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Abstract
The cytoplasmic Ca2+ signals that participate in nearly all aspects of plant growth and
development encode information as binary switches or information-rich signatures. They are the
result of influx (thermodynamically passive) and efflux (thermodynamically active) activities
mediated by membrane transport proteins. On the influx side, confirming the molecular identities
of Ca2+-permeable channels is still a major research topic. Cyclic nucleotide-gated channels and
glutamate receptor-like channels are candidates well supported by evidence. On the efflux side,
CAX antiporters and P-type ATPase pumps are the principal molecular entities. Both of these
active transporters load Ca2+ into specific compartments and have the potential to reduce the
magnitude and duration of a Ca2+ transient. Recent studies indicate calmodulin-activated Ca2+

pumps in endomembrane systems can dampen the magnitude and duration of a Ca2+ transient that
could otherwise grow into a Ca2+ cell-death signature. An important challenge following
molecular characterization of the influx and efflux pathways is to understand how they are
coordinately regulated to produce a Ca2+ switch or encode specific information into a Ca2+

signature.

Introduction
Some chemical facts match calcium well with the signaling functions it performs throughout
plant biology. It is the third most abundant metal in the Earth’s crust and it readily forms a
precipitate with phosphate. To avoid precipitation of the sparingly soluble Ca3(PO4)2 in the
cytoplasm, a low cytosolic free Ca2+ concentration (e.g., < 0.1 μM) must be maintained
despite a thousand-fold higher external concentration and a very negative membrane
potential (e.g., < −180 mV). The resulting inward-directed electrochemical potential
difference for Ca2+ across the plasma membrane (ΔμCa) is −52 kJ mol−1 given these typical
values, meaning that Ca2+ may flow into the cytoplasm through passive transporters such as
ion channels without breaking any rules. It also means Ca2+ must be pumped up a 52 kJ
mol−1 ‘hill’ in order to move out. To put this hill in perspective, the free energy (ΔG) of
ATP hydrolysis is −49 kJ mol−1 in a typical cellular condition. The same thermodynamic
analysis applied to membranes bounding other cellular compartments shows that with
respect to the cytoplasm, IN is always ‘downhill’, and OUT is always ‘uphill’.
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A transient rise in cytosolic free Ca2+ concentration that can function as an intracellular
signal is generated when influx temporarily exceeds efflux. Two models have been proposed
to explain how a transient change in concentration of a single ion can regulate so many
aspects of plant development, including abiotic and biotic stress responses, tip growth, and
gravitropism [1]. In a “Ca2+ signature” model, variations in a Ca2+ transient’s magnitude,
duration, and/or repetition frequency are proposed to encode specific information that
activate or inhibit different signal transduction networks. In a simple switch model [1], Ca2+

transients with different shapes all function in an equivalent fashion as simple switch. The
key distinction is that specific information in a Ca2+ switch is not encoded through the
complexity of the message, but rather lies in the unique status of the receiver. Both models
are likely relevant to different signaling pathways in plants. At the core of both models is the
subject of this review - proteins that transport Ca2+ uphill and downhill across membranes to
create and shape Ca2+ transients [2,3].

Influx: Taking stock of the paths
Cyclic nucleotide-gated channels - CNGC

A calmodulin-binding protein isolated from barley aleurone was discovered to be
homologous with animal cyclic nucleotide-gated ion channels (CNGCs), displaying six
membrane-spanning helices, a pore-forming loop, and separate cyclic nucleotide- and
calmodulin-binding domains in the carboxy terminus [4,5]. Animal CNGCs function as non-
selective cation channels, transporting primarily K+, Na+, and Ca2+ in olfactory and light
sensing systems. A mutation in one of the 20 Arabidopsis CNGCs (AtCNGC2) was found to
impair the hypersensitive response to a pathogenic bacterium [6]. Three other members of
the family were subsequently found to participate in the same process [7], which is known to
involve rapid fluxes of ions including Ca2+ across the plasma membrane. However,
relationship to animal CNGCs is not sufficient evidence to conclude that the pathogen-
associated ion fluxes in plants are CNGC-mediated because the amino acid sequence of the
pore region, which determines ion specificity, is GETP in animals and ANDL in AtCNGC2
[5]. Other AtCNGCs are no closer to the animal sequence in the pore region [8].
Heterologous expression studies provide the most direct evidence for Ca2+ transport activity
for particular CNGCs. Human embryonic kidney cells expressing AtCNGC2 display a rise
in cytoplasmic Ca2+ concentration after cyclic nucleotide treatment [9], and E. coli cells
expressing CNGC18 accumulated higher levels of Ca2+ than controls [10]. Lack of a cyclic-
nucleotide-gated Ca2+ current across mutant guard cell plasma membranes further supported
a Ca2+ transport function for AtCNGC2 [11]. Likewise, root apices of antisense plants
underexpressing AtCNGC10 display reduced Ca2+, Mg2+, and H+ influx [12].

Glutamate receptor-like channels - GLR
During the Arabidopsis genome sequencing effort, genes homologous with mammalian
ionontropic glutamate receptors (iGluRs) were identified [13,14]. Like CNGCs, iGluRs form
ligand-gated channels that transport Na+, K+, and Ca2+ to varying degrees, depending on
subunit composition [15]. Unlike CNGCs, the ligand-binding domain is extracellular in
iGluRs. In plant cells, exogenous amino acids trigger a large, transient rise in cytoplasmic
Ca2+ concentration and a resultant plasma membrane depolarization, consistent with the idea
that plant GLRs function similarly to iGluRs [16,17]. However, none of the 20 AtGLRs has
a pore sequence similar to an iGluR [18], again giving reason not to accept a similar
function without experimental evidence. Such evidence is accumulating. Replacement of the
pore region of an animal iGluR with that of AtGLR1.1 or AtGLR1.4 produced channels
capable of transporting Na+, K+, and Ca2+ when expressed in Xenopus oocytes [19]. Plant-
based studies showed that mutants lacking AtGLR3.3 do not display the large, transient
membrane depolarization that ala, asn, cys, gly, glu, or ser trigger in the wild type, or the
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associated rises in cytoplasmic Ca2+ [20]. A related study showed that hypocotyl cells of
glr3.4 mutants respond normally to ala, cys, and glu, but less well to asn, gly, and ser,
indicating variation in agonist specificity among GLRs and that co-expressed subunits may
form heteromeric channels in planta [21,22]. Pollen tubes lacking GLR1.2 were shown to
display aberrant oscillations in cytoplasmic Ca2+ concentration associated with an amino
acid, in this case D-ser [23]. Still needed before GLRs can be considered Ca2+-conducting
channels is a functional demonstration of this activity in a heterologous system. Attempts
with AtGLR3.7 expressed in Xenopus oocytes failed to produce an amino-acid gated activity
like those observed in the plant [22].

Mid1 complementing activities - MCA
Yeast lacking Mid1-dependent channels are defective in Ca2+ transport across the plasma
membrane. Two Arabidopsis genes can complement the mid1 Ca2+ uptake defect, though
the Mid1 complementing activities (MCA1 and MCA2) are not related to the Mid1 gene or to
any other functionally characterized protein [24,25]. Evidence from plant and heterologous
expression studies indicate MCA1 and MCA2 mediate Ca2+ uptake across the plasma
membrane, particularly in cells experiencing mechanical stress from excessive turgor
pressure or touch. Unlike the previous examples, no model channel exists to guide
hypotheses about ion selectivity or other functional aspects. An electrophysiological study in
a heterologous expression system would be very valuable.

Two pore channels - TPC
The vacuole is a potential source of Ca2+ for release to the cytoplasm, and various studies
show that it can do so [26]. The best candidate for a vacuolar Ca2+ release channel is TPC1,
a homolog of a mammalian voltage-gated Ca2+ channel that possesses two pores and twelve
membrane spans. The AtTPC1 pore region is very similar to its Ca2+-conducting animal
homolog and it possesses Ca2+-binding EF-hands [27]. Thus, its structure is consistent with
it mediating the Ca2+-activated, nonselective cation currents characteristic of the wild-type
tonoplast [28,29]. Experimental evidence strongly supports the case. AtTPC1 was shown to
mediate Ca2+ uptake in yeast [30], and tpc1 tonoplasts do not display the aforementioned
currents [31]. However, the important demonstration of Ca2+ conductance encoded by TPC1
in a heterologous expression system has not yet been reported and its activity has not yet
been shown to generate a cytoplasmic Ca2+ signal [32,33]. Patch clamping of yeast plasma
membranes containing AtTPC1 may address the former and more single-cell studies of
cytosolic Ca2+ transients in tpc1 mutants may address the latter, particularly if performed in
guard cells where TPC1 activity and physiological function are pronounced [33,34].

Activities requiring molecular identification
Electrophysiological studies of the plasma membrane have shown inward Ca2+ currents
activated at increasingly negative (hyperpolarizing) potentials, and others that are not active
until the membrane becomes sufficiently depolarized [35]. In either case, influx is
‘downhill’ and therefore consistent with a channel for which no protein has been identified.
Plant endomembranes show evidence of Ca2+ release triggered by inositol 1,4,5-
trisphosphate and cyclic ADP-ribose, but the molecular identity of the channels mediating
these fluxes are yet unknown and plant genomes appear to lack homologs of the channels
responsible for these ligand-gated endomembrane fluxes in animals [26].

Eflux: Changing a “signature”, or loading a compartment?
Pumps and antiporters provide two types of energized transport systems that move Ca2+ out
of the cytoplasm after a Ca2+ release. The known Ca2+ antiporters all belong to a family of
CAXs (Ca2+ exchangers), which in some cases have been shown to exchange Ca2+ for a
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counter ion such as H+ [36]. With antiporters, the downhill movement of the counter ion
provides the driving force for Ca2+ transport. CAXs are considered high capacity, low
affinity efflux systems. There are two types of Ca2+ pumps, ACAs (auto-inhibited Ca2+-
ATPases) and ECAs (ER-type Ca2+-ATPases) belonging to a family of P-type ATPases that
move ions against their concentration gradients using the energy from ATP hydrolysis [37].
These are considered low capacity, high affinity efflux systems. In addition, a Zn
transporting heavy metal pump associated with the chloroplast (AtHMA1) [38] has been
reported to transport Ca2+ [39]. This latter example highlights that Ca2+ efflux might also
occur through unexpected transport systems that have yet to be characterized.

Because pumps and antiporters have the potential to change the magnitude and duration of a
Ca2+ signal, knockouts or over-activation were initially expected to reveal dramatic effects
on plant growth and development. Such predictions have yet to be validated. While several
interesting phenotypes have been documented, such as partial male sterility and increased
sensitivities to abiotic stresses [40] there have been no reports of a “dramatic” phenotype,
such as a lethal knockout. In contrast, lethal mutations have been reported in animals [41]. It
is not clear if plants have more gene redundancies or alternative efflux systems, or if plants
are less reliant on using efflux systems to shape specific Ca2+ signatures for essential
developmental events (i.e., plants might use Ca2+ switches more than Ca2+ signatures).

In plants, genetic evidence that the information content of a Ca2+ signal can be controlled by
a Ca2+ efflux system has recently emerged from three studies. Knockout of PCA1, which
encodes a vacuolar Ca2+ pump in the moss Physcomitrella patens, increases the magnitude
and duration of a NaCl-triggered Ca2+ signal and decreases NaCl tolerance of the organism
[42]. Secondly, antisense suppression of the NbCA1-encoded endomembrane Ca2+ pump in
tobacco increased the magnitude and duration of a Ca2+ signal triggered by fungal or viral
pathogens, or the cryptogein elicitor, and accelerated pathogen-triggered programmed cell
death [43]. The third recent example comes from studying a double knockout of aca4 and
11, the two vacuolar Ca2+ pumps in Arabidopsis [44]. Knockout plants showed a high
frequency of hypersensitive-like lesions (i.e., lesion mimic mutant). Lesions were dependent
on salicylic acid (SA), whose production was previously shown to be regulated by Ca2+

signals [45,46]. The vacuoles of aca4/11 mesophyll cells in which lesions originate were
shown to have normal Ca2+ levels, indicating that other transporters maintain Ca2+ loading
levels [47] and that lesions result from an altered Ca2+ signal rather than vacuolar Ca2+

deficiency. Ca2+ imaging experiments in the aca4/11 double mutant are needed to assess the
signal-shaping roles of these pumps.

It is important to note that phenotypes associated with Ca2+ efflux systems can have two
different mechanistic origins; one by changing the dynamics of a Ca2+ transient, the other by
changing the Ca2+ levels in a specific compartment (i.e. “Ca2+ nutrition”). In considering
Ca2+ nutrition, increased or decreased loading of Ca2+ into a specific compartment might
alter biochemical reactions or macromolecular interactions, and thereby disrupt processes
such as vesicle trafficking or cell wall biogenesis [48,49]. Thus, changes in Ca2+ nutrition
could indirectly cause many phenotypes, even in situations where Ca2+ imaging provides
exciting evidence for an altered Ca2+ signature (e.g., as imaged in cells deficient in PCA1
and NbCA1). Thus, delineating the actual cause of a phenotype in an efflux mutant will
always be very difficult.

Together, the death promoting phenotypes associated with reduced activities of PCA1,
NbCA1, and ACA4/11 provide strong support for a model in which endomembrane Ca2+

pumps can function to dampen the magnitude and duration a Ca2+ signal (Figure 1). In the
absence of these specific pumps, it appears that a Ca2+ transient can morph into a “cell-death
Ca2+ signature”. An interesting question is why don’t other Ca2+ efflux pathways
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compensate for a missing pump? We offer two answers for consideration. First, location
might be critical. Many Ca2+ signals are thought to be highly localized. Thus, a signal
emanating from the vacuole might be too far away to be quickly sequestered by efflux
systems associated with the ER (or vice versa). Second, in specific cell types under specific
conditions, other efflux systems might be down-regulated, thereby blocking their ability to
dampen the rise of a cell death Ca2+ signature. It is noteworthy that ACA and CAXs have
known autoinhibitors [37,50], and are therefore subject to regulation that can decrease their
transport activities under certain situations.

The Future – The Genesis of Switches and Signatures
While deficiencies in identified efflux pathways appear to potentiate the emergence of a
Ca2+ cell death signature, the influx pathways that initiate those signals are yet to be
defined. They could be among the above discussed transporters or among the additional
Ca2+ pathways still to be discovered either through finding new candidates, new properties
of proteins better known for other functions, or functions at other cellular membranes. For
example, the AtSKOR and OsHKT2;4 transporters are known more as K+ transporters but
they also have measureable Ca2+ permeability [51,52] as do the multifunctional, membrane
associated annexins [53]. GLR channels may have important functions not only at the
plasma membrane [54], and TPC1 may not be restricted to the tonoplast [55,56]. Identifying
the various contributors to Ca2+ circuits and their localizations is necessary but the desired
level of understanding will require learning how they are regulated to generate information-
rich Ca2+ signatures, or simple Ca2+ switches.
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Highlights

• Heterologous expression and in planta mutant data best define a transport
function

• Each Ca2+ influx candidate requires more experimental testing

• Regulation of influx and efflux pathways control Ca2+ transients

• Endomembrane Ca2+ -pumps can function to suppress a Ca2+ cell death
signature
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Figure 1.
Ca2+ circuits are created with different membrane systems by the coordinated regulation of
influx and efflux pathways (top). Evidence indicates that a loss of specific endomembrane
efflux pathways can result in a greater magnitude and prolonged duration of a Ca2+

signature that correlates with triggering cell death (bottom). Not indicated in the figure is the
role of Ca2+ buffering, which can affect flux rates and magnitudes [57].
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