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1. Mn essentiality and toxicity

Mn is an essential ubiquitous trace element required for normal growth, development and
cellular homeostasis [1]. Specifically, Mn is important in bone formation, fat and
carbohydrate metabolism, blood sugar regulation, and calcium absorption. In humans and
animals, Mn functions as a required cofactor of several enzymes necessary for neuronal and
glial cell function, as well as enzymes involved in neurotransmitter synthesis and
metabolism [2, 3, 4]. Furthermore, in vitro data has implicated Mn in the induction of
stellate process formation by astrocytes [5]. Mn exists in various chemical forms including
oxidation states (MnZ*, Mn3*, Mn** Mn®*, Mn’"), salts (sulfate and gluconate), and
chelates (aspartate, fumarate, succinate). The versatile chemical properties of Mn have
enabled its industrial usage in making glass and ceramics, adhesives, welding, paint,
gasoline anti-knock additives (methylcyclopentadienyl manganese tricarbonyl (MMT), and
many others. While uncommon, Mn deficiency can contribute to birth defects, impaired
fertility, bone malformation, weakness, and enhanced susceptibility to seizures [6, 7]. The
routes of Mn exposure are mainly through dietary intake, dermal absorption, and inhalation.
Moreover, Mn in the diet is found mostly in whole grains, nuts, and seeds, tea, legumes,
pineapple, and beans. Despite its essential role in multiple metabolic functions, excessive
Mn exposure can accumulate in the brain and has been associated with dysfunction of the
basal ganglia system that causes a severe neurological disorder similar to PD [8].

Mn levels in brain tissue average approximately 1-2 ug/g dry weight. The concentration of
Mn in the brain varies across brain regions under excessive exposures. Importantly, the
highest Mn levels are found in the globus pallidus in humans and in the hypothalamus in rats
[9, 10]. Excessive and prolonged exposure to Mn resulting from occupations such as
welding and mining, inhalation of combustion products from the anti-knock agent in fuel
(MMT) and highly concentrated Mn concentrations in ground/well water leads to Mn
accumulation in the dopamine-rich regions of the basal ganglia. In fact, spectroscopy in rats
has demonstrated that mitochondria in the basal ganglia accumulate the highest amount of
Mn following exposure [11, 12]. This causes a clinical disorder referred to as manganism
that is characterized by a set of extrapyramidal symptoms resembling idiopathic Parkinson’s
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disease (IPD) including anorexia, apathy, and muscle and joint pain. Shortly after the onset
of these symptoms, patients also exhibit memory loss, compulsive behavior, visual
impairment, illusions and delusions, and disorientation, which is clinically referred to as
locura manganica, or manganese madness [13]. Mn overload affects two vital organs, the
brain and lungs; the latter results from inhalation [14, 15]. Elevated Mn levels in the brain
have been associated with impairment in iron homeostasis, excitotoxicity, mitochondrial
dysfunction, oxidative stress, induction of protein aggregation, and alteration in the
homeostatic conditions of other divalent metals that share similar transporter systems with
Mn. Although the relationship between increased Mn levels and its disruptive effects on the
neurochemistry of neurotransmitters has been debated, elevated Mn has been suggested to
alter concentrations of y-aminobutyric acid (GABA), dopamine, and glutamate
neurotransmitters in the brain [7, 16].

la. Mn biology and tissue homeostasis

Although copper and magnesium can substitute for Mn as a cofactor for some enzymes, a
subset of enzymes with roles in neuron and/or glial function only in the presence of Mn.
These discrete Mn-binding proteins (manganoproteins) include glutamine synthetase,
superoxide dismutase 2 (SOD2), arginase, pyruvate decarboxylase, and serine/threonine
phosphatase [10, 17, 18].

Glutamine synthetase (GS), the most abundant manganoprotein, is predominantly expressed
in astrocytes, where it converts glutamate to glutamine. Because GS contains four Mn ions
per octamer [19], Mn has been proposed to regulate GS activity. In fact, insufficient
manganese has been proposed to increase glutamate trafficking, glutamatergic signaling, and
excitotoxicity [20]. Furthermore, it has been proposed that the increased susceptibility to
seizures observed in individuals with Mn deficiency may be due in part to diminished GS
levels and/or activity [21]. SOD2 is a mitochondrial enzyme that detoxifies superoxide
anions through the formation of hydrogen peroxide (H,0,). Although the concentration of
Mn within neurons is low (<10~° M), their high mitochondrial energy demands is correlated
with a propensity of increased SOD2 in neurons compared to glia [9, 14]. Furthermore, loss
of SOD2 activity increases the susceptibility to mitochondrial inhibitor induced toxicity and
causes oxidative stress [22].

Arginase regulates elimination of ammonia from the body by converting L-arginine,
synthesized from ammonia, to L-ornithine and urea as part of the urea cycle. Moreover, in
the brain, L-arginine is converted to nitric oxide by neuronal nitric oxide synthetase. Proper
regulation of arginase promotes neuronal survival by impairing nitric oxide signaling [23,
24]. Pyruvate carboxylase is an essential enzyme required for glucose metabolism that
interacts with Mn to generate oxaloacetate, a precursor of the tricarboxylic acid (TCA) cycle
[25]. Interestingly, in the brain, pyruvate carboxylase is predominantly expressed in
astrocytes [26, 27]. Protein phosphatase 1 is essential for glycogen metabolism, cell
progression, regulation synthesis and release of neurotrophins, which promote neuronal
survival, and synaptic membrane receptors and channels [28].

Intricate regulation of Mn absorption and tissue specific accumulation is crucial for it to
properly regulate these enzymes, so understanding Mn’s essential roles and toxicity in the
brain requires knowledge of its regulation in the periphery. Three major factors have been
postulated to modulate plasma Mn levels. First, given that the main source of Mn is diet,
tight regulation of gastrointestinal absorption of Mn is crucial. Second, following Mn
absorption and a concomitant increase in plasma Mn levels, transport of Mn to target organs,
including the liver, is necessary to prevent Mn-induced toxicity in the periphery. Finally,
although the liver detoxifies substances, Mn must be further eliminated from the plasma via
shuttling to bile [14]. The absorption of Mn by the gastrointestinal tract is highly dependent
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on the quantity of ingested Mn and net accumulated levels in the plasma. In vivo
experiments in mice and rats have defined the range (1-3.5%) of GI absorption of Mn [29,
30]. While Mn is transported by simple diffusion in the large intestine, Mn is absorbed by
active transport in the small intestine [14]. Mn excretion into bile is likely active as well
because it depends on concentration gradients [31].

A plethora of plasma proteins or ligands have been implicated as specific Mn carrier
proteins, including transglutaminase, beta;-globulin, album, and transferrin [32, 33]. In fact,
approximately 80% of plasma Mn is bound to beta;-globulin [32]. Despite the
demonstration that Mn preferentially binds to albumin in the plasma of both rabbits and
humans, emerging evidence has provided evidence for weaker binding of Mn to albumin
compared to Cd and Zn [34, 35].

Intracellular Mn2* is sequestered in the mitochondria of the brain and liver via the Ca2*
uniporter [36, 37]. Mitochondria are the primary pool of Mn in the cell, however, nuclei
have also been implied (remains debatable) to preferentially accumulate this metal [26, 38,
39]. The efflux of mitochondrial Mn2* is mediated preferentially through an active but slow
Na*-independent mechanism; a Na*-dependent mechanism also contributes minimally
(reviewed in [10]). This slow Mn efflux has been suggested to account for the net
accumulation of Mn in mitochondria. Nevertheless, the cytoplasmic Fe2* exporter,
ferroportin-1, has been reported to transport Mn. Interestingly, ferroportin-1 surface
localization and protein expression is perturbed following Mn exposure [40].

1b. Mn transporters in the brain

Mn can cross the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB)
through several carriers and in different oxidation states. Given the essential physiological
functions of Mn and the neurotoxicity associated with Mn overload, Mn absorption,
transport, and tissue levels are stringently regulated. Under normal physiological conditions,
Mn is efficiently transported across the blood-brain barrier (BBB) in both the developing
fetus and adults [14, 41]. Although Mn transport across the BBB has been actively
investigated, which transporter systems are primarily responsible have not been conclusively
determined. However, over the past three decades, several Mn transporter systems have been
characterized, including active and facilitated diffusion modes of Mn transport [42, 43, 44].
Emerging reports have indicated that Mn can be transported via the divalent metal
transporter 1 (DMT1), the transferrin (Tf) receptor (TfR) that mediates trivalent Fe uptake,
the divalent metal/bicarbonate ion symporters ZIP8 and ZIP14, various calcium channels,
the solute carrier-39 (SLC39) family of zinc transporters, park9/ATP13Az2, the magnesium
transporter hip14 and the transient receptor potential melastatin 7 (TRPM7) channels/
transporters. While the tissue-specific expression of each of the aforementioned Mn
transporters is yet to be determined, it is likely that optimal tissue Mn levels are maintained
through the involvement of all the above and other unknown Mn transporters. In addition,
other cellular processes may regulate the activity of the above transporters in response to Mn
deficiency or overload. Of all the above listed polyvalent transporters, DMT1 and TR are
the most extensively documented [44]. Interestingly, a small fraction of plasma Mn is bound
to transferrin (Tf), an iron-binding protein, while approximately 80% of plasma Mn is
associated with albumin and beta;-globulin[32].

The divalent metal transporter 1 (DMT1) is a member of the family of natural resistance-
associated macrophage proteins (NRAMP) and crucial for the maintenance of essential
metal homeostasis in the brain [45, 46, 47]. It is best known for its ability to regulate Fe
homeostasis in the gastrointestinal lumen [47]. DMT1 is also known as the divalent cation
transporter (DCT1) due to its ability to competently transport divalent metals including
Zn2*, Mn2* Co?*, Cd?*, Cu?*, Ni2*, Pb%*, and Fe2* across the plasma membrane into the
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cytosol [45, 48]. Both alternative splice isoforms of DMT1 are predominantly localized at
the plasma membrane; however, one also localizes to late endosomes and lysosomes while
the other localizes to early endosomes [49]. Because only one isoform contains an iron-
response element (IRE), subcellular localization depends on Fe concentration [10, 46].. The
relative high affinity of DMT1 for Mn has been well established both in vivo and in vitro.
Specifically, mutations in the DMT1 gene of Belgrade rats and microcytic anemia mice
result in significant decreases in Mn and Fe tissue levels.[50, 51, 52] Furthermore, magnetic
resonance imaging (MRI) in a recent study demonstrated the consistency of the cross-BBB
transport mechanism(s) of Mn and Fe, suggesting that they are shared [53]. Finally, DMT1-
mediated metal transport across rat brain endothelial cells in culture has been reported to be
pH, temperature, and Fe-dependent [54, 55].

The TfR is the major cellular receptor for Tf-bound Fe, but because Tf can also bind
trivalent Mn, TfR can also mediate Mn transport. Once Mn3* is internalized through the
endocytic pathway, it is reduced to Mn2* and transported through DMT1 to the cytosol. Mn
binding to Tf is time-dependent and Tf receptors are also present on the surface of cerebral
capillaries [44, 56]. Additionally, the TfR is an active transporter that is pH and Fe-
dependent [56]. Both in vivo and in vitro studies have reported that Mn is efficiently
transported via the TfR. For example, a spontaneous mutation in a murine gene linked to the
TfR, referred to as hypotransferrinemic, results in a drastic serum TfR deficiency, impairs
Mn transport, and disrupts Fe deposition [57, 58]. Interestingly, autioradiography reports
have indicated that the TfR is generally localized in gray matter, but not the Fe-abundant
white matter tracts in humans and rodents [59, 60, 61].

The zinc- interacting protein 8 (ZIP8) and 14 (ZI1P14) proteins are divalent metal/
bicarbonate ion symporters known to transport Mn, Zn, and Cd under normal conditions [62,
63]. ZIP8 and ZIP14 are members of the SLC39 family of genes [63, 64] that are
glycosylated and expressed on the apical surface of brain capillaries. Mn uptake through
ZIP8 or Zip14 is driven by extracellular carbonate (HCO3™). The expression of Zip8 and
Zip14 in the brain is lower than that in the liver, duodenum, and testis [65]. In addition,
voltage-gated Ca2* channels, including L and P-type channels [66], such as ligand-gated
Ca?* channels; store-operated Ca2* channels (SOCCs) [67], and the ionotropic glutamate
receptor Ca2* channels [68] have been implicated in Mn transport across the BBB.

Over the past decade, there has been increasing interest in the exploration and identification
of novel candidate Mn transporters, including Hip14 and the product of the park9 gene.
Emerging experimental data has indicated that huntingtin-interacting protein 14 and 14L
(Hip14, Hip14L) mediates transport of Mn?* and other divalent metals (Mg?*, Sr2*, Ni2*,
Ca?*, Ba%*, Zn?*) across cell membranes [69, 70]. Hip14 is the mammalian ortholog of the
ankyrin repeat protein 1 (Akrlp) that is primarily expressed in neurons of the brain. Hip14 is
involved in the palmitoylation of several neuronal proteins including huntingtin (HTT) [49].
In addition, it is required for endo- and exocytosis, as well as targeting of cysteine string
protein (CSP) and synaptosomal-associated protein 25 (SNAP25) to the synapse [71, 72].
Hipl4 is predominantly expressed in the presynaptic terminal, Golgi apparatus, and
vesicular structures localized in the axon, dendrites, and soma of neurons [73]. Biochemical
studies including yeast-two-hybrid screens have demonstrated that the interaction between
Hipl4 and HTT is inversely correlated with the poly-Q length in the HTT protein [72].

Interestingly, Gitler and colleagues have recently reported that the park9 gene responsible
for early-onset Parkinsonism also transports Mn [70]. The park9 gene encodes a putative P-
type transmembrane ATPase (ATP13A2) protein. Although the exact function of park9 is
unknown, it is generally thought to be a shuttle for cations, including Mn, across the cell.
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Biochemical studies have demonstrated that the highest and lowest park9 mRNA levels are
localized within the substantia nigra and cerebellum, respectively [74].

Although Mn inhibits the choline transporter at the BBB, it has been suggested that the
choline transporter may mediate Mn transport during periods of high throughput. In
addition, the choline transporter has a higher affinity for Mn compared to the other metals
(Cd2* and AI3*) that it transports [75, 76, 77]. Mn transport across the choline transporter is
sodium-independent, carrier-mediated, and saturable [56].

TRPM?7 is ubiquitously expressed in vertebrates and functions as an active Ca2* selective
transporter and a serine/threonine protein kinase. Furthermore, the kinase activity is
important for its metal transport function. Specifically, the transporter operates by regulating
intracellular Ca%* levels and Mg2* homeostasis through the creation of an inward current,
thus contributing to the establishment of a cellular membrane potential. The relative
permeability of cations through TRPM?7 has been reported to be as follows: Zn2*,
Ni2*>Ba2*, Co?*> Mg2*> Mn2*> Sr2*> Cd2*> Ca2*. Physiological levels of Mg2* and Ca%*
are necessary for maintaining the permeability of TRPM7 to Mn2*, Co2*, and Ni2* [56].

The homomeric purinoreceptors, including P2X and P2Y, have been suggested to participate
in Mn transport. These receptors are ATP-dependent and ubiquitously expressed on
endothelial cells [78, 79, 80]. Purinoreceptors have a relatively lower affinity for Mn than
for the other divalent metals they transport (Ca> Mg> Ba> Mn) [56]. Finally, the citrate
transporter has also been implicated in Mn transport across the BBB [81].

1c. Methods for detecting Mn in biological specimens

Over the past two decades, several analytical methods have been developed for detecting
Mn levels and monitoring Mn homeostasis in biological samples. Most methods require
digestion of all organic matrix prior to analysis, a recently developed method has
successfully measured trace concentrations of metals without sample digestion [82]. In older
methods, the biological sample type determines the method of digestion to be used. For
example, blood or saliva may be digested by an ion exchange resin while tissue samples
would require acid (nitric or sulfuric) digestion. Regardless of the sample preparation
method, exogenous Mn can contaminate biological samples and affect the accuracy of
measurements, especially if Mn levels are low. The current methods used for measuring Mn
levels in biological specimens include atomic absorption spectroscopy (AAS), atomic
emission spectroscopy (AES), inductively coupled plasma-atomic emission spectrometry
(ICP-AES) and mass spectrometry (ICP-MS), neutron activation analysis, x-ray fluorimetry,
spectrophotometry, and radioactive trace assays.

AAS and ICP-MS are the most common methods used for measuring Mn levels in
biological samples. AAS analysis requires aspiration of the sample into a flame or graphite
furnace (GFAAS), where a photoelectric detector measures levels of elements. GFAAS is
most used for the determination of very low analyte levels in solid samples [83]. ICP-MS
and ICP-AES are similarly sensitive methods for measuring levels of multiple elements,
including Mn, in both liquid and solid biological specimens. In fact, ICP-AES and ICP-MS
can often measure analytes at the part per trillion levels [84].. Both types of samples require
manipulation prior to measurement: while measurements of analytes in solid samples require
a laser ablation system, liquid samples are introduced into the ICP by a nebulizer for analyte
(Mn) measurements. In contrast, neutron activation analysis minimizes potential
contamination of biological Mn levels through minimal sample handling and no reagent
usage. Furthermore, neutron activation analysis also has a low detection limit; it is capable
of accurate detection of analyte concentrations as low as 4ng/g [83]. However, none of the
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above Mn detection methods can distinguish between different Mn compounds or oxidation
states.

In spite of the several advantages that these Mn detection techniques provide, for example,
multi-elemental analysis, excellent specificity, extremely high sensitivity and limited
chemical interference, their expense and duration makes them unfeasible for assessing Mn
transport Kinetics on a large scale.. A less expensive, more rapid quantitative approach has
recently been developed in which fura-2 is loaded into living cells to assess intracellular
metal ion concentrations by rapid and time-dependent quenching of fura-2 fluorescence [48,
85, 86, 87, 88, 89]. This method, still has a very low throughput, prohibiting
pharmacological and toxicological concentration-response curve experiments and other
experimental approaches requiring multiple samples to be analyzed. However, a newer
approach, the cellular fura-2 Mn extraction assay (CFMEA), enables quantitative
measurements of extracted Mn levels in multiwell plate format [90, 91]

2. An overview of the role for Mn and other metals in neurodegeneration

In the past decade, there has been a growing interest in understanding the metabolism of
neurotoxic metals and their influence on various neurodegenerative diseases, including
manganism, Wilson’s disease (WD), PD, and Alzheimer’s disease (AD). These metals (see
below) likely also contribute to Huntington’s disease (HD), though fewer studies have
investigated the link. Occupational and environmental exposures (see section 1) to
neurotoxic metals, including Mn2*, Hg2*, Cu?*, Zn?*, As2*, Cr2*, Pb2*, and AI3* have been
associated with neurodegeneration and modulation of the age of disease onset and severity
in neurodegenerative diseases. The brain is capable of efficiently regulating these metals
under physiological conditions; however, excessive exposure can cause them to accumulate
in the brain. The distribution of metals throughout the brain is not uniform, and
accumulation in specific brain regions reflects neurotoxicity; for example, Mn accumulation
and neurotoxicity in the globus pallidus results in manganism. Alterations in metal
homeostasis have been suggested to cause neurodegeneration via association of metals with
proteins and subsequent induction of aggregate formation. In addition, metals can cause
neurodegeneration through a vicious cycle by disrupting mitochondrial function, which
depletes ATP, induces ROS production, and ultimately causes cell death by apoptotic and/or
necrotic mechanisms.

Acute exposure of a transgenic C. elegans model of PD to Mn has recently been reported to
result in degeneration of dopaminergic neurons [92]. Experimental studies in PD
postmortem brain tissues have found strong evidence for a link between oxidative stress and
PD, specifically, increased Fe levels, markers of oxidative stress and lipid peroxidation in
the substantia nigra. Interestingly, pharmacological chelation of elevated Fe levels in an
MPTP-induced neurotoxicity model of PD prevents and delays degeneration of midbrain
dopaminergic neurons [93]. These studies indicate the potential neurotoxic contributions of
Fe and Mn in PD neuropathology. On the other hand, Zn has been proposed to serve as a
cofactor for several enzymes and be involved in normal neurological function because it is
present at significant levels (10 uM) in the brain [94]. While some brain Zn is associated
with proteins, the neocortex and hippocampus possess a substantial amount of chelatable Zn
[94, 95, 96, 97]. The defined physiological functions of Zn are currently unclear, but it has
been suggested to help stabilize glutamate-containing vesicles at the synapse of secretory
cells [98, 99]. In addition, in vitro experimental studies have demonstrated that Zn attenuates
NMDA-induced toxicity [100]. However, intracerebroventricular administration of Zn in
rats causes epileptic seizure-induced hippocampal neurodegeneration [101].
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In fact, other studies have also shown that Mn and other metals (e.g. Cu, Al, Zn) can interact
and promote amyloid fibrillogenesis and aggregation of proteins such as prion protein (PrP)
and a-synuclein [102]. These proteins bind metals, which contributes to their altered
conformational state, solubility, and aggregation [103, 104, 105, 106, 107]. However, in
vitro analysis of PrP aggregates has demonstrated that Mn can promote aggregation
independent of the PrP metal binding site [106]. In AD, Cu has been shown to bind Ap with
high affinity and modulate its conformational state and peptide length [108, 109]. Other in
vitro studies have demonstrated that Ap interacts with Fe and Zn to promote
amyloidogenesis. Interestingly, these findings have been corroborated in AD postmortem
brains that show significantly elevated Fe and Zn in the neocortex and amyloid plaque
deposits [109]. All these studies indicate that metal interactions with PrP, a-synuclein, and
AP proteins can cause cell death by inducing the formation of aberrant and toxic aggregates
as well as activating redox cycling via Fenton and Haber-Weiss reactions, which depletes
production of cellular antioxidants, including glutathione, thus increasing levels of ROS
(HO., O,.7, or H,0,). The generation of these highly reactive species can cause oxidative
stress that damages lipids, proteins, and DNA and further deplete ATP to cause cell death.
These pathophysiological mechanisms, including excitotoxicity, oxidative stress, protein
aggregation, mitochondrial dysfunction, and altered metal homeostasis, are strikingly similar
to those underlying most common neurodegenerative diseases, including PD, AD, and HD.

3. Manganese exposure and Parkinson’s disease

3a. Mangansim vs. PD

Manganism was first described in 1837 by Couper [110], who observed five patients
working in an ore-crushing facility who presented with muscle weakness, bent posture,
whispering speech, limb tremor and salivation (see section 1) [111]. Manganism’s
psychological symptoms occur early during intoxication and are characterized by
hallucinations, psychoses and a myriad of behavioral disturbances. Later, motor deficits
develop, encompassing the extrapyramidal system: gait dysfunction with a propensity to fall
backward, postural instability, bradykinesia, rigidity, micrographia, mask-like facial
expression and speech disturbances [111]. Unlike the resting tremor characteristic of PD,
manganism features less frequent and kinetic tremor, if tremor is present at all. Exposure to
high Mn levels may also causes dystonias characterized by plantar flexion of the foot, which
causes a “cock-walk,” and facial grimacing. Noticeably, the symptoms of Mn intoxication,
once established, usually become progressive and irreversible, reflecting permanent damage
of neurologic structures.

Though generally described as toxicity to the basal ganglia, manganism is known to affect
other CNS region, such as the cortex and hypothalamus [112]. Human manganism at the
morphological level is characterized by neuronal loss and reactive gliosis in the globus
pallidus and substantia nigra pars reticulata (SNpr) without Lewy bodies, the intraneuronal
protein aggregates that distinguish PD[112]. Though rarely reported, damage to the striatum
(caudate nucleus and putamen) and subthalamic nucleus may occur, while the substantia
nigra pars compacta (SNpc) [113] is less likely to be affected. In contrast, idiopathic PD is
predominantly characterized by neuronal loss in the SNpc[114].

3b. Human exposure to Mn and relationship to PD

A recent editorial [116] proposed that radiotracer imaging techniques should be used to
investigate the integrity of the dopaminergic system in asymptomatic workers exposed to
Mn and highlights the need to assess motor signs in addition to cognitive and behavioral
symptoms. PET with [18F]JFDOPA [117] in a small study with very high average blood Mn
in workers and gender imbalance among groups showed that active and asymptomatic
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welders have presynaptic nigrostriatal dopaminergic dysfunction with different anatomical
localization from that generally observed in PD, affecting the caudate more than the
putamen. The welders also had significantly lower Unified Parkinson's Disease Rating
Scalesubsection 3 scores than those of the control group, indicating that their occupation led
to motor impairment.

3c. a-synuclein and Mn-related protein aggregation

Mn, and certain other essential and toxic metals, can directly increase fibril formation by a-
synuclein. Though a-synuclein‘s function is still unclear, these fibrils form the intra-
cytoplasmic inclusions (Lewy bodies and Lewy neurites) found in idiopathic Parkinson’s
disease, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), disorders
classified as synucleinopathies. It is known that both genetic and environmental factors
affect synuclein pathology (reviewed by Eller and Williams, 2011) [40]. Thus, Mn seems to
act jointly with a-synuclein in inducing neuronal cell death [119]. It has also been suggested
that some metals, including Mn, can act synergistically, even at low concentrations, with
certain herbicides to promote a-synuclein misfolding and aggregation [120].

Mn also increases the expression of a-synuclein in vitro [121, 122], and chronic Mn
exposure leads to aggregation of a-synuclein in vivo in neurons and glial cells of - non-
human primates [123]. A genetic interaction between a-synuclein and PARK9 has been
reported in yeast and because PARKSY, which could encode a metal cation transporter, seems
to protect cells from Mn toxicity, this could provide a mechanism linking genetic and
environmental causes of neurodegeneration [70]. Various mechanisms mediated by Mn
could converge on a-synuclein in vivo, potentially linking Mn to Parkinson’s disease [124].
Overexpression of a-synuclein in human cells seems to facilitate Mn-induced neurotoxicity
through activation of the transcription factor NF-«kB, the kinase p38 MAPK, and apoptotic
signalling cascades, thus possibly playing a role in dopaminergic cell death [125]. It has also
been recently suggested that chronic exposure to Mn could decrease striatal dopamine
turnover in transgenic mice expressing human a--synuclein [126].

3d. Mitochondrial dysfunction, Mn and PD

Studies of postmortem PD brains show damage to the SN consistent with generation of
reactive oxygen and nitrogen species (ROS, RNS), characterized by lipid peroxidation,
protein oxidation, 3-nitrotyrosine formation, DNA oxidation, DNA breaks, and a decrease in
the activities of the ROS scavenging enzymes glutathione peroxidase and superoxide
dismutase. ROS and RNS lead to mitochondrial damage, and mitochondrial dysfunction has
been observed in a plethora of PD models, including 1-methyl-4-phenylpyridium ions
(MPP™) [the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)],
rotenone, and 6-OHDA. Mitochondria have been posited to play a central role in the
etiology of both PD and manganism, which has raised several hypotheses, namely, that (1)
dopaminergic neuron mitochondria may be selectively vulnerable to toxins that cause
mitochondrial dysfunction; (2) neurons within the SN produce endogenous mitochondrial
toxin(s); or (3) SN mitochondria inherently possess defects in enzymes, such as complex I,
that cause impaired energy metabolism. It is noteworthy that overexpression of wild type
human a-synuclein in C. elegans increases vulnerability to mitochondrial complex |
inhibitors, such as rotenone, fenperoximate, pyridaben and stigmatellin [127]. a-Synuclein
overexpression has also been recently shown to enhance Mn-induced neurotoxicity via the
NF-kB-mediated pathway [125] in a mesencephalic cell line (MES 23.5). Mn also induces
the overexpression of a-synuclein in PC12 cells via ERK activation [121], and chronic
exposure to Mn decreases striatal dopamine turnover in human a-synuclein transgenic mice
[126].
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PD and Mn-induced neurotoxicity are analogous in numerous mechanistic ways at the
mitochondrial level. Interestingly, the primary storage site for intracellular Mn2* is within
the mitochondria, where it is taken up via the Ca2* uniporter [38, 128]. Both MPP* (a model
toxin for experimental PD) and Mn activate heme oxygenase-1 [129], resulting in oxidative
mitochondrial damage. Mitochondrial impairment, oxidative stress and increased a-
synuclein aggregation have been linked in both Mn exposure and various experimental PD
models [130, 131, 132]. A link between familial PD-related genes and Mn is also well
established; for example, Mn treatment is known to upregulate ER-stress factors, including
parkin. Notably, parkin mutations are associated with early onset PD and the E3 ubiquitin
ligase it encodes is neuroprotective and is up-regulated upon oxidative stress [133]. Parkin
also upregulates PINK1[134], the first protein shown to directly link mitochondrial
abnormalities to a PD phenotype.

4. Mn and HD

Huntington’s disease (HD) is a progressive neurodegenerative disorder that begins late in
life, with a median age of onset at 39, and was first described by George Huntington in
1872. HD is inherited in an autosomal dominant pattern, and its prevalence is approximately
5 in 100,000 worldwide and 1 in 10,000 in the United States [135]. HD is characterized by
motor impairment, cognitive deterioration, emotional disturbance, and psychiatric deficits.
Motor symptoms begin with chorea, postural imbalance, dystonia, incoordination, and
oculomotor apraxia and progress to akinesia at later stages. HD patients also exhibit
emotional disturbances, including depression, temper, apathy, and irritability, and cognitive
deficits in short-term memory, attention, and learning. In fact, it has been reported that the
cognitive and emotional features of HD precede motor symptoms by several years [136,
137]. HD is caused by an expansion in the glutamine-encoding triplet repeat (CAG) of the
normal HTT gene [76, 135, 138]; having more than 36 repeats is pathogenic. Importantly, it
has been reported that there is an inverse correlation between age of disease onset and repeat
length [139]. Furthermore, the longer the CAG repeat length the greater influence repeat
length has over determining age of onset, but for repeat lengths less than 50, only about 44%
of the variation in age of onset is due to repeat length [140]. In contrast, individuals with at
least 60 repeats invariably exhibit symptoms by 20 years of age. Environmental factors (i.e.
non-familial effects) are suspected to contribute to a substantial portion of the residual
variance in age of onset [140].

4a. A role for environmental factors in HD

Over a decade after the identification of the causative HD mutation, there have been
conflicting reports linking complete or incomplete penetrance of HD to triplet repeat
expansion length. Environmental factors have also been suggested to contribute to the
residual variation in age of onset, perhaps even more so than genetic factors [140, 141].
Moreover, GOmez-Esteban and others have implicated environmental influences that modify
age of disease onset and clinical presentation in monozygotic twin studies, as twins have the
same number of repeats [142, 143, 144, 145]. Such twin studies, however, fail to reveal the
nature of the environmental factors involved. Furthermore, animal models of HD have
provided further support for the influence of environmental factors on HD onset and
progression [141, 146].

4b. Links between HTT function and metals

There are several known functional links between the HTT gene and metals. For example,
wildtype HTT is important for iron metabolism and oxidative energy production, as
evidenced by the decreased hemoglobin and altered iron endocytosis in Htt deficient
zebrafish [147]. In fact, Fe and Cu levels are elevated in the corpus striatum of postmortem
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brain tissue from HD patients and animal models [148, 149]. In addition, HD postmortem
brains exhibit alterations in Mn-dependent enzyme activity [3]. Furthermore, animal models
have also demonstrated an increase in microglial ferritin, an intracellular iron storage protein
[150]. Interestingly, Fox and colleagues have reported that wildtype Htt protein interacts
with Cu and decreases its solubility [151]. Finally, the formation of inclusion bodies by
CAG expansion in mutant Htt protein fragments may be associated with iron-dependent
oxidative events [152]. All these studies strongly suggest that wildtype Htt is necessary for
proper metal homoeostasis in the brain.

4c. A role for altered metal homeostasis and toxicity in HD neuropathology

The clinical progression of HD is associated with elevated Fe and Cu in the corpus striatum
[148, 149]. Several Mn-dependent enzymes, including arginase, glutamine synthetase,
pyruvate decarboxylase, and Mn superoxide dismutase 2 (SOD2) are altered in human HD
postmortem brains and toxicant models of HD [3, 22, 153, 154, 155, 156]. Also, data from
animal models of HD have demonstrated a significant increase in microglial ferritin (an
intracellular iron storage protein) levels [150]. Interestingly, Fox et al. have recently
reported that the Htt protein interacts with Cu and decreases the solubility of wildtype Htt
protein [151]. However, the cellular effects of Cu or other metal ions on Htt function,
proteolytic processing to generate N-terminal fragments, aggregation of fragments, and
formation of mutant Htt inclusion bodies remain unknown. Finally, emerging evidence
indicates that inclusion bodies formed by CAG expansion in mutant Htt protein fragments
are associated with iron-dependent oxidative events, opening the possibility that other
redox-reactive metal ions, such as Mn, may influence polyglutamine aggregation [152]. In
essence, several studies have suggested that oxidative stress, mitochondrial dysfunction,
excitotoxicity, and alterations in iron homeostasis are crucial steps in both Mn neurotoxicity
and HD neuropathology. Importantly, chronic exposure to Mn in animal models leads to its
significant accumulation in the striatum, providing an opportunity for Mn and HTT to
interact within the neurons most vulnerable to HD pathology. Given the strong association
between protein aggregation, metal ions and neurodegeneration, it is highly rational to
speculate that metals may modulate HD pathophysiology.

4d. Discovery of a disease-toxicant interaction between HD and Mn exposure

To identify metals that share pathophysiological mechanisms with HD and thus potentially
modify the age of disease onset, severity, and neuropathology, Bowman and colleagues
performed a disease-toxicant screen using a striatal cell line model of HD [157]. They tested
the potential of MnZ*, Fe3*, Cu2*, Zn2*, Ph2*, Cd2*, Co2*, and NiZ* to modify cell survival
in an established knock-in immortalized murine striatal cell line model of HD that expresses
either wildtype HTT (STHdhQ7/Q7) or the polyQ-expanded form of the protein
(STHdhQ11L/Q11Ly 1158, 159, 160, 161, 162, 163, 164]. This study revealed a novel gene-
environment interaction between expression of mutant HTT and Mn. Specifically, acute Mn
exposure of the cultured striatal cells unexpectedly decreased the vulnerability of mutant
expressing cells (STHdhQ11Y/Q111) to Mn cytotoxicity compared to wild-type (STHdhQ7/Q7)
[165]. Furthermore, total intracellular Mn levels following Mn exposure by GFAAS in
STHdhQ7/Q7 and STHAhQLIL/QLLL ce|ls were significantly lower in mutant than wild type
cells. Moreover, the mutant HTT— Mn interaction was corroborated in vivo using the
YAC128Q mouse model of HD; these mice accumulated less Mn in the striatum than wild-
type animals following subcutaneous Mn injections [165, 166]. Furthermore, basal Mn
levels were significantly lower in mutant than wild-type cells [165]., as was Mn uptake as
indicated by CFMEA [91]. Importantly, the discovery of a disease-toxicant interaction
between glutamine-expanded HTT protein and Mn establishes the significance of
deciphering how mutant HTT protein modulates Mn transport and transporter systems to
elicit decreased susceptibility to Mn toxicity.
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5. Mn and Amyotrophic Lateral Sclerosis (ALS)

Mn overload has also been implicated in ALS. This link was first described by Voss, who
documented a Mn smelter who developed occupational manganism and bulbar ALS in
Germany [167]. Subsequently, a Mn miner also affected by occupational manganism and
showing some neurological signs of motor neuron disease was reported in Cuba and
recovered after treatment [168]. ALS also occurred among Mn miners in Guam [169], and
has been observed among welders, as indicated by small and large epidemiological studies
in these workers [170, 171, 172, 173]. ALS arising in a patient affected by liver cirrhosis, a
condition known to imply Mn overload due to impaired biliary excretion of the metal [174],
has also been observed [175]. Mn overload has been reported in pathological and analytical
studies of Guamanian and sporadic ALS cases [176, 177, 178, 179, 180]; the last two studies
also showed an increase in MnSOD levels in motor neurons of affected subjects. Indeed,
environmental data from the Western Pacific endemic foci of ALS, including the Kii
peninsula in Japan, support a role for Mn in its prevalence in these areas [181, 182] and
contribute to what is generally called “the mineral hypothesis” of the ALS/Parkinson’s
Dementia Complex (ALS/PDC).

The alternative “vegetal hypothesis” [183, 184, 185] focuses on cycads, which require high
amounts of Mn [186]. However, high levels of Mn have been recently documented in the
leaves of Guamanian Pandanus tectorius, a plant traditionally used for food, fiber and
medicine [187, 188]. Considering that several plants, particularly species in the Western
Pacific, hyperaccumulate Mn [189, 190], the two major environmental hypotheses on ALS/
PDC could actually converge instead of being mutually exclusive. The recent detection of
genetic variants of two melastatins, TRPM2 and 7, in Guamanian ALS/Parkinson’s
Dementia Complex patients [198, 199, 200] appears interesting, as TRPM?7 is strongly
activated by Mn [201] and Guam is known to be a Mn-rich environment [188]. Therefore,
these melastatins could mediate the accumulation of Mn in Guamanian ALS/PDC patients.

A considerable percentage of ALS patients show T1-weighted hyperintensity at MRI, a
neuroradiological sign compatible with Mn overload [191, 192], along the motor system
[193, 194, 195, 196, 197], but to date, no studies have directly quantified Mn levels in these
brain areas in ALS patients. Further, Mn overload induces apoptosis (reviewed by [202]),
which contributes to motor neuron disease [203].

Finally, ALS [204] has been occasionally reported among subjects affected by Mn-
ephedrone syndrome, a severe motor disorder [205] thought to be mostly due to severe
manganism developing in drug abusers who inject themselves intravenously. While to date
there is not definitive proof that Mn can cause ALS, these observations collectively indicate
that in certain conditions, the metal could cause or trigger motor neuron disease in some
individuals, through a mechanism that could involve members of the melastatin ion channel
family.

6. Mn and prion diseases

A growing body of literature indicates that Mn triggers misfolding and aggregation of the
PrP in vitro, and that animals and/or humans with prion disease show increased Mn levels in
blood, brain and liver [206, 207, 208, 209]. The PrP influences Mn uptake and protects
against Mn-induced oxidative stress and apoptosis [210]. Many observations suggest that
Mn overload could play a role in prion diseases, and the main ones are summarized here.
Mn increases intracellular PrP levels [211] and induces PrP misfolding and proteinase-
resistance [212] at micromolar dosages and physiological pH [104]. High Mn levels are
detected in the central nervous system and blood of humans and animals affected by prion
diseases [206, 207, 209]. Mn also causes the Prionics® test to indicate the presence of

J Trace Elem Med Biol. Author manuscript; available in PMC 2012 December 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bowman et al.

Page 12

transmissible spongiform encephalopathies (TSE)- related PrPSC under UVA irradiation/
reducing conditions [213]. Brain MRI of a Creutzfeldt-Jakob disease (CJD) patient has
detected T1-weighted hyperintensity in the globi pallidi, compatible with Mn overload
[214].

Evidence from responses to treatment also seems to support the Mn/prion disease
connection: the metal chelator EDTA reverses Mn-induced aggregation of the prion protein
in vitro [107] and CDTA, another polyaminocarboxylic chelator with strong affinity for Mn,
significantly increases survival of mice inoculated with the human-derived, mouse-adapted,
prion strain M1000 [215]. The link between Mn and prion disease has been recently
comprehensively reviewed [216]. Additionally, both Mn overload and prion diseases cause
MAPK activation and apoptosis [217, 218]. To date there is no definitive proof that Mn
overload can trigger prion disease, as the observed high Mn levels in organs and tissues of
affected subjects and animals could simply be an epiphenomenon of prion disease and
whether Mn triggers PrP misfolding in vivo is uncertain. Nonetheless, these
multidisciplinary data don not exclude a causal relationship between Mn and prion disease.

Studying other disorders possibly associated with prion disease could prove useful to detect
whether essential metal imbalances, particularly those involving Fe, Cu, and Mn, could be
involved. At least one CJD patient has simultaneously presented with hepatic
encephalopathy, which is known to induce Mn overload (Camacho-Mufioz, Hernandez-
Ramos and Ortega-Martinez De Victoria L 2001) [219]. Similarly, a case of sporadic CJD
recently came to our attention in which the patient was clinically diagnosed with
hemochromatosis (not genetically confirmed) (EHH, unpublished data). Hemochromatosis
involves not only Fe overload, which may be related to prion disease [220], but also excess
Mn [206]. This observation could support a possible relationship between hemochromatosis
and prion disease [206]. Very recently, a decrease in cerebrospinal fluid transferrin has been
suggested to be a diagnostic marker of prion diseases [221], which could also harmonize
with the above hypothesis, as Mn-transferrin is one of the forms in which the metal accesses
the brain (review by Yokel, 2009).

7. Mn and Alzheimer’s disease (AD)

Chronic Mn treatment of macaques [222] induces up-regulation of amyloid-like protein 1,
confirmed by immunohistochemistry, and diffuse amyloid-beta plaques in the frontal cortex,
potentially supporting a link between advanced-stage manganism and dementia, as
occasionally reported [223]. However, this study involved a limited sample and some
variability in age, Mn exposure, dosage, and treatment duration. Also, these animals were
repeatedly anesthetized to allow intravenous injections and neuroradiological studies [224],
raising the possibility that general anesthesia could have altered gene expression. However,
the potential link between Mn and Alzheimer’s disease [123] appears of great interest and
deserves to be investigated further.

8. Future directions

Studies over the past several decades have greatly improved understanding of the health
risks associated with exposure to Mn and its signs and refined understanding of Mn
transport and molecular mechanisms of cellular neurodegeneration. Several Mn transporters
have been identified and the complex interrelationship between Mn and Fe, as well as other
divalent metals, has been elucidated. Neurotoxic mechanisms common to Mn and other
mitochondrial poisons have also been identified. Yet while manganism and PD, as well as
other neurological disorders, display distinct neurological symptoms during their early
phases, their multiple striking similarities at the clinical, physiological, cellular, and
molecular levels suggest that their etiologies share common neurodegenerative pathways. As
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reviewed herein, Mn may play a role in many neurodegenerative disorders, including PD,
HD, AD, ALS, and prion disease, all of which rely on similar intracellular mechanisms
involving oxidative stress, mitochondrial impairment, and protein aggregation. Future
studies will lead to better understanding of the many facets of Mn homeostasis, the interplay
between genes and Mn insult, and the molecular mechanisms of Mn-induced
neurodegeneration.
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Figure 1. Identified and putative Mn transporters

These illustrated Mn transporters have been demonstrated to facilitate Mn trafficking
(uptake, storage, efflux) between the extra- and intra-cellular milieu. Each of these
transporter proteins has also been implicated in the transport of other metals.

J Trace Elem Med Biol. Author manuscript; available in PMC 2012 December 1.

Page 27

Mn**



