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Abstract
Background—Despite overwhelming evidence that major depression is highly heritable, recent
studies have localized only a single depression-related locus reaching genome-wide significance
and have yet to identify a causal gene. Focusing on family-based studies of quantitative
intermediate phenotypes or endophenotypes, in tandem with studies of unrelated individuals using
categorical diagnoses, should improve the likelihood of identifying major depression genes.
However, there is currently no empirically-derived statistically rigorous method for selecting
optimal endophentypes for mental illnesses. Here we describe the Endophenotype Ranking Value
(ERV), a new objective index of the genetic utility of endophenotypes for any heritable illness.

Methods—Applying ERV analysis to a high-dimensional set of over 11,000 traits drawn from
behavioral/neurocognitive, neuroanatomic, and transcriptomic phenotypic domains, we identified
a set of objective endophenotypes for recurrent major depression in a sample of Mexican
American individiauls (n=1122) from large randomly-selected extended pedigrees.

Results—Top-ranked endophenotypes included the Beck Depression Inventory, bilateral ventral
diencephalon volume and expression levels of the RNF123 transcript. To illustrate the utility of
endophentypes in this context, each of these traits were utlized along with disease status in
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bivariate linkage analysis. A genome-wide significant quantitative trait locus was localized on
chromsome 4p15 (LOD=3.5) exhibiting pleiotropic effects on both the endophenotype
(lymphocyte-derived expression levels of the RNF123 gene) and disease risk.

Conclusions—The wider use of quantitative endophentpyes, combined with unbiased methods
for selecting among these measures, should spur new insights into the biological mechanisms that
influence mental illnesses like major depression.

Keywords
major depression; recurrent major depression; endophenotype; endophenotype ranking; linkage;
family studies

Introduction
Major depression is a clinically heterogeneous and common mental illness (1) with lifetime
prevalence rates approaching 20% (2, 3). Despite overwhelming evidence that major
depression is heritable (4), recent case-control association studies have failed to identify a
locus reaching genome-wide significance (5–10), leading some to conclude that common
genetic variants with substantial odds ratios are unlikely to exist for the disease (7). In
contrast, recent family-based linkage studies of major depression identified a significant
quantitative trait locus (QTL) on chromosome 3p25-26 (LOD=4.0) in a large sample of
affected sibling pairs (11). This effect replicated in a smaller sample of individuals
ascertained for heavy smoking (12). However, the causal gene(s) for this QTL remain to be
identified. Given our slow pace of discovery, new approaches may be necessary to improve
understanding of specific causal genes influencing risk of mental illness. One possible
approach to speed gene localization/identification is the use of informative quantitative
intermediate phenotypes or endophenotypes in families (13, 14). Such an approach has
strategic benefits (e.g., simultaneous identification of endophenotypes, increased power to
identify genes, increased power to detect rare functional variants) over the more common
paradigm that has focused upon collections of unrelated individuals and relied solely upon
categorical diagnoses. Endophenotype exploitation should improve the likelihood of
identifying major depression genes (13, 15–17).

Although the application of allied phenotypes has been successful in other complex illnesses
(14, 18–20), difficulties choosing appropriate endophenotypes for mental disorders have
limited their use in psychiatry, where relatively less is know about the biological
mechanisms that predispose illness than in other areas of medicine. While the
endophenotype concept is widely espoused in psychiatric genetics (14, 16, 21), a formal or
standardized approach for the identification of endophenotypes is lacking. Most studies
employ purely phenotypic correlations between disease risk and a quantitative risk factor to
define putative endophenotypes. However, the endophenotype concept fundamentally
depends upon the existence of joint genetic determination of both endophenotype and
disease risk (13, 14). This obligatory pleiotropy is most efficiently tested using family-based
observations to assess both the heritability of the endophenotype and its genetic correlation
with disease liability. To facilitate the identification of optimal endophenotypes, we
developed the Endophenotype Ranking Value (ERV), a novel objective index of the genetic
utility of endophenotypes for an illness. The ERV provides an unbiased and empirically
derived method for choosing appropriate endophenotypes in a manner that balances the
strength of the genetic signal for the endophenotype and the strength of its relation to the
disorder of interest. It is defined using the square-root of the heritability of the illness (hi

2),
the square-root of the heritability of the endophenotype (he

2), and their genetic correlation
(ρg), and is expressed in the following formula:
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ERV values vary between 0 and 1, where higher values indicate that the endophenotype and
the illness are more strongly influenced by shared genetic factors. This method necessitates
that endophenotypes be heritable and have some level of pleiotropy with the studied illness,
reducing the heterogeneity of the disease and focusing on the proportion of shared genetic
factors influencing both the endophenotype and the illness. An advantage of the ERV
approach is that very large numbers of potential endophenotypes can be efficiently assessed
prior to conducting molecular genetic analyses, analogous to high-throughput screening
methods developed for drug discovery. Furthermore, the ERV approach is applicable to any
heritable disease and any set of potentially relevant traits.

Applying ERV analysis to a high dimensional set of traits we identified a set of significant
endophenotypes for recurrent major depression (rMDD). We focus on recurrent depression
to reduce the clinical heterogeneity of the disorder and potentially increase the genetic
control over the illness (3, 6). We perform an automated high dimensional search for
endophenotypes via the ranking of 37 behavioral/neurocognitive, 85 neuroanatomic and
11,337 lymphocyte-based transcriptional candidate endophenotypes for rMDD using data
acquired from 1,122 Mexican-American individuals from large randomly ascertained
extended pedigrees who participated in the "Genetics of Brain Structure and Function"
study. Finally, we employed the top-ranked endophentypes in bivariate linkage analysis,
localizing a significant QTL exhibiting pleiotropic effects on both endophenotype and
disease risk.

Materials and Methods
Participants

1,122 Mexican-American individuals from extended pedigrees (71 families, average size
14.9 [1–87] people) were included in the analysis. Participants were 64% female and ranged
in age from 18 to 97 (mean±SD 47.11±14.2) years. Individuals in this cohort have actively
participated in research for over 18 years and were randomly selected from the community
with the constraints that they are of Mexican-American ancestry, part of a large family and
live within the San Antonio region (see (22) for recruitment details). No other inclusion or
exclusion criteria were imposed in the initial study. However, individuals were excluded
from scanning for MRI contraindications. In addition, individuals were excluded from
scanning and neurocognitive evaluation for history of neurological illnesses, stroke or other
major neurological event. Reported pedigree relationships were empirically verified with
autosomal markers and intra-familial relationships were edited if necessary (see Table 1 for
familial relationships). All participants provided written informed consent on forms
approved by the IRBs at the University of Texas Health Science Center San Antonio
(UTHSCSA) and at Yale University.

Diagnostic Assessment
All participants received the Mini-International Neuropsychiatric Interview (23), a semi-
structured interview augmented to include items on lifetime diagnostic history. Masters and
doctorate level research staff, with established reliability (κ>=0.85) for affective disorders,
conducted all interviews. All subjects with possible psychopathology were discussed in case
conferences that included licensed psychologists or psychiatrists. Lifetime consensus
diagnoses were determined based on available medical records, the MINI interview and the
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interviewer’s narrative. Recurrent major depression was defined as two or more distinct
episodes of depression meeting DSM-IV criteria.

Behavioral and Neurocognitive Assessment
Each participant received a 90-min neuropsychological evaluation consisting of standard
and computerized measures (24, 25). Thirty-five neurocognitive variables were derived from
17 separate neuropsychological tests, including measures of attention/concentration,
executive processing, working memory, declarative memory, language processing,
intelligence and emotional processing. In addition, participants completed two
questionnaires indexing depressive mood: the Beck Depression Inventory II (BDI (26)) and
the neuroticism questions of the Eysenck Personality Questionnaire (27).

Image Acquisition and Processing
MRI data were acquired on a 3T Siemens Trio scanner with an 8-channel head coil in the
Research Imaging Institute, UTHSCSA. 800 µm isotropic anatomic images were acquired
for each subject using a retrospective motion-corrected protocol (28). This protocol included
the acquisition of seven full-resolution volumes using a T1-weighted, 3D TurboFlash
sequence with the following scan parameters: TE/TR/TI=3.04/2100/785 ms, flip angle=13°.
Surface-based image analyses were conducted with FreeSurfer (29, 30) following
standardized protocols (31). T1-weighted images were segmented into gray matter thickness
measures for 53 cortical regions and 21 subcortical volumes (averaged across both
hemispheres).

T2-weighted imaging data were acquired using a 1mm isotropic, turbo-spin-echo FLAIR
sequence with the following parameters: TR/TE/TI/Flip angle/ETL=5s/353ms/1.8s/180°/
221. White-matter hyperintensities were manually delineated in 3D-space using in-house
software by experienced neuroanatomists with high (r2>0.90) test-retest reproducibility (32).

Diffusion tensor imaging (DTI) data acquisition used a single-shot single spin-echo, echo-
planar imaging sequence with a spatial resolution of 1.7×1.7×3.0mm (TR/TE=8000/87ms,
FOV=200mm, 55 directions, b=0 and 800 s/mm2). Fractional anisotropy values were
estimated for each subject on thirteen tracts using Tract-Based Spatial Statistics software
(TBSS) (33). DTI images provided fractional anisotropy indices for 13 white-matter tracts
(averaged across both hemispheres).

Transcriptional Profiling
Transcriptional profiling followed procedures described by Göring and colleagues (34).
Total RNA was isolated from lymphocytes and hybridized to Illumina Sentrix Human
Whole Genome (WG-6) Series 1 BeadChips. These BeadChips simultaneously probe
~48,000 transcripts, representing more than 25,000 annotated human genes. Although we
previously identified 20,413 quantitative transcripts in lymphocytes, we only examined
those with heritabilities greater than or equal to 0.20 (n=11,337) in the current analysis.

Genotyping
DNA extracted from lymphocytes was used in polymerase chain reactions (PCRs) for the
amplification of individual DNA at 432 dinucleotide repeat microsatellite loci (STRs),
spaced approximately 10 centiMorgan (cM) intervals apart across the 22 autosomes, with
fluorescently labeled primers from the MapPairs Human Screening set, versions 6 and 8
(Research Genetics, Huntsville, AL). PCRs were performed separately according to
manufacturer specifications in Applied Biosystems 9700 thermocyclers (Applied
Biosystems, Foster City, CA). For each individual, the products of separate PRCs were
pooled using the Robbins Hydra-96 Microdispenser, and a labeled size standard was added
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to each pool. The pooled PCR products were loaded into an ABI PRISM 377 or 3100
Genetic Analyzer for laser based automated genotyping. The STRs and standards were
detected and quantified, and genotypes were scored using the Genotyper software package
(Applied Biosystems).

Quantitative Genetic Analyses
All analyses were conducted with SOLAR (35), which employs maximum likelihood
variance decomposition methods to determine the relative importance of genetic and
environmental influences by modeling the covariance among family members as a function
of genetic proximity (see Supplement for detail on variance components methods).

The Endophenotype Ranking Value (ERV) represents the standardized genetic covariance
between the endophenotype (denoted by the subscript, e) and illness (denoted by the
subscript, i), and is defined as ERVie = |√hi

2√he
2ρg|. Heritability (h2) represents the portion of

the phenotypic variance accounted for by additive genetic variance (h2 = σ2
g/σ2

p). Genetic
correlation represents the common genetic covariance between two traits, or pleiotropy (36).
Bivariate quantitative genetic analysis was used to estimate the genetic (ρg) and
environmental (ρe) correlations between each potential endophenotype and rMDD. The
phenotypic correlation (ρp), which quantifies the overall relationship between the two traits,
can be derived from the genetic and environmental correlations as ρp = ρg√(h2

eh2
i) + ρe√

((1−h2
e)(1−h2

i)). These parameters are estimated by jointly utilizing all available pedigree
information with a multivariate normal threshold model for combined dichotomous/
continuous traits (37, 38). The significance of the ERV was tested by comparing the ln
likelihood for the restricted null model (with ρg constrained to equal 0) against the ln
likelihood for the alternative model in which the ρg parameter is estimated. The resultant
likelihood ratio test is asymptotically distributed as a chi-square with a single degree of
freedom. The corresponding p-value is identical to that used for genetic correlation. Prior to
analysis, endophenotypes were normalized using an inverse Gaussian transformation. Age,
sex, age×sex, age2, and age2×sex were included as covariates whose effects were
simultaneously estimated in all analyses.

Bivariate Linkage Analysis
Bivariate linkage analysis exploits the genetic covariance between the endophenotype and
the illness to improve the power to localize QTLs and to detect QTL-specific pleiotropic
effects (37). After addressing (by blanking, recalling, or retyping) mistyping errors
identified using Simwalk II (39), genotype data were used to compute maximum likelihood
estimates of allele frequencies. Matrices of empirical estimates of identity-by-descent (IBD)
allele sharing at points throughout the genome for every relative pair were computed using
the Loki package (40). We used high-resolution chromosomal maps provided by deCODE
genetics (41). For the localization of QTLs, we performed both univariate and bivariate
variance components linkage analyses by employing the models for combined analysis of
quantitative and dichotomous phenotypes described by Williams and colleagues (37, 38).
Once a genome-wide significant localization was made, formal single degree of freedom
likelihood ratio tests for pleiotropy were performed to test the specific hypothesis that a
QTL at that location influenced a given endophenotype/rMDD risk (36).

Results
Heritability of Recurrent Major Depression

Two hundred and fifteen individuals met criteria for lifetime rMDD (19% of the sample;
73% female). Eighty-six individuals were clinically depressed at the time of the assessment.
The estimated heritability for lifetime rMDD was h2=0.463 (standard error ±0.12),
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p=4.0×10−6. We previously demonstrated that this heritability estimate is not significantly
influenced by common environmental factors as indexed by shared household (22).
Additionally, there was no evidence for dominance (p=0.14) or additive×additive epistasis
(p=0.18), suggesting that the heritability estimate reflects additive genetic factors.

Potential Behavioral/Neurocognitive Endophenotypes
The 10 top-ranked behavioral/cognitive endophenotypes are presented in Table 2. The BDI
was the highest ranked endophenotype in this class. Although the BDI was developed as an
index of mood state, the heritability of this measure was h2=0.254 (±0.07), p=5.6×10−5,
demonstrating that 25% of the variability on this measure is due to additive genetic factors.
The genetic correlation between the BDI and the neuroticism questions from the Eysenck,
the second best ranked endophenotype in this domain, was ρG=0.870 (±0.09), p=3.3×10−4,
suggesting significant pleiotropy and potential redundancy between these two measures.
Top-ranked cognitive measures include indices of working and declarative memory,
attention and emotion recognition.

Potential Neuroimaging Endophenotypes
The top ranked brain region was bilateral ventral diencephalon volume (Table 2), a region
primarily comprised of the hypothalamus. As part of the hypothalamic-pituitary-adrenal
(HPA) axis, the hypothalamus mediates neuroendocrine and neurovegetative functions and
has been consistently implicated in the neurobiology of depression (42). HPA axis activity is
regulated in part by the hippocampus and amygdala (42), both regions with reasonably high
ERV ranking (3rd and 13th ranked, respectively). Our results suggest that the genetic factors
that influence the structure of these subcortical regions (Figure 1) also confer risk for rMDD.
Additionally, white-matter hyperintensity measures, which are associated with aging,
cerebrovascular dysfunction, smoking and a host of other depression-related pathologies
(43), were highly ranked endophenotypes for rMDD. This result is consistent with and
extends the vascular depression hypothesis (44), by suggesting common genetic factors
increase risk for rMDD and white-matter hyperintensities.

Potential Transcriptional Endophenotypes
ERV analyses on 11,337 are presented in Figure 2 and top ranked transcriptional
endophenotypes for rMDD are presented in Table 2. The top-ranking transcript RNF123, is a
member of the E3 ubiquitin-protein ligase family, which have diverse functions including
protein degradation and modulation of protein assembly, structure, function and localization
(45, 46). Other members of the ubiquitin-proteosome system were previously implicated in
anxiety, depression and vulnerability to seizures (47, 48). PDXK, an essential cofactor in the
intermediate metabolism of amino acids and neurotransmitters, including serotonin and
dopamine (49), confers risk for Parkinson disease (50) and epilepsy (49). Additionally,
MARK2 and ABHD12 have previously been implicated in neuronal migration (51),
degeneration (52) and regulation of endocannabinoid signaling pathways (53), respectively.
Although other identified transcripts are less obvious candidates for rMDD risk, they may
represent novel genes whose functions are not fully understood and may extend to
depression phenotypes.

Genome-Wide Bivariate Linkage Analyses Using rMDD and Top-Ranked Endophenotypes
We performed a genome-wide linkage-based search for pleiotropic quantitative trait loci
influencing disease risk and the top-ranked endophenotype from each class: BDI, bilateral
ventral diencephalon volume and the RNF123 transcript. First, standard univariate linkage
analyses were performed. Two traits exhibited genome-wide or near genome-wide
significance QTLs. The best univariate score for rMDD was found on chromosome 4 at 47
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cM (LOD=2.98, nominal p=0.00011). While not reaching traditional genome-wide
significance, this results points to a potential disease-related QTL at chromosomal location
4p15. The bilateral ventral diencephalon exhibited an unequivocal genome-wide significant
peak on chromosome 7 at 131 cM (LOD=3.40, nominal p=3.8×10−5). Neither BDI nor
RNF123 expression levels showed strong evidence for causal QTLs in univariate analysis.
Suggestive evidence for a QTL influencing BDI was found on chromosome 17 at 98 cM
(LOD=2.57, nominal p=0.0003). We found little evidence for a QTL influencing
quantitative RNF123 gene expression levels, with the single best univariate QTL location
found on chromosome 6 at 53 cM (LOD=1.81).

Bivariate linkage analyses were performed to determine if QTL localization could be
enhanced via simultaneous analysis with rMDD affection status. The most dramatic
improvement in localization was seen for rMDD and RNF123 transcription levels. The
bivariate analysis of this endophenotype/disease combination substantially improved the
evidence for a QTL located at 4p15 seen in the univariate rMDD results. Figure 3 shows the
QTL localization results for the bivariate analysis and the two related univariate analyses.
The peak bivariate LOD (scaled to a standard single degree of freedom LOD) for was 3.51
(nominal p=3.8×10−5) at 45 cM, a marked improvement over that seen for rMDD alone. No
other rMDD/endophenotype combination provided genome-wide evidence for QTLs.

Table 3 shows the results of likelihood ratio statistic-based formal tests of pleiotropy at the
chromosome 4:45cM location obtained from the bivariate analysis of RNF123/rMDD. The
marginal results from univariate analysis (technically co-incident linkage (36)) and the strict
test of pleiotropy that can be performed using the bivariate linkage model. The chromosome
4 locus significantly influences rMDD (p=4.7×10−5), RNF123 (p=0.0010), and
diencephalon volume (p=0.0290), and shows a trend for BDI (p=0.1170). The fact that this
QTL influences both risk of rMDD and two of our three best endophenotypes provides
additional validation for endophenotype identification, with evidence for rMDD increasing
by nearly an order of magnitude. These results strongly support a QTL influencing rMDD
and related endophenotypes at chromosome 4p15.

Given evidence for a QTL influencing diencephalon volume on chromosome 7, we tested
for pleiotropic effects. As expected, these tests revealed a major effect on diencephalon
(pleiotropy p-value=1.6×10−5) and rMDD liability (pleiotropy p-value=0.0437). Both of
these results are substantially improved over their univariate analogues and only with
bivariate analysis do we detect a significant influence of this QTL on rMDD liability. The
other two leading endophenotypes show no pleiotropic effects at this QTL.

Discussion
Our results demonstrate the utility of the ERV approach for formally identifying
endophenotypes in high dimensional data and provide a novel genome-wide significant QTL
for recurrent major depression. Bivariate genetic analyses including a quantitative
endophenotype and disease risk significantly improved QTL detection over that observed
utilizing diagnosis alone. These results may reflect the improved statistical sensitivity of
quantitative over qualitative traits or that endophenotypes index a somewhat less
heterogeneous aspect of the pathophysiology associated with mental illnesses (54). In either
case, quantitative endophenotypes can significantly improve the potential to localize loci for
complex disorders like rMDD, where multiple genes with varying effects and incomplete
penetrance are thought to interact with environmental factors to determine illness
susceptibility.
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The present experiment demonstrates the utility of gene expression measures in peripheral
tissues for psychiatric phenotypes. Transcripts can be considered endophenotypes that, while
removed from the phenomenology-based diagnosis, are close to gene action, and in the case
of primary cis-regulation, provide evidence for a gene’s involvement in the illness. Although
brain tissue is ideal for gene expression studies in psychiatry, difficulty obtaining this tissue
in genetically informative samples necessitates the use of a surrogate marker and
lymphocytes appear to be good surrogates for detection of mental disease-relevant genes
(55, 56). The lymphocyte measures used in the present experiment were collected 12–15
years prior to the current assessments, minimizing the potential that these traits were
influenced by acute variation in mood or medication usage (57). It is notable that the top-
ranked transcriptional endophenotype for rMDD was ranked higher than any of the
behavioral/cognitive or neuroimaging traits, including BDI, suggesting that transcripts may
provide an important new set of markers for disease risk.

Our single strongest ERV result was observed for quantitative mRNA levels of the RNF123
gene with risk for rMDD. This gene (also known as KPC1) encodes ring finger protein 123
which is likely involved in the regulation of neurite outgrowth via its modulation of the
degradation of the cyclin-dependent kinase inhibitor p27(Kip1) (58, 59). p27(Kip1) is
involved in increased hippocampal neuronal differentiation via a glucocorticoid receptor
function that is observed upon administration of the antidepressant, sertraline (60). Thus,
RNF123 appears to be a novel candidate involved in hippocampal neurogenesis of
significant relevance to depression risk. We observed a significant negative genetic
correlation between RNF123 expression level and disease risk consistent with evidence that
RNF123 inhibits p27(Kip1) and depression amelioration. Thus, RNF123 represents a
potential drug target for depression.

The dominant paradigm in psychiatric genetic studies focuses on a specific disease itself.
However, as with most disease states, this endpoint is relatively distant from the causal
anatomic or physiological disruption. In contrast, we supplement disease status with
quantitative endophenotypes, selected through an empirically derived process, to identify
and characterize genes that influence rMDD. Since these endophenotypes vary within the
normal population, it is possible to localize genes influencing them in samples ascertained
without regard to a specific phenotype (illness). The endophenotype and normal variation
strategy has been successfully applied to the study of other complex diseases such as heart
disease (18, 61, 62) obesity (19, 63, 64), diabetes (65, 66), hypertension (20, 67), and
osteoporosis (68, 69). However, this strategy has not been effectively applied in the search
for mental illness genes.

There is debate regarding the definition of a “good” endophenotype or even if
endophenotypes will benefit the search for mental illness genes. We propose that
endophenotypes that are heritable and genetically correlated with disease liability can
facilitate gene identification. Although both disease and endophenotype must be heritable
for the ERV approach, there is no requirement that the endophenotype exhibit higher
heritability than the disease itself. Higher heritability estimates do not imply a simpler
genetic architecture or improve the potential to localize genes (25). A quantitative
endophenotype with a low but significant heritability estimate that is genetically correlated
with disease still allows one to rank individuals along a continuous liability distribution (70),
increasing power to identify genes. The ERV index includes no assumption about the genetic
architecture of an endophenotype. While endophenotypes that are closer to gene action are
desirable, this is not a requisite of an endophenotype as information about the genetic
simplicity of a particular endophenotype is generally not available or easily quantified. A
putative endophenotype with a high ERV value will reflect the genetic component of disease
liability better than one with a low ERV. Therefore, even quantitative endophenotypes with
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complex genetic architectures (involving many genes) can offer major advantages in genetic
dissection of disease liability. Indeed, the gold standard endophenotype for heart disease,
LDL-C levels, is a complex quantitative trait that is not particularly close to gene action
(given that it does not represent a single protein) that was successfully used to find
cardiovascular disease risk genes (71, 72).

The present experiment establishes the value of randomly selected families in the search for
common psychiatric illnesses genes. While we highlight the optimality of large families for
the assessment of heritability, genetic correlations, and ERV calculations, we note that
modern high density typing now allows empirical assessment of deep kinship between
“unrelated” individuals that could in principle be used to estimate these parameters (albeit
very inefficiently due to the remoteness of relationships). Thus, very large previously
collected data sets of unrelateds may be of some future value in ERV estimation.

While we demonstrate the utlitiy of the ERV approach, the current experiment has several
limitatons. For example, not all potential candiadate ednophentypes for affective disorders
were included (17), as this is impractial in large-scale genetic studies. In addition,
verification of endophenotypes in independent samples is warrented. However, when the
goal of simultaneous evaluation of disease liability and endophenotype is focused on gene
discovery, it may be folly to wait for such replication rather than immediately pursuing an
independent discovery avenue like deep sequencing of a gene whose expression level is
genetically correlated with disease liability. The formally testing and rigorously defining
endophenotypes for a given disease should speed the identification of risk genes and
improve our understanding of the underlying pathobiological processes. Endophenotypes
identified by emperical approaches like the ERV will likely outperform non-
objective ”expert”-derived putative endophenotypes.

The endophenotype strategy has the potential to significantly improve our understanding of
the genetic architecture of psychiatric illnesses (14). However, choosing optimal
endophenotypes for brain-related illness is difficult when relying upon theoretical factors
alone. The ERV approach provides an unbiased method for selecting endophenotypes that is
applicable to any heritable disease and should facilitate the use of endophentypes in the
search for genes influencing brain-related illnesses. Objective formal identification of
endophenotypes using the ERV procedure led to improved power to localization causal
QTLs influencing risk of major depression and the identification of a novel potential player
in depression risk focused on the RNF123 gene, its products, and its pathway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ERV statistics for subcortical brain regions and recurrent major depression
Volume measurements of subcortical nuclei were found to share genetic variance with
liability for recurrent major depression in extended pedigrees selected without regard to
phenotype. ERV statistics, which provide an unbiased and empirically derived method for
choosing appropriate endophenotypes, were strongest for the ventral diencephalon volume, a
region primarily comprised of the hypothalamus. For anatomical reference, in this image the
cortex is shown as a semi-transparent structure.
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Figure 2. Manhattan plot depicting whole transcriptomic search for expression-based
endophenotypes for recurrent major depression
ERV values were calculated for 11,337 detected lymphocyte-based transcripts and recurrent
major depression. Dashed lines reflect cutoff points for FDR < 0.10 (13 transcripts) and
FDR < 0.25 (29 transcripts).
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Figure 3. Detection of a QTL influencing recurrent major depression and RNF123 expression
levels on chromosome 4
Multipoint LOD functions for chromosome 4 in 1,122 individuals from large extended
pedigrees from the Genetics of Brain Structure and Function study. The black line represents
the univariate linkage analysis for RNF123 expression levels alone. The blue line represents
the univariate linkage analysis for recurrent major depression alone. The red line represents
the bivariate linkage analysis for recurrent major depression and RNF123 and reaches
genome-wide significance (LOD=3.5) at 45 cM (chromosomal band 4p15). The vertical axis
is in LOD score units, and the horizontal axis is in units of genetic distance (centi-Morgans,
cM) from the p arm telomere.
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Table 1
Pair-Wise Pedigree Relationships

Relationship Number of Pairs

Parent-offspring 689

Siblings 784

Grandparent-grandchild 122

Avuncular 1248

Half siblings 135

1st cousins 1602

3rd degree 2128

4th degree 2235

5th degree 1341

6th degree 584

7th degree 309

8th degree 36
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Table 2
10 Top-Ranked Endophenotypes per Domain for Recurrent Major Depression

10 top ranked endophenotypes for recurrent major depression in the categories of behavioral/cognitive,
neuroimaging and RNA transcripts (see Supplement for the complete rankings). Genetic correlations are
between the respective endophenotypes and lifetime affection status. Endophenotype heritability estimates
were estimated as part of bivariate models.

Endophenotypes ERV P-value Genetic
Correlation (ρg)

Heritability (h2)

Behavioral/Neurocognitive

    Beck Depression Inventory II 0.263 1.9×10−5 0.825 0.253

    EPQ Neuroticism 0.238 1.7×10−4 0.739 0.228

    Declarative Memory (CVLT Recognition) 0.136 5.4×10−2 −0.338 0.338

    Working Memory (Digit Span Forward) 0.142 5.6×10−2 −0.295 0.490

    Working Memory (Letter-Number 0.135 6.3×10−2 −0.267 0.541

    Penn Facial Memory (Immediate) 0.127 6.9×10−2 −0.319 0.344

    Penn Facial Memory (Delayed) 0.134 8.1×10−2 −0.295 0.439

    Attention (CPT hits) 0.119 8.3×10−2 −0.387 0.202

    Attention (Trails A) 0.121 9.6×10−2 0.303 0.340

    Penn Emotion Recognition 0.117 1.0×10−1 −0.288 0.347

Neuroimaging

    Ventral Diencephalon Volume 0.240 3.9×10−3 −0.425 0.694

    Parietal Hyperintensity Volume 0.282 7.8×10−3 0.569 0.573

    Hippocampus Volume 0.204 1.2×10−2 −0.347 0.771

    Pallidum Volume 0.203 1.3×10−2 −0.396 0.562

    Cerebellar White Matter Volume 0.218 1.3×10−2 −0.443 0.524

    Frontal Hyperintensity Volume 0.255 1.3×10−2 0.483 0.635

    CorticoSpinal Tract (FA) 0.208 2.1×10−2 −0.900 0.101

    Subcortical Hyperintensity Volume 0.213 4.1×10−2 0.473 0.459

    Superior Parietal Gyrus Thickness 0.178 4.5×10−2 0.363 0.480

    Thalamus Proper Volume 0.172 4.8×10−2 −0.294 0.739

Transcriptional

    RNF123 (3p24) 0.323 5.2×10−6 −0.943 0.209

    PDXK (21q22) 0.331 1.1×10−5 −0.689 0.489

    ZFP64 (20q13) 0.352 2.0×10−5 −0.711 0.470

    RWDD2A (6q14) 0.260 2.3×10−5 0.666 0.337

    B4GALT7 (5q35) 0.276 3.6×10−5 −0.732 0.309

    MARK2 (11q12) 0.180 3.9×10−5 −0.399 0.412

    GADD45A (1p31) 0.344 4.0×10−5 0.729 0.432

    PIGN (18q21) 0.274 7.9×10−5 0.646 0.399

    HTT (4p16) 0.225 7.9×10−5 −0.546 0.358

    ABHD12 (20p11) 0.269 1.1×10−4 0.755 0.272
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Table 3
Tests of Pleiotropy at the Chromosome 4:45cM Quantitative Trait Locus

Trait Pleiotropy P-value from
Bivariate Model

Co-Incident Linkage P-value from
Univariate Model

Recurrent MDD 4.7×10−5 1.1×10−4

RNF123 expression 0.0010 0.0219

Ventral Diencephalon Volume 0.0290 0.0266

BDI score 0.1170 0.5000
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