Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Mar;83(5):1330–1333. doi: 10.1073/pnas.83.5.1330

Direct measurements of intramolecular electron transfer rates between cytochrome c and cytochrome c peroxidase: effects of exothermicity and primary sequence on rate.

E Cheung, K Taylor, J A Kornblatt, A M English, G McLendon, J R Miller
PMCID: PMC323069  PMID: 3006047

Abstract

Rapid mixing of ferrocytochrome c peroxidase [cyt c peroxidase(II)] and ferricytochrome c [cyt c(III)] results in the reduction of cyt c(III) by cyt c peroxidase(II). In 10 mM phosphate, pH 7.0, the rate of decay of cyt c peroxidase(II) and the rate of accumulation of cyt c(II) give equal first-order rate constants: k = 0.23 +/- 0.02 s-1. Equivalent results are obtained by pulse radiolysis using isopropanol radical as the reducing agent. This rate is independent of the initial cyt c(III):cyt c peroxidase(II) ratios. These results are consistent with unimolecular electron transfer occurring within a cyt c(III)-cyt c peroxidase(II) complex. When cyt c is replaced by porphyrin cyt c (iron-free cyt c), a complex still forms with cyt c peroxidase. On radiolysis, using e-aq as the reducing agent, intracomplex electron transfer occurs from the porphyrin cyt c anion radical to cyt c peroxidase(III) with k = 150 s-1. This large rate increase with increasing delta G degrees suggests that the barrier for intracomplex electron transfer is large. Finally, we have briefly investigated how the cyt c peroxidase(II)----cyt c(III) rate depends on the primary structure of cyt c(III). We find the reactivity order to be as follows: yeast (k = 3.4 s-1) greater than horse (k = 0.3 s-1) greater than tuna (k = 0.2 s-1). These results mirror a report [Ho, P. S., Sutoris, C., Liang, N., Margoliash, E. & Hoffman, B. M. (1985) J. Am. Chem. Soc. 107, 1070-1071] on excited state reactions of the cyt c/cyt c peroxidase couple.

Full text

PDF
1332

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark RK, Barlow PM, Diamond RN, Hagopian V, V, Lannutti JE, Spencer CM, Ferguson M, Glanzman T, Goshaw AT, Lucas P. Triggered-bubble-chamber study of the reaction pi +p--> Delta ++ pi 0 pi 0 at 16 GeV/c. Phys Rev D Part Fields. 1985 Sep 1;32(5):1061–1070. doi: 10.1103/physrevd.32.1061. [DOI] [PubMed] [Google Scholar]
  2. Conroy C. W., Tyma P., Daum P. H., Erman J. E. Oxidation-reduction potential measurements of cytochrome c peroxidase and pH dependent spectral transitions in the ferrous enzyme. Biochim Biophys Acta. 1978 Nov 20;537(1):62–69. doi: 10.1016/0005-2795(78)90602-5. [DOI] [PubMed] [Google Scholar]
  3. Devault D. Quantum mechanical tunnelling in biological systems. Q Rev Biophys. 1980 Nov;13(4):387–564. doi: 10.1017/s003358350000175x. [DOI] [PubMed] [Google Scholar]
  4. Erman J. E., Vitello L. B. The binding of cytochrome c peroxidase and ferricytochrome c. A spectrophotometric determination of the equilibrium association constant as a function of ionic strength. J Biol Chem. 1980 Jul 10;255(13):6224–6227. [PubMed] [Google Scholar]
  5. Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640–3644. doi: 10.1073/pnas.71.9.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iizuka T., Makino R., Ishimura Y., Yonetani T. Reversible acidic-alkaline transition of the carbon monoxide complex of cytochrome c peroxidase. J Biol Chem. 1985 Feb 10;260(3):1407–1412. [PubMed] [Google Scholar]
  7. Kang C. H., Ferguson-Miller S., Margoliash E. Steady state kinetics and binding of eukaryotic cytochromes c with yeast cytochrome c peroxidase. J Biol Chem. 1977 Feb 10;252(3):919–926. [PubMed] [Google Scholar]
  8. Nelson C. E., Sitzman E. V., Kang C. H., Margoliash E. Preparation of cytochrome c peroxidase from baker's yeast. Anal Biochem. 1977 Dec;83(2):622–631. doi: 10.1016/0003-2697(77)90066-5. [DOI] [PubMed] [Google Scholar]
  9. Potasek M. J. Investigation of electron tunneling between cytochrome c peroxidase and cytochrome c. Science. 1978 Jul 14;201(4351):151–153. doi: 10.1126/science.208146. [DOI] [PubMed] [Google Scholar]
  10. Poulos T. L., Freer S. T., Alden R. A., Edwards S. L., Skogland U., Takio K., Eriksson B., Xuong N., Yonetani T., Kraut J. The crystal structure of cytochrome c peroxidase. J Biol Chem. 1980 Jan 25;255(2):575–580. [PubMed] [Google Scholar]
  11. Poulos T. L., Kraut J. A hypothetical model of the cytochrome c peroxidase . cytochrome c electron transfer complex. J Biol Chem. 1980 Nov 10;255(21):10322–10330. [PubMed] [Google Scholar]
  12. Purcell W. L., Erman J. E. Cytochrome c peroxidase catalyzed oxidations of substitution inert iron(II) complexes. J Am Chem Soc. 1976 Oct 27;98(22):7033–7037. doi: 10.1021/ja00438a049. [DOI] [PubMed] [Google Scholar]
  13. Swanson R., Trus B. L., Mandel N., Mandel G., Kallai O. B., Dickerson R. E. Tuna cytochrome c at 2.0 A resolution. I. Ferricytochrome structure analysis. J Biol Chem. 1977 Jan 25;252(2):759–775. [PubMed] [Google Scholar]
  14. Vanderkooi J. M., Adar F., Erecińska M. Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c. Eur J Biochem. 1976 May 1;64(2):381–387. doi: 10.1111/j.1432-1033.1976.tb10312.x. [DOI] [PubMed] [Google Scholar]
  15. Ward B., Chang C. K. A convenient photochemical method for reduction of ferric hemes. Photochem Photobiol. 1982 May;35(5):757–759. doi: 10.1111/j.1751-1097.1982.tb02643.x. [DOI] [PubMed] [Google Scholar]
  16. de Kok J., Butler J., Braams R., van Gelder B. F. The reduction of porphyrin cytochrome c by hydrated electrons and the subsequent electron transfer reaction from reduced porphyrin cytochrome c to ferricytochrome c. Biochim Biophys Acta. 1977 May 11;460(2):290–298. doi: 10.1016/0005-2728(77)90215-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES