragments of the GV L to block IFNa- or IFNc-

induced gene transcription when expressed in our reporter gene-

based studies. GV L1-169 and L1-667 reduced the transcriptional

activity induced by IFNa or IFNc to 30% and 40% respectively of

the positive control, whereas the protein L1-1757 was less effective

in reducing the transcriptional activity of the Mx-1 promoter or

the GAS promoter (55% and 65% of the positive control

respectively). These differences might reflect slight differences in

the amounts of protein expressed in the transfected cells that

cannot be detected by immunoblotting. Alternatively, the catalytic

domain of the NSDV L protein might be autoinhibited by folding

or oligomerisation in the longer construct L1-1757, in contrast to

the shorter versions containing the OTU domain. A similar

observation was made with the OTU domain containing non-

structural protein 2 (nsp2) from porcine reproductive and

respiratory syndrome virus where a longer fragment was less

effective in blocking NFkB promoter activity than a smaller

version of this protein [30]. In addition it has been shown that

CCHFV full length L displayed significantly less DUB activity

than shorter versions of the protein [24]. Further crystal structures

to extend that of the basic OTU domain [44,45,58] will clarify

these points.

One important factor that needs to be examined is the

relationship of the reactivity of these OTU domains to species

specificity of the viruses. Influenza B was found to inhibit the

human but not the mouse ISG15ylation system [39]. The

nairovirus OTUs appear to act by cleaving Ub and ISG15 from

their respective conjugates, since mutations in the active site

abolish activity [24], and the OTUs are therefore active against

both human and murine systems. However, there was a clear

difference between the activity of the CCHFV and NSDV/GV

OTUs in the murine ISG15ylation system used in this study. We

know little of the ruminant equivalents of the Ubls, and it is

possible that the OTUs of different viruses may be adapted to

species differences in these modifying proteins which could lead in

turn to differences in the species specificity of pathogenesis. It will

be important to examine the actual level of modification of host

cell proteins when these viruses are grown in cells from different

hosts to establish whether there is any degree of correlation

between OTU cleavage activity and host cell species.

Within this study we could demonstrate that NSDV/GV is able

to block the innate immune system at three different stages, type I

IFN induction, type I IFN action and type II IFN action. NSDV/

GV seems to be another example of a pathogen that exploits the

host cell ubiquitin pathways for its own good by encoding an

enzyme with deubiquitinating and deISG15ylating activity.

However, to fully clarify the role of the OTU activity, an OTU

knock-out virus is needed to evaluate the importance of the OTU

domain in vivo, and we are working towards such a system. An

advantage of NSDV/GV will be the ability to carry out such

experiments in the natural host.

Materials and Methods

Cells and Viruses
The Vero cells (African green monkey kidney cells) used in these

studies were a modified line that expresses CD150 (aka Signaling

Lymphocyte Activation Molecule (SLAM), as these were the Vero

cells in use in our group for other studies on morbilliviruses. They

are otherwise identical to normal Vero cells and are referred to as

Vero cells throughout. This line was obtained from Dr Rick De

Swart, Erasmus Medical College, The Netherlands and was

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

with 25 mM HEPES buffer supplemented with 5% foetal calf

serum (FCS), penicillin (100 U/ml) and streptomycin sulphate

(100 mg/ml). 293FT (a fast-growing variant of the HEK293

human embryonic kidney cell line that expresses the SV40 large T

antigen) (a kind gift of Prof R. E. Randal, St. Andrews University,

Scotland) were maintained in DMEM with 25 mM HEPES buffer

supplemented with 10% foetal calf serum (FCS), penicillin

(100 U/ml) and streptomycin sulphate (100 mg/ml). BHK21 clone

13 (baby hamster kidney) cells (kindly provided by Dr T. Jackson,

Institute for Animal Health, Pirbright, UK) were cultured in

Glasgow Modified Eagle’s Medium (GMEM) containing 10%

FCS, penicillin (100 U/ml), streptomycin sulphate (100 mg/ml),

2 mM L-glutamine and 5% tryptose phosphate broth solution

(Sigma).

The Nairobi sheep disease virus (NSDV) isolate (ND66-PC9)

was obtained from Dr Piet van Rijn, Central Veterinary Institute

of Wageningen, Netherlands. The Ganjam virus (GV) isolate

(IG619, TVPII 236) was obtained from World Reference Center

for Emerging Viruses and Arboviruses at the Galveston National

Laboratory, and was the kind gift of Prof Robert B Tesh,

University of Texas Medical Branch, Galveston, Texas, USA.

Virus stocks were grown in BHK21 cells using GMEM contain-

ing 2% FCS, penicillin (100 U/ml), streptomycin sulphate

(100 mg/ml), 2 mM L-glutamine and 5% tryptose phosphate

broth solution. The virus titre was determined as the 50% tissue

culture infectious dose (TCID50) in BHK21 cells. Both strains grew

to similar final titres (,106/ml). Multiplicity of infection (MOI)

was calculated as TCID50 per plated cell. The Ulster 2C vaccine

strain of Newcastle disease virus (NDV) (grown in eggs) was

the kind gift of Prof W. Barclay, Imperial College, London, UK.

The NDV titre was determined as the TCID50 in Vero cells. The

Sendai virus Cantell Strain (ATCC VR-907 Murine parainfluenza

virus type 1) was purchased from Charles River Laboratories,

USA.

Plasmids and antibodies
Except where indicated, all DNA manipulation was done

following standard methods. Plasmids were cloned and grown in

Escherichia coli DH5a or SURE2 (Stratagene). Routinely plasmid

DNA was purified on CsCl gradients. The plasmids pJAT-lacZ,

pGAS-luc, and pIFNb-luc were the kind gifts of Prof Steve

Goodbourn, St. George’s Hospital Medical School, London,

United Kingdom. The pGL3-Mx1P-luc was kindly provided by

Prof Georg Kochs, Department of Virology, University of

Freiburg, Germany. The following plasmids were used for the

ISG15ylation and ubiquitination experiments: pCAGGS.MCS-

6HismISG15, and plasmids expressing mHerc6, Ubcm8 and

mUbE1L were provided by Prof Deborah J. Lenschow, Wash-

ington University School of Medicine, St. Louis, Missouri. Plasmid

pHA-CCHFV-L1-354 is in pCAGGS-MCSII and was the gift of

Dr Natalia Frias-Staheli, Mount Sinai School of Medicine, New

York.

Construction of viral protein expression plasmids. Total

RNA from GV-infected BHK21 cells was extracted by using

RNeasy Mini Kit (Quiagen) which served as a template for cDNA

synthesis using random priming oligos and SuperscriptII Reverse

Transcriptase (Invitrogen). The viral genome was amplified by

PCR using NSDV/GV genome-specific oligos and subsequently

blunt-end cloned into pT7Blue (Novagen). All PCRs were
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performed using proofreading polymerase (KOD; Novagen). The

genome of both strains was completely sequenced. Plasmids

pcDNA-GV-N and pcDNA-GV-M were made by cloning the

complete ORFs of GV S and GV M segments into pcDNA6/V5-

His (Invitrogen), expressing C-terminal V5-tagged N and the

glyoproteins (only Gc has a V5 tag at its C-terminus). GV L1-169

and L1-1757 were cloned in pcDNA6 with a C-terminal V5

tag. GV L1-667 and L1749-3391 were cloned into pTriEX

(Novagen) such that the expressed proteins have a 6xHis tag at the

C- terminus. To generate catalytically inactive variants of L1-169

in pcDNA6/V5-His, single amino acid mutations were introduced

by overlap PCR mutagenesis. All mutations were confirmed by

sequencing the entire open reading frame.

Mouse monoclonal antibody against phosphotyrosine 701-

STAT1 were purchased from BD Biosciences. Polyclonal

antibodies against STAT1, STAT2, and phosphotyrosine 689-

STAT2 were obtained from Upstate. Mouse monoclonal antibody

against proliferating cell nuclear antigen (PCNA) was obtained

from Santa Cruz Biotechnology. Mouse monoclonal anti-His

antibody was purchased from Sigma Aldrich and HRP-tagged

anti-HA antibody from Roche. The rabbit anti-N antiserum

recognizing the amino terminus of the NSDV and GV N protein

were previously made in our laboratory. Mouse monoclonal

antibody against the V5 epitope tag was purchased from AbD

Serotech. Mouse monoclonal antibody U85 recognising Newcastle

disease virus was the kind gift of Ruth Manvell, AHVLA,

Weybridge, UK.

Transfections and reporter gene assays
All transfections were carried out with TransIT LT1 (Mirus)

according to the manufacturer’s instructions. A ratio of 2 or 3 ml

LT1 per mg DNA was used. Cells were plated at 105 per well in 12-

well plates 1 day before use. Usually, 24 hours post transfection

the medium containing the transfection mix was removed and

replaced with fresh medium. The cells were then lysed in 200 ml

lysis buffer (120 mM NaCl, 50 mM TrisCl pH 7.5, 0.05%

Nonidet P-40). The samples were centrifuged for 1 min at full

speed in a table top centrifuge. 50 ml of the cleared cell extract was

taken and the luciferase activity was measured after adding 50 ml

of luciferase assay reagent (Promega) to each sample. The

following settings were used to measure the relative light units:

integration time: 10 sec, sensitivity: 200 or 230 and Filter set 1. To

determine the b-galactosidase activity 150 ml of assay buffer

(48 mM Na2HPO4, 32 mM NaH2PO4, 8 mM KCl, 0.8 mM

MgSO4, 3.2 mg/ml o-Nitrophenyl b-D-Galactopyranoside) were

added to the samples after the luminescence was measured. The

samples were incubated at 37uC for 30 min to 60 min before

absorbance at 420 nm was measured. The luminescence and

absorbance measurements were done in a Synergy 2, Multi

Detection Microplate Reader (BioTek Instruments) using Gen5

software. The values were normalised and statistically analysed as

previously described [63].

Virus infection, IFN treatment, and immunoblotting
Vero cells were plated at an initial seeding density of 16105/

well in 12-well plates. One day later cells were infected with GV or

NSDV at a multiplicity of infection (MOI) of 1. The virus

inoculum was removed one hour after infection, cells were washed

once with PBS and fresh medium was added. The infected cells

were further incubated for 14 h before being treated with

1000 IU/ml recombinant human aA-Interferon (IFN) or

1000 IU/ml recombinant human IFN-c. IFN-aA was purchased

from Calbiochem and IFN-c was obtained from Millipore. Cells

were treated for 30 min with or without IFN before being

harvested and lysed with 100 ml of 1x SDS sample buffer

(New England Biolabs). SDS-PAGE and Western blots were

carried out as previously described [64].
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