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Abstract
The histone deacetylase inhibitors (HDIs) have shown promise in the treatment of a number of
hematologic malignancies, leading to the approval of vorinostat and romidepsin for the treatment
of cutaneous T-cell lymphoma and romidepsin for the treatment of peripheral T-cell lymphoma by
the U. S. Food and Drug Administration. Despite these promising results, clinical trials with the
HDIs in solid tumors have not met with success. Examining mechanisms of resistance to HDIs
may lead to strategies that increase their therapeutic potential in solid tumors. However, relatively
few examples of drug-selected cell lines exist, and mechanisms of resistance have not been studied
in depth. Very few clinical translational studies have evaluated resistance mechanisms. In the
current review, we summarize many of the purported mechanisms of action of the HDIs in clinical
trials and examine some of the emerging resistance mechanisms.
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Introduction
In the nucleus, DNA is wound around four core histone proteins (H2A, H2B, H3 and H4,
see Figure 1) to form the nucleosomes, which, when compacted, form the condensed
structure of chromatin. Each histone protein in the nucleosome has a lysine-rich tail that
extends outside of the nucleosome and the accessibility of DNA within the nucleosome is, in
part, controlled by modifications of the tail. Histones can be modified in a number of ways,
including acetylation, methylation, phosphorylation, ubiquitination, sumoylation and
citrullination. As shown in Figure 1, the lysines of the histone tails can be modified by
methylation and acetylation. Acetylation is controlled by two enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs). HATs transfer acetyl groups
to the lysine residues of the histones, which neutralizes the positively charged lysines,
decreasing attraction of the negatively charged DNA, thereby resulting in greater access by
transcription factors and RNA polymerase. HDACs, on the other hand, remove acetyl
groups, resulting in decreased access to DNA1. Changes in global histone acetylation were
found to be associated with tumorigenesis in some disease models2–4.
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Most of the human HATs function as co-activators of transcription2. The most studied
function of this group of proteins is the acetylation of the histone tails, although they can
also acetylate various cellular transcription factors2. Similarly, while HDACs are primarily
known for their ability to deacetylate histones, they have also been shown to deacetylate
other proteins such as tubulin, p53, Hsp90, Bcl-2, and Ku705, 6. Based on their similarity to
yeast HDAC proteins, HDACs are divided into four classes (compiled from references1, 7):

Class I
HDACs 1-3, and 8, 40–55 kD proteins, belong to this class and are ubiquitously expressed
in human tissues. HDACs 1, 2, and 3 are localized in the nucleus while HDAC 8 is located
in both the cytoplasm and the nucleus. This class of HDACs shares a structural similarity
with the yeast transcription factor Rpd-3.

Class IIA, IIB
HDACs 4, 5, 7, and 9, make up class IIA and HDACs 6 and 10 make up the class IIB
HDACs, all of which are 70–130 kD proteins. They share a structural similarity with the
yeast HDA1 deacetylase. HDAC6 is unique in that it is a cytoplasmic HDAC that does not
deacetylate histones.

Class III
This group of HDACs, known as the sirtuins, is made up of HDACs structurally similar to
the yeast SirT2, and requires NAD+ as a cofactor for enzymatic activity.

Class IV
The only known HDAC of this class is HDAC 11. Relatively little is known about this
HDAC, which is localized to the nucleus.

Histone deacetylase inhibitors
The histone deacetylase inhibitors (HDIs) are a promising class of chemotherapeutic agents
that have been added to the anticancer armamentarium. HDIs prevent the deacetylase
activity of HDACs, leading to unrestricted HAT activity and increased gene transcription.
Several HDAC inhibitors are currently in clinical trials both in monotherapy and in
combination therapy with other anti-tumor drugs. The HDIs currently in clinical trials fall
primarily into the short-chain fatty acid class, the hydroxamate class, the cyclic peptide class
and the benzamide class. A partial listing of these HDIs is provided in Table 1, and
structures for several are provided in Figure 2. The HDACs that are targets for the HDIs
discussed are all zinc-dependent enzymes. To date, most of the responses using HDAC
inhibitors as single agents were observed in advanced hematological cancers and only very
few were observed in solid tumors. In hematological malignancies, clinical efficacy has
been observed in cutaneous T-cell lymphoma (CTCL), peripheral T cell-lymphoma (PTCL),
Hodgkin and non-Hodgkin lymphoma, while only a few responses were observed in patients
with myeloid malignancies8.

Some of the HDAC inhibitors that are being studied in clinical trials have demonstrated
therapeutic potential in CTCL and other malignancies and are detailed below:

Vorinostat (suberoylanilide hydroxamic acid, SAHA)
An orally-available, pan-HDAC inhibitor, vorinostat was found in in vitro studies to
facilitate transcription of genes associated with growth arrest, differentiation, and
apoptosis9, 10. Responses in patients with refractory CTCL led to the approval of vorinostat
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in 2006 by the Food and Drug Administration (FDA) for the treatment of patients with
relapsed or refractory CTCL11. In the registration trial, patients were treated with 400 mg
daily of oral vorinostat, with an overall response rate of approximately 30% and a response
duration of over 6 months11. Promising results have also been observed in follicular
lymphoma and marginal zone lymphoma12. Combinations with the proteasome inhibitor
bortezomib in the treatment of multiple myeloma have also seen clinical success13. In
contrast, single agent trials with vorinostat for the treatment of most solid tumors have not
met with success14.

Romidepsin (FK228, FR901228, NSC630176, depsipeptide)
Romidepsin is unique among the HDIs in that it is actually a prodrug; the disulfide bond of
romidepsin must be reduced to yield the active form15. Most studies seem to suggest that
romidepsin is an inhibitor of class I HDACs16, but some studies also find romidepsin
treatment leads to Hsp90 acetylation, leading to speculation that it might somehow affect
HDAC617. In 2001, we first reported the efficacy of romidepsin in a phase I trial where
partial responses (PRs)were observed in three patients with CTCL and a complete
response(CR) was observed in one patient with PTCL18. These early successes in T-cell
lymphoma led to two registration trials, culminating in the approval of romidepsin in
November 2009 for the treatment of CTCL patients who had received at least one prior
systemic therapy8. In the trial sponsored by the National Cancer Institute, among 71 patients
with CTCL, the overall response rate was 34% with a median duration of response of 13.7
months19. In a second, independent, international trial of 96 patients with CTCL, the overall
response rate was 38% and the median duration of response was 15 months20. In PTCL, an
overall response rate of 38% was observed with a median duration of response of 8.9
months in a number of subtypes21. Romidepsin was recently approved by the FDA for the
treatment of patients diagnosed with PTCL. As with vorinostat, results in solid tumors have
been disappointing22–24.

Panobinostat (LBH589)
The first clinical trials with this pan-HDAC inhibitor were conducted in patients with acute
lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and myelodysplastic
syndrome (MDS)25. Panobinostat is currently in phase I and II clinical trials, with the most
significant anti-tumor activity of this drug observed in patients with refractory CTCL and
other hematologic malignancies26, 27. As with the other HDIs, panobinostat has not been
successful in solid tumor clinical trials26, so that the overall activity in T-cell lymphoma and
inactivity in solid tumors appears to be a class effect.

Belinostat (PXD101)
Belinostat is another pan-HDAC inhibitor that has been studied in multiple clinical trials as
a single agent or in combination with chemotherapeutic agents. A phase I trial of this drug
reported disease stabilization in patients with hematological malignancies28. Like
romidepsin, belinostat has produced responses in patients diagnosed with PTCL29.
Preliminary results from a phase II trial in lymphoma have been promising30.

Other HDIs
Less clinical data are available for some of the other HDIs. Some clinical activity was
observed with valproic acid in pediatric patients with central nervous system tumors31, but
not in a phase I trial for prostate cancer32. In a phase I trial, entinostat, an HDAC1-specific
inhibitor, produced a partial remission in a patient with melanoma33; however, a subsequent
phase II trial did not yield any objective responses34. Mocetinostat is a class I selective HDI
that has demonstrated clinical activity in non-Hodgkin lymphoma and in relapsed or
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refractory Hodgkin lymphoma35. One patient with myelodysplastic syndrome and two
patients with AML responded to single-agent mocetinostat in a phase I trial in leukemia36,
while a phase II trial of mocetinostat in patients with chronic lymphocytic leukemia did not
yield any responses37. A phase I trial of dacinostat in solid tumors demonstrated degradation
of CRAF, an Hsp90 client protein, and increased histone acetylation in circulating peripheral
blood mononuclear cells, but no responses were observed38.

Mechanisms of action
One global effect of HDI treatment is an increase in histone acetylation. In clinical trials of
HDIs, increased histone acetylation has been monitored in circulating peripheral blood
mononuclear cells as a surrogate marker for the inhibition of HDACs39. However, this effect
alone is apparently inadequate to confer activity, as solid tumor trials have demonstrated
increased histone acetylation in tumor samples despite little clinical effect40, 41 In the search
for the mechanism of action of HDIs, several have been suggested, including cell cycle
arrest, activation of apoptotic pathways, induction of autophagy, reactive oxygen species
generation, Hsp90 inhibition, and disruption of the aggresome pathway1, 7, 14. We elaborate
on several of these potential mechanisms of action below:

Alteration of gene expression
Studies with cDNA arrays have shown that treatment with HDIs such as sodium butyrate,
entinostat, vorinostat or romidepsin leads to a two-fold or greater change in the expression
of approximately 7–10% of the genes examined1. HDI treatment was found to induce about
as many genes as were repressed. The histone deacetylase inhibitors induce p21
expression42, leading to G1 cell cycle arrest, and frequently downregulate cyclin D and c-
myc. Whether or not these gene expression changes result in cell death probably depends
upon cellular context. For example, decreased expression of c-myc will probably be more
important for myc-dependent cancers, such as Burkitt’s lymphoma, than for cancers that do
not rely on c-myc for survival43. Vorinostat treatment has been shown to lead to decreased
cyclin D1 expression and cell death in mantle cell lymphoma cell lines44.

Degradation of Hsp90 client proteins
Hsp90 is required to stabilize a number of “client” proteins that play a role in cancer cell
proliferation, such as the human epidermal growth factor receptor 2 (ErbB-2, Her-2) and
epidermal growth factor receptor (ErbB-1, EGFR); the fusion oncogene Bcr-Abl; and
signaling transduction molecules such as Akt45. HDAC6 has been shown to be a deacetylase
of both tubulin and Hsp9046. Treatment of cells with compounds that are known to inhibit
HDAC6 leads to increased tubulin acetylation, increased Hsp90 acetylation and degradation
of Hsp90 client proteins, having much the same mechanism of action as Hsp90 inhibitors.

Romidepsin was one of the first HDIs found to induce Hsp90 acetylation and cause
degradation of the Hsp90 client proteins EGFR, Her-2 and Raf-117. In breast cancer cell
lines overexpressing Her-2, treatment with vorinostat or panobinostat has been shown to
lead to increased Hsp90 acetylation, Her-2 degradation and cell death, and synergy has been
demonstrated when the HDIs were combined with Hsp90 inhibitors or Her-2 inhibitors such
as trastuzumab or lapatinib47, 48. Similarly, treatment of lung cancer cell lines expressing
mutant EGFR with panobinostat resulted in decreased EGFR expression and synergized
with the EGFR inhibitors erlotinib or lapatinib48, 49. Leukemia cells expressing the Bcr-Abl
fusion protein are particularly sensitive to treatment with vorinostat, dacinostat, romidepsin
or panobinostat and cotreatment with imatinib or nilotinib results in synergistic cell
death50–53. Again, the ability of an HDI to inhibit HDAC6 would probably be only effective
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in cancers where proliferation is driven by Hsp90 client proteins, although cell death could
also occur as a result of deacetylation of other HDAC6 substrates54.

It is not clear, however, whether HDAC6 is the sole deacetylase of Hsp90. Romidepsin is
considered a rather weak inhibitor of HDAC6, as romidepsin treatment does not result in
acetylation of tubulin42, yet has still been shown to cause acetylation of Hsp9017. As seen in
Figure 3, treating HEK293 (Flp-In-293) human embryonic kidney cells with varying
concentrations of romidepsin, vorinostat, panobinostat or valproic acid results in increased
histone H3 acetylation, but only results in tubulin acetylation in cells treated with vorinostat
and panobinostat. Additionally, entinostat treatment has been shown to result in apoptosis
due to degradation of mutant FLT-3, another Hsp90 client protein, in leukemia cells that
express the mutant protein despite the fact that entinostat does not inhibit HDAC655. It has
been suggested the HDAC1 mediates this effect56. One study has suggested that acetylation
of Hsp70 mediates degradation of the Bcr-Abl fusion protein57. Further study is needed to
determine how HDIs that are weak inhibitors of HDAC6 mediate apoptosis in cell lines
where proliferation is driven by Hsp90 client proteins.

Increased production of reactive oxygen species (ROS)
Several studies have suggested that the generation of reactive oxygen species (ROS) is a key
event in HDI-induced cell death. ROS generated by HDIs leads to DNA damage and the
addition of free radical scavengers such as N-acetyl cysteine during the time of HDI
treatment has been shown to result in decreased ROS generation and decreased HDI-
mediated cell death58–61. HDI treatment has also been shown to prevent repair of DNA
damage62, 63. Another mechanism by which HDIs increase ROS production is through
downregulation of thioredoxin and upregulation of thioredoxin-binding protein 2 (TBP-2).
Thioredoxin is a thiol reductase that acts as a scavenger of ROS, and TBP-2 has been shown
to be a negative regulator of thioredoxin, decreasing its reducing activity64. Vorinostat
treatment has been shown to not only increase TBP-2 expression, but also to suppress
thioredoxin expression65.

Alterations in the apoptotic pathway
Apoptosis proceeds either via the extrinsic or cell death receptor-mediated pathway or the
intrinsic or mitochondria-mediated pathway. Several HDIs have been shown to facilitate
death by the extrinsic pathway by causing an increase in the expression of TRAIL, DR-4,
DR-5, Fas and FasL as well as a decrease in c-FLIP, a protein associated with resistance to
TRAIL-mediated apoptosis66–68. Activation of the apoptotic machinery associated with the
intrinsic pathway, by decreasing expression of the anti-apoptotic proteins Bcl-2, Bcl-XL,
Mcl-1 and survivin and increasing expression of the pro-apoptotic proteins Bax and Bim,
seems to be a class effect of the HDIs47, 49, 58, 69.

Mechanisms of resistance
As the clinical course of the HDIs is pursued, it becomes important to identify potential
mechanisms of resistance so as to increase efficacy and identify potential drug
combinations. Despite the fact that HDIs have been in development for several years,
relatively few drug-selected cell lines have been developed. Most of these in vitro selections
have been with romidepsin alone, where emergence of P-glycoprotein (Pgp) seems to be the
dominant mechanism of resistance70–72. Non-Pgp mechanisms of resistance have only been
observed when cells are selected with romidepsin in the presence of a Pgp inhibitor71.
However, some mechanisms of resistance have been identified by transfection with
purported resistance mechanisms. Summarized below are some of the major mechanisms of
resistance to HDIs that have been characterized.
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As will be noted below, the search for resistance mechanisms has primarily centered on
laboratory models, and sparse clinical data have been gathered. Most studies have detected
histone acetylation, whether in peripheral blood mononuclear cells or in biopsy samples, and
some have concluded that the presence of histone acetylation does not correlate with
response to therapy73. Our data with romidepsin suggested otherwise, when we compared
histone acetylation analyzed by an immunodot blot assay with response on a clinical trial in
cutaneous and peripheral T-cell lymphoma. It appeared that higher and more durable levels
of histone acetylation in peripheral blood mononuclear cells were associated with better
clinical response39. These findings may have been unique to romidepsin, which as a
prodrug, requires reduction of the disulfide bond to an active form15.

ATP-binding cassette transporters
Treatment with histone deacetylase inhibitors, such as sodium butyrate, was found several
years ago to induce a more differentiated phenotype, accompanied by increased expression
of the multidrug-resistance gene, MDR1 (ABCB1), and its product, Pgp74, 75. Trichostatin A
treatment was also found to increase Pgp expression 76. Romidepsin was first brought to our
attention after it was identified as a Pgp substrate based on rhodamine efflux patterns in the
NCI Anticancer Drug Screen and was also found to induce expression of Pgp77. Valproic
acid and apicidin have also been shown to increase ABCB1 expression78, 79; thus
upregulation of ABCB1 and increased expression is believed to be a class effect of histone
deacetylase inhibitors.

Romidepsin is unique among the HDIs in that it is also a substrate of Pgp, while other HDIs,
such as vorinostat and belinostat, are not 80, 81. Cell lines expressing the multidrug
resistance-associated protein-1 (MRP1/ABCC1) have also been found to be resistant to
romidepsin, although less so than cells that express Pgp82. Cell lines selected for resistance
to romidepsin express Pgp and are also resistant to other Pgp substrates such as vincristine
or taxol; resistance to romidepsin can be overcome by Pgp inhibitors70, 72, 83. Despite the
major role of Pgp in romidepsin resistance in cancer cell lines, ABCB1 gene expression in
tumor biopsy samples from patients with CTCL enrolled on the NCI phase II trial did not
appear to correlate with resistance to romidepsin treatment39, even though increased ABCB1
expression has been observed in peripheral blood mononuclear cells and circulating tumor
cells obtained from patients receiving depsipeptide70. Thus, other mechanisms of resistance
are likely to play a role in the intrinsic resistance observed in clinical trials with HDIs.

In an attempt to identify non-Pgp mechanisms of resistance, we selected the HuT 78 cell
line, derived from a patient with Sézary syndrome, with romidepsin in the presence of the
Pgp inhibitor verapamil71. One of the resulting romidepsin-resistant cell lines, HuT
DpVp50, is maintained in 50 ng/mL romidepsin in the presence of 5 μg/ml verapamil. As
seen in Figure 4, although the DpVp50 cells express some Pgp, this is not the dominant
mechanism of resistance; treatment of the resistant line with 10 ng/ml romidepsin for 48 h in
the presence of the Pgp inhibitor tariquidar does not result in increased cell death compared
to romidepsin treatment without tariquidar. HuT 78 parental cells, which do not express Pgp
are exquisitely sensitive to romidepsin; accordingly, the addition of tariquidar does not have
any effect on cytotoxicity. We are currently working to characterize the mechanism of
resistance to romidepsin in these cell lines.

Cell cycle proteins
It has been postulated that the induction of p21, which is responsible for the G1 arrest
caused by HDI treatment, might serve a protective role. We reported that, when p21-
deficient HCT116 cells were treated with romidepsin, cells arrested only in G2 and were
more sensitive to treatment compared to wild-type cells84. In accordance with that result,
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U937 leukemia cells transfected with a p21 antisense construct were found to be more
sensitive to vorinostat treatment when compared to untransfected cells85. Additionally,
cotreatment with flavopiridol has been shown to potentiate the cytotoxicty of romidepsin,
sodium butyrate and vorinostat, due in part to the prevention of p21 upregulation86–88.
Temisirolimus treatment has also been shown to decrease p21 expression in mantle cell
lymphoma cell lines and to synergize with sublethal concentrations of vorinostat89. Clinical
trials with vorinostat and temisirolimus or sirolimus are currently ongoing.

Increased thioredoxin levels
As mentioned above, thioredoxin is a scavenger of reactive oxygen and expression of TBP-2
has been shown to decrease its reductive capacity. Ungerstedt and colleagues found that
high levels of thioredoxin in normal cells served to protect cells from ROS induced by HDI
treatment90. Additionally, when HDI-sensitive transformed cells were transfected with a
small-interfering RNA (siRNA) against thioredoxin, the cells exhibited higher ROS levels
and increased cell death compared to untransfected cells90. Similarly, Chen and colleagues
reported in romidepsin-treated, human lung cancer cells, that thioredoxin expression
negatively correlated with ROS generation and apoptosis91, supporting the idea that HDIs in
combination with compounds that decrease thioredoxin expression or function may lead to
increased activity.

Apoptosis-related proteins
Enforced expression of anti-apoptotic proteins has been shown to prevent HDI-mediated cell
death. High levels of Bcl-2 or Bcl-XL have been shown to confer resistance to treatment
with vorinostat, dacinostat, panobinostat or oxamflatin, while only high levels of Bcl-2 were
found to confer resistance to romidepsin treatment85, 92, 93. Bcl-2 expression has also been
linked to sensitivity to panobinostat treatment in CTCL cell lines94. Increased apoptosis has
been observed when HDIs are combined with Bcl-2 inhibitors such as ABT-737 or others in
several model systems94–98, suggesting that the combination should be tested in the clinical
setting.

When Shao and colleagues knocked down expression of the pro-apopototic Bax in
panobinostat-sensitive, T-cell lymphoma cell lines, toxicity was diminished94. Similarly,
knockdown of anti-apoptotic Mcl-1 was found to potentiate HDI-mediated apoptosis in
primary chronic lymphocytic leukemia cells and K562 cells99. Expression of Bim has also
been shown to be required for romidepsin-mediated apoptosis in lung cancer cells100. Thus,
in cells where these proapoptic proteins are silenced, HDI-mediated cell death might be
blunted. Treatment with targeted therapeutics such as erlotinib or imatinib has been shown
to increase levels of Bim in some model systems101, 102, suggesting that combination with
an HDI might be advantageous.

Alterations in HDAC protein levels
Another cell line selected for resistance to HDIs was generated by selection of the HL-60
leukemia cell line with dacinostat, resulting in the HL-60/LR cell line maintained in 200 nM
dacinostat103. In addition to dacinostat, the resistant line was also highly cross-resistant to
vorinostat, panobinostat and sodium butyrate103. While levels of BCL-XL and XIAP were
attenuated, levels of Bim and Bax remained unchanged103. Interestingly, HL-60/LR cells
expressed higher levels of HDAC1, 2, and 4, but lacked expression of HDAC6 and had
higher levels of Hsp90 acetylation compared to the parental line103. The resistant line also
demonstrated collateral sensitivity to Hsp90 inhibitors103. A separate study demonstrated
that increased HDAC1 expression prevented sodium butyrate-mediated toxicity in a
melanoma cell line104. It is not clear whether this mechanism of resistance has clinical
relevance; no studies have yet linked altered HDAC protein expression levels with clinical
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response to HDIs. However, HDAC2 expression levels were found to correlate with histone
acetylation in a phase I trial of doxorubicin and vorinostat105 in solid tumors and combined
tamoxifen and vorinostat treatment in a phase II trial in breast cancer106.

Signaling proteins
Activation of the mitogen-activated protein kinase (MAPK) or phosphoinositide 3-kinase
(PI3K) pathways has increasingly been associated with resistance to HDIs. Combination of
romidepsin with mitogen-activated protein kinase kinase (MEK) inhibitors has been shown
to increase cell death, suggesting that activation of the MAPK pathway is an important
mechanism of resistance to romidepsin107, 108. In agreement with this hypothesis, Yu and
colleagues found that enforced expression of constitutively active MEK1, but not Akt, in
lung cancer cell lines reduced romidepsin-mediated cytotoxicity109. Other studies, however,
seem to suggest that phosphorylated Akt is, in fact, an important resistance mechanism to
romidepsin, as combination of romidepsin with inhibitors of Akt results in synergistic
cytotoxicity110. Combination of panobinostat with compounds that abrogate MAPK and
PI3K signaling has also been shown to result in synergistic cytotoxicity, possibly due to
increased ROS111. Similarly, Jane and colleagues found that treatment of glioma cells with
vandetanib inhibited both the MAPK and PI3K pathways and was synergistic with
vorinsotat treatment112. Vorinostat in combination with PI3K inhibitors has shown promise
in T-cell lymphoma cell line models113. These combination studies, while targeting different
signaling molecules, do suggest that activation of one or more of these pathways may confer
clinical resistance.

Activation of the signal transducer and activator of transcription (STAT) pathway has also
been linked to vorinostat resistance. In a panel of almost 40 lymphoma cell lines, expression
of STAT1, 3 and 5 was higher in cell lines that were more resistant to vorinostat compared
to sensitive lines; phosphorylation levels of the STAT proteins were also higher in the
resistant lines114. In a series of skin biopsy samples, patients with higher nuclear staining of
phosphorylated STAT3 were more likely to be resistant to vorinostat treatment114, again
implicating activation of signaling pathways in resistance to HDIs. Combined treatment with
vorinostat and compounds shown to inhibit STAT3 phosphorylation, such as lestaurtinib115,
may therefore increase efficacy in T-cell lymphoma.

NFκB activation
Activation of the NFκB pathway is a hallmark of a number of cancers and leads to
deactivation of the apoptotic pathway and increased cell survival116. Acetylation of the p65,
or RelA, subunit of NFκB has been shown to increase the acitivity of NFκB117, and HDI
treatment has been shown to result in increased p65 acetylation118, 119. Constitutive
activation of NFκB has been linked to resistance to HDIs in cell line models94, as has p65
acetylation caused by HDI treatment; combination of an HDI with an inhibitor of NFκB
activation leads to synergistic cytotoxocity120. The increased cytotoxicity observed when
HDIs are combined with proteasome inhibitors is believed to be due, at least in part, to
decreased NFκB activity mediated by proteasome inhibitors121, 122. However, while a phase
II trial with vorinostat and bortezomib in multiple myeloma had a 42% response rate and
elicited some responses from patients whose disease was refractory to bortezomib, response
did not correlate with levels of NFκB or IκB13 in CD138+ bone marrow cells, casting some
doubt on the relevance of NFκB status.

Conclusion
The histone deacetylase inhibitors have shown promise in the treatment of peripheral and
cutaneous T-cell lymphomas. Their lack of success in clinical trials for solid tumors has
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been disappointing. As noted above, a long list of mechanisms of action has been compiled
through in vitro studies. It can be concluded from this list that we still do not really
understand how the HDIs work when they are effective, as in T-cell lymphomas. We have
yet to validate a marker that predicts clinical response to HDI treatment. We also do not
understand why they work in T-cell lymphomas and not in solid tumors. Perhaps in the
context of the overall sensitivity of lymphomas to anticancer therapy, a decades-old
observation, this is not so surprising. But the activity in T-cell lymphoma seems beyond that
in other hematologic malignancies and is a class effect. It is likely that a dominant
mechanism of action, not necessarily on the list of mechanisms outlined above, is
responsible for the efficacy.

The insensitivity of solid tumors also appears to be a class effect. Unfortunately, in vitro
models do not typically reflect the insensitivity of solid tumors in the clinic. This may be
due in part to the rapid doubling time of cell lines in culture, and the epigenetic alterations
that accompany that cell growth rate. Combined with the duration of exposure typically used
in cell culture sensitivity assays, responses to HDIs in the laboratory are homogenous across
different tumor types. The negative impact of this ubiquitous responsiveness is to divert
those working in the field from focusing on a few candidate solid tumor types for targeted
drug development.

One approach to overcoming resistance in solid tumors is to exploit the diverse effects of
HDIs in solid tumors in combination therapies. Thus, if altered gene expression does not
itself prompt cytotoxicity, it may allow promising combination therapies to be developed.
Induction of the sodium iodide symporter and increased sensitivity of thyroid cancer cells to
radioiodine uptake is one such example123. If altered handling of reactive oxygen species or
reduced DNA repair are insufficient to induce cell death following HDI exposure, it may
still allow for effective combination therapies with DNA damaging agents, whether
chemotherapy or radiotherapy124, 125. It is critical, however, in developing the rationale for
combination studies that attention be paid to sequence of administration. For example, in
small cell lung cancer cells, simultaneous exposure to an HDI and cisplatin or etoposide was
more effective than sequential exposure126. Among the plethora of HDI effects on cells are
likely to be some that are detrimental to cytotoxicity (e.g. p21 induction).

Further, the in vitro paradox also has the potential to yield misleading clinical directions
from combination assays that require durations of exposure for efficacy that are not
achievable in the clinic by any HDI developed to date. The length of the list of mechanisms
of resistance generated from laboratory models confirms that we do not understand
resistance, either. We can only hope that somewhere on those lists are the answers and that
translational studies will help us separate the important mechanisms from those that are
trivial. What we do know is that development of the HDIs is a major step in bringing
epigenetic therapy to the anticancer armamentarium. We need to figure out how to exploit
them more fully and in many more tumor types.
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Figure 1.
Modification of lysines in histone tails. DNA is wound around four core histone proteins:
H2A, H2B, H3 and H4. Each of the histones possess lysine-rich tails and accessibility of the
DNA is controlled by modifications to the tail. Lysines can either be multiply methylated or
acetylated. Methylation and deacetylation of lysines both contribute to a more condensed
chromatin structure, preventing transcription of genes. Demethylation and acetylation
promote a more open chromatin structure allowing for increased gene transcription.
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Figure 2.
Structures of some of the histone deacetylase inhibitors currently in clinical trials.
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Figure 3.
Histone deacetylase inhibitors all cause increased histone acetylation but differentially cause
tubulin acetylation. HEK293 (Flp-In-239) cells were treated with 46 nM romidepsin, 100
nM panobinostat, 10 μM vorinostat or 1 mM valproic acid for 24 h after which protein was
extracted, subjected to electrophoresis, and transferred to a PVDF membrane. The
membrane was subsequently probed for acetylated histone H3 (AcH3), acetylated α-tubulin
(acetyl-α-tub), total α-tubulin (α-tub) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). While all of the HDIs were able to induce histone acetylation, only panobinostat
and vorinostat were able to cause increased tubulin acetylation, suggesting that these HDIs
also target HDAC6
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Figure 4.
Resistance to romidepsin is not mediated by Pgp expression in HuT78 DpVp50 cells.
HuT78 parental and DpVp50 cells were incubated with the Pgp-specific antibody, MRK-16
(blue histogram), or IgG negative control antibody (red histogram) for 30 min after which
cells were washed and incubated with phycoerythrin-labeled secondary antibody (top row,
Pgp). While HuT78 parental cells are Pgp negative, the DpVp50 cells express low but
detectable levels. Cells were also left untreated (second row, C) or were incubated with 50
ng/mL romidepsin for 48 h in the presence (third row, DP) or absence (bottom row DP +
TAR) of 250 nM of the Pgp inhibitor tariquidar, after which cells were incubated with
annexin V antibody and propidium iodide. Cells in the lower left quadrant are viable cells,
while cells in the lower right quadrant are early apoptotic cells, and cells in the upper right
quadrant are late apoptotic or necrotic cells. HuT parental cells readily undergo apoptosis
after incubation with romidepsin either in the presence or absence of tariqudiar, so shown by
the increase of cells in the upper and lower right quadrants. DpVp50 cells are resistant to
romidepsin whether the inhibitor is added or not, suggesting a resistance mechanism that
does not involve Pgp.
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Table 1

Partial list of histone deacetylase inhibitors currently in clinical trials for the treatment of cancer.

Class Compound

Aliphatic acids Valproic acid

AR-42 (OSU-HDAC42)

Hydroxamic Acids *Vorinostat (suberoylanilide hydroxamic acid, SAHA)

Belinostat (PXD101)

Dacinosat (LAQ824)

Panobinostat (LBH589)

Resminostat (4SC-201)

PCI-24781

SB939

CHR2845

CHR3996

JNJ-26481585

Benzamides Entinostat (MS-275)

Mocetinostat (MGCD0103)

4SC-202

Cyclic peptides *Romidepsin (depsipeptide, FK228, FR901228)

Compounds marked with an * are currently FDA approved. Belinostat is currently in registration trials.
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Table 2

Summary of resistance mechanisms to HDIs

• ABC transporter expression

– Increased levels of Pgp/ABCB1 or MRP1/ABCC1 (only true for romidepsin)

• Cell cycle proteins

– Increased p21 expression

• Thioredoxin expression

– Increased thioredoxin levels resulting in decreased ROS-mediated DNA damage

• Apoptosis-related proteins

– Increased levels of antiapoptotic proteins such as Bcl-2 and Bcl-XL

– Inability to upregulate proapoptotic proteins such as Bim

• Alterations in HDAC protein levels

• Signaling proteins

– Increased signaling via MAPK, PI3K or STAT3

• NFkB activation

– Acetylation of p65
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