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The human brain thalami play essential roles in integrating cognitive, sensory, and motor functions. In multiple sclerosis (MS), quanti-
tative magnetic resonance imaging (QMRI) measurements of the thalami provide important biomarkers of disease progression, but late
development and aging confound the interpretation of data collected from patients over a wide age range. Thalamic tissue volume loss
due to natural aging and its interplay with lesion-driven pathology has not been investigated previously. In this work, we used standard-
ized thalamic volumetry combined with diffusion tensor imaging, T2 relaxometry, and lesion mapping on large cohorts of controls (N =
255, age range = 6.2-69.1 years) and MS patients (N = 109, age range = 20.8-68.5 years) to demonstrate early age- and lesion-

independent thalamic neurodegeneration.

Introduction

The thalamus is composed of complex gray matter (GM) nuclei
interconnected with white matter (WM) fascicles and provides
an essential relay to the cortex, striatum, brainstem, and cerebel-
lum (Behrens et al., 2003). Postmortem studies on multiple scle-
rosis (MS) patients indicated atrophic thalami with reduced
neuronal density (Cifelli et al., 2002; Vercellino et al., 2009). Sev-
eral in vivo studies have shown abnormal thalami in MS using
different quantitative neuroimaging methods, including glucose
metabolism (Blinkenberg et al., 2000; Derache et al., 2006),
voxel-based morphometry (Ceccarelli et al., 2008; Tao et al.,
2009), manual delineation (Houtchens et al., 2007; Rocca et al.,
2010), automated atlas-based volumetry (Ramasamy et al., 2009;
Pellicano et al., 2010), spectroscopy (Cifelli et al., 2002; Geurts et
al., 2006), perfusion (Varga et al., 2009), relaxometry (Niepel et
al., 2006), iron-mapping methods (Ge et al., 2007), diffusion ten-
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sor imaging (DTI) (Tovar-Moll et al., 2009), and DTI-based fiber
tractography (Henry et al., 2009) Thalamic atrophy has been re-
ported in children diagnosed with MS (Mesaros et al., 2008;
Aubert-Broche et al., 2011), clinically isolated syndrome (CIS)
indicative of MS (Henry et al., 2009), and adult phenotypes of
MS, including relapsing-remitting (RRMS), secondary-
progressive (SPMS), and primary progressive MS (Ceccarelli et
al., 2008; Rocca et al., 2010). In MS, reduced thalamic volume and
hypometabolism were implicated in fatigue (Pellicano et al.,
2010), cognitive dysfunction (Derache et al., 2006), and physical
disability (Niepel et al., 2006). Thalamic lesions have been re-
ported to be rare in RRMS using in vivo MRI (Bagnato et al., 2006;
Derache et al., 2006; Tovar-Moll et al., 2009). However, thalamic
lesions have been reported to be more visible using advanced
histopathological methods (Vercellino et al., 2009).

In the absence of visible lesions, thalamic neuronal loss can be
attributed to extrinsic and intrinsic factors (Cifelli et al., 2002;
Henry et al., 2009; Sepulcre et al., 2009; Vercellino et al., 2009).
Extrinsic factors are related to remote lesion activity in connected
regions (e.g., anterograde degeneration in optic nerve and retro-
grade effects of lesions in brainstem, spinal cord, cerebellar, or
cerebral WM). Intrinsic factors relate to the possible effects of
microscopic inflammatory lesions within internuclear thalamic
WM not visible on MRI, which could lead eventually to thalamo-
cortical neuronal loss (Cifelli et al., 2002; Sepulcre et al., 2009;
Vercellino et al., 2009).

The thalamus volume increases in typically developing chil-
dren (Ostby et al., 2009) and decreases in healthy adults (Wal-
hovd et al., 2011). Accounting for the late development and
natural aging of the thalamus is important to help interpret the
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Table 1. Basic demographics, dlinical, MRI-based whole brain lesion volume and normalized thalamic volume information on healthy children, adult controls and the three

patient groups
Controls Patients
Child Adult as RRMS SPMS
N(F) 126 (49) 129 (69) 9(7) 88 (68) 12(7)
(%Females) (39%) (54%) (78%) (77%) (58%)
Age (years)
Mean = SD 122 =38 360 =113 39.2 =147 426*98 547 £ 9.6
Median 13 340 40.2 4.7 56.1
[Range] [6.2-20.7] [20.8-69.1] [20.8-50.6] [22.0-63.1] [354-68.5]
28+£32 M1+92 18.6 = 9.6
13 10.1 18.9
EDSS Not applicable [0.2-8.8] [0.1-36.8] [1.8-33.4]
04*08 1.7+16 42 +13
0 1.5 4
Disease duration (years) Not applicable [0-2] [0-6.5] [2-6]
221+ 274 12.23 = 11.69 2231 %970
134 7.26 26.84
Whole-brain lesion volume (ml) No lesions [0.15-8.16] 0.18-44.79 [6.98-37.27]
NTV 1.09 = 0.1 1.03 = 0.10 1.00 = 0.07 0.92 0.1 0.82 + 0.09

page (CIS ~ RRMS) = 0.32; page (SPMS > RRMS) = 3 X 10 ~%; page (CIS ~ adult controls) = 0.41; p age (RRMS > adult controls) = 1.7 X 10 ~*; pNTV (adult controls > RRMS) = 4.8 X 10 ~ " (—11%); p NTV (CIS > RRMS) =

0.03; p NTV (CIS ~ adult controls) = 0.36; p NTV (healthy children > adults) <1 10 ~*.

findings in MS in particular when MS patients include young
adults. There has been no comprehensive in vivo report across the
healthy human lifespan on the volumetry and microstructural
attributes of the normal-appearing thalami relative to a large co-
hort of young and aging MS patients. The availability of such
baseline data would help model the contributors to the pathogen-
esis of MS.

In this work, we hypothesized that the thalamus proper vol-
ume and its corresponding quantitative magnetic resonance
imaging (QMRI) microstructural attributes can mark the lesion-
driven atrophy relative to a neurodegenerative component that is
independent of age and total brain lesion volume (LV). To ac-
complish this goal, we used standardized and multimodal qMRI
that included transverse magnetization relaxation time (T2) and
DTI (Pierpaoli et al, 1996) combined with lesion-mapping
methods on a large cohort of healthy controls aged 6—69 years to
interpret data collected from a substantial cohort of CIS, RRMS,
and SPMS patients.

Materials and Methods

Study population. The MRI protocol was approved by our Institutional
Review Board. Written informed consent was obtained from all subjects
or their guardians in the case of healthy children. Table 1 provides a
detailed account of the demographics, clinical, and whole-brain lesion
information on all subjects. In brief, we included 109 patients (75%
females; 9 CIS, 88 RRMS, and 12 SPMS), aged 20.8—68.5 years, with a
disease duration (DD) of 0.1-36.8 years and expanded disability status
score (EDSS) from 0 to 6.5. At the time of their imaging session, 47% of
patients were using glatiramer acetate, ~22% an interferon 3 prepara-
tion (73.7% a subcutaneous product), and ~25% were not on any dis-
ease modifying therapy. In addition, 255 healthy controls (46.3%
females) aged 6.2—69.1 years were recruited from the local community
and university staff. The healthy controls included 126 children (39%
girls) aged 6.2-20.7 years and 129 adults (54% women) aged 20.8—69.1
years. The healthy children were recruited as part of ongoing clinical
studies using identical MRI data acquisition protocols. All control sub-
jects were screened for history of head trauma, surgery, chronic illness,
alcohol, and/or drug abuse, neurological illness, and current pregnancy.
None of the controls in this study reported any neurological conditions
and their fluid-attenuated inversion recovery (FLAIR) images were
judged to be normal by a board certified radiologist.

MRI data acquisition. All MRI studies were performed on a 3.0 T
Philips Intera scanner with a dual quasar gradient system with maximum

gradient amplitude of 80 mT/m and an eight channel SENSE-compatible
head coil (Philips Medical Systems). MRI data collected on each subject
included three-dimensional T1-weighted anatomical, two-dimensional
DTI data (Hasan and Narayana, 2003) along with dual fast spin-echo
(FSE) and FLAIR for lesion localization and quantification (Sajja et al.,
2006).

MRI data processing. The T1-weighted and T2-weighted volumes were
masked to remove nonbrain tissues (Smith, 2002). The intracranial vol-
ume (ICV) was computed from the T2-weighted volumes and included
both ventricular and sulcal CSF as described previously (Courchesne et
al., 2000; Hasan et al., 2007). The T1-weighted volumes were prepared
for subsequent processing, segmentation, and anatomical labeling using
FreeSurfer (Fischl et al., 2002; Desikan et al., 2006) (http://surfer.nmr.
mgh.harvard.edu/fswiki/FreeSurferWiki). The application and valida-
tion of FreeSurfer to MS brain tissue segmentation and atlas labeling has
been detailed in several reports (Sailer et al., 2003; Ramasamy et al., 2009;
Derakhshan et al., 2010). The T2 relaxation time (Hasan et al., 2010,
2011a) and diffusion tensor metrics were estimated from each anatomi-
cal region as detailed previously (Walimuni and Hasan, 2011).

Lesion volume segmentation and lesion probability map estimation.
Whole-brain lesion volume (LV) was quantified in the patient groups
using the coregistered dual FSE and FLAIR volumes (Sajja et al., 2006;
Hasan et al., 2009; Tao et al., 2009). After inspection by a trained rater,
the lesion volume maps were saved as binary masks to enable fusion
with other multimodal volumes acquired from the same subject
(Brett et al., 2001). Lesion probability maps were generated as de-
scribed previously (Narayanan et al., 1997; Ceccarelli et al., 2008).
The lesion and gMRI maps were visualized and fused with MRIcroN
(http://www.nitrc.org/projects/mricron/).

Multimodal MRI data fusion. All MRI-derived volumes (i.e., T2, lesion
masks) and DTI-derived volumes (i.e., fractional anisotropy, mean, ra-
dial, and axial diffusivities) were coregistered to the T1-weighted volume.
Lesion masks were used to null out lesions from the atlas-based volume
results (Brett et al., 2001; Ceccarelli et al., 2008; Aubert-Broche et al.,
2011).

Scanner stability and data quality assurance. The MRI data used in this
report were collected over ~5 year span during which scanner stability,
intrascan and interscan reliability, and reproducibility were monitored
closely using a database of water phantom relaxation time and DTI mea-
surements (Hasan, 2007) and brain data acquired serially on healthy
children (Hasan et al., 2011b), healthy adults (Hasan et al., 2007; Hasan
and Frye, 2011), and MS patients (Hasan et al., 2009). The age-expected
volume of regional WM tracts, subcortical GM, and whole-brain tissue
have been reported previously on ~60% of all healthy children and
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Figure 1.

Thalamic Radiations

Spatial distribution of lesions or lesion probability map viewed in standard Montreal Neurological Institute (MNI) space on CIS (A), SPMS (B), and RRMS (C, D). Note the areas of high

lesion frequency (posterior corona radiata, optic radiations) and regions with low lesions (e.g., thalamus proper).

adults included in this report (Hasan et al., 2007, 2010a,b; Hasan and
Frye, 2011). The age-expected global or regional volumetry and their
corresponding microstructural attributes obtained on healthy children,
adults and across the lifespan were consistent with data published by
others (Courchesne et al., 2000; Sowell et al., 2003; Lebel et al., 2008;
Leppert et al., 2009; Ostby et al., 2009; Saito et al., 2009; Kochunov et al.,
2010; Walhovd et al., 2011). The brain MRI data of all controls included
in this report were void of lesions. MS lesions and segmented volume
boundaries were fused and inspected by trained raters.

Statistical analysis. Given several reports on minute gender or hemi-
spheric effects compared to pathology and age (Fjell et al., 2009; Hasan et
al,, 2009; Ostby et al., 2009; Walhovd et al., 2011), we pooled the mea-
surements from both left and right thalami. Since we used data from
healthy children, young and older adults, it was essential to fit the nor-
malized thalami volume as a function of age using a combination of
linear, quadratic, or cubic coefficients (Hasan et al., 2010a,b; Walhovd et
al., 2011). Generalized linear models and goodness-of-fit methods were
used to estimate the best fit parameters and their corresponding standard
errors (Hasan et al., 2010a,b). In patients the correlations between age,
normalized thalamic volumes (NTV), and whole-brain LV, disease du-
ration, and T2 values and DTI-derived metrics were computed using the
Pearson correlation coefficient. Age-adjusted correlations between EDSS
score and all other gMRI variables were computed using the Spearman
coefficient and analysis of covariance. Slopes and rates of change of MRI
metrics with age were compared using the r-to-z Fisher transform. Com-
parisons between group means and medians were performed using
ANOVA (ttest or F = t?) and the Mann—-Whitney U test. All group qMRI
comparison differences and statistical significance were computed vol-
umewise in native data space and were presented in standard space for
visual inspection and fusion with the lesion probability maps. All statis-

tical analyses used MATLAB R12.1 Statistical Toolbox v 3.0 (The
MathWorks).

Results

Population demographics and clinical information

Healthy boys and girls, men, and women or males and females
did not differ in age (p > 0.1). Despite differences in age range,
the CIS and RRMS groups were comparable in mean age (p =
0.3), whereas the SPMS group was older than the RRMS (p =3 X
10 7). On the entire patient population, significant correlations
were noted between age, DD, LV, and EDSS: r(age, EDSS) = 0.34
(p=3X%x10"*),r(age, DD) = 0.57 (p =1 X 10~ '°), r(age, LV) =
0.19 (p = 0.04), (DD, EDSS) = 0.48 (p = 1 X 1077), #(LV,
EDSS) = 0.50 (p = 3 X 10 %), and r(LV, DD) = 0.31 (p = 0.001).

Visualization of lesions in patients
Figure 1 A shows the lesion probability map on the CIS, SPMS (Fig.
1B), and RRMS (Fig. 1C) patients at a selected level highlighting the
anterior, middle, and posterior thalamocortical connections. Figure
1D highlights the regions with the highest lesion frequency in the
RRMS patients such as the posterior corona radiata and optic radi-
ations. In all MS phenotypes, lesions were least frequent in the thal-
amus proper, amygdalae, putamen, and cerebellar GM (Fig. 1).
Widespread loss of tissue volume or macrostructure and
changes in microstructure in the RRMS cohort have been re-
ported previously (Hasan et al., 2011c¢,d). In this report and the
analyses below, we only focused on the normal-appearing thala-
mus proper to help identify markers of tissue injury in MS.
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Representative illustration and analysis of age dependence of thalamic gMRI metrics in all controls and patients using scatter plots and linear regression. A-D, Volume percentage of

the thalamus proper (4) and corresponding T2 relaxation time values (B), fractional anisotropy (X 1000.0) (€), and mean or average diffusivity (D,,) (D). Note the rise in normalized thalamic volume
inhealthy children and consequent rapid decrease in both healthy adults and patients. Note the curvilinear age-expected thalamic volumes in healthy controls. E, F, The variation of thalamic volume
percentage with whole-brain lesion volume-to-ICV percentage (LVp) (E) and the scatter and regression of NTV with EDSS (F).

Group differences in thalamic volumetry

To minimize the effects of brain size variability between males and
females, the ICV was used to normalize the thalamic volume mea-
surements (Courchesne et al., 2000; Cifelli et al., 2002; Pellicano et
al., 2010). The normal-appearing NTV or percentage of total tha-
lamic proper volume-to-ICV (VOLp = VOL/ICV X 100%) was
larger in healthy children than in adult controls (p = 1 X 10 ~*). The
NTV was comparable between adult controls and CIS (p = 0.36).
The NTV was larger in CIS than in RRMS (p = 0.03). The NTV was
larger in adult controls than in RRMS (p = 4.8 X 10 ~"*) and larger
in adult controls than in SPMS (p = 1 X 10 ~'% ~20%).

Thalamic volumetry in healthy children and adults

The NTV increased with age in healthy children: NTV(Age) =
(1.012 = 0.033) + (0.006 = 0.003) X Age (r = 0.205; p = 0.021;
N = 126), whereas in adult controls, the NTV decreased with age:
NTV(Age) = (1.161 % 0.028) — (0.004 = 0.001) X Age (r =
—0.391;p = 4.5 X 10 "% N = 129).

Thalamic gMRI metrics of healthy controls across the lifespan
and MS patients

Figure 2 A—D shows the thalamic volume percentage (Fig. 2A) and
corresponding T2 relaxation time (Fig. 2B), fractional anisotropy
(FA) (Fig. 2C), and average or mean diffusivity (Fig. 2D) as age
advances on controls and patients. Note the rise, plateau, and fall of
gMRI metrics upon pooling all healthy controls reflecting expected
changes in tissue microstructure. In healthy controls, curvilinear age
effects on T2, mean diffusivity, and FA are significant even without
using the children data, which were more crucial to capturing the
age-expected NTV. Compared to adult controls, note that the NTV
is reduced in patients (p < 10 ~'*) along with elevated T2, reduced
FA, and elevated tensor diffusivities.

Thalamic QMRI metrics variation with age, DD, LV, and EDSS
in MS

Table 2 summarizes the correlations of thalamic qMRI metrics in
patients with age [Fig. 2A; NTV(Age in years) = (1.05 = 0.046) —
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Table 2. Correlation coefficient and statistical significance of the average
normal-appearing thalamic qMRI metrics with age, disease duration, whole-brain
LV, and EDSS in the 109 patients

Lv EDSS EDSS-covaried
gMRI Age DDr(p)  r(p) r(p) (age &LV)r(p)
Volp  —0297  —0257  —0.658 —0423 —0.20
(0.002)  (0.007) (1.07x10~™ (5x10°° (0.04)
n 0316 0.285 0.45 0325 0.06
(0.001)  (0.004) (2% 10°° (0.0008) (0.59)
FA 0.076 0.112 0.092 0.045 —0.004
(0.45) (0.26) (0.36) (0.66) (0.97)
MD 0.172 0.150 0.356 0.192 0.06
(0.08) (0.13) (0.0003) (0.05) (0.58)
AD 0.231 0.19% 0433 0.225 0.046
(0.02) (0.048) (6 x 1079 (0.02) (0.65)
RD 0.132 0.117 0.299 0.165 0.06
(0.19) (0.24) (0.002) (0.10) (0.57)

The EDSS adjusted for age and LV provides a means to quantify the direct effects of disease progression without the
confounding effects of natural aging and whole-brain LV. Statistically significant values ( p << 0.05) are in bold. MD,
AD, RD = mean, axial, and radial tensor diffusivities, respectively.

(0.003 = 001) X Age; r = —0.297; p = 0.002], DD [NTV(DD in
years) = (0.962 * 0.016) — (0.004 = 0.001) X DD; r = —0.364;
p =1X 107", LV (Fig. 2E), and EDSS (Fig. 2F). In addition,
Table 2 provides also the EDSS vs NTV correlation upon adjust-
ing for age- and whole-brain lesion volume. Note that the corre-
lation of EDSS with NTV adjusted for age and LV was statistically
significant (r = —0.20; p = 0.04; Fig. 2 F).

Discussion

We presented for the first time in vivo the age-expected thalamic
volumetry, and corresponding T2 relaxation time, and DTI
metrics on a relatively large cohort of MS patients and healthy
controls across the active human lifespan. We also provided
cross-sectional QMRI metrics of the thalami on patients as func-
tion of disease duration, whole-brain lesion volume, and
disability.

A major finding of this report is that thalamic volume loss in
MS patients correlated with disability after adjusting for natural
aging and whole-brain lesion volume. Accounting for age is im-
portant as thalamic volume and corresponding qMRI metrics
also depended on age. The relationship between age and gMRI
metrics is not necessarily constant or linear as commonly as-
sumed. Incorporating large cohorts of healthy controls and pa-
tients enabled the quantification of development and early and
late aging effects on the disease-driven tissue loss.

Our results on the normative thalamic volumetry or macro-
structure across the lifespan consolidate several past and recent
reports (Pieperhoff et al., 2008) on the development (Ostby et al.,
2009) and aging of this important territory using similar methods
applied on multicenter cohorts (Walhovd et al., 2011). The tha-
lamic volume evolution and corresponding microstructural
changes across the lifespan indexed by T2 relaxation time, diffu-
sion anisotropy, and mean diffusivity mark the changes in tha-
lamic connections, subcortical, and cortical domains (Sowell et
al., 2003) that are subserved by this territory (Behrens et al.,
2003).

Our findings in regards to decreased NTV in MS patients
compared with healthy adults consolidate previous reports
(Houtchens et al., 2007; Tao et al., 2009; Pellicano et al., 2010;
Rocca et al., 2010).

Our results on the lesion distribution and in particular mini-
mal thalamic lesions are consistent with several histopathological
(Brownell and Hughes, 1962) and noninvasive neuroimaging
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(Bagnato et al., 2006; Derache et al., 2006; Ceccarelli et al., 2008;
Tovar-Moll et al., 2009; Pellicano et al., 2010) reports. Reduced
thalamic lesion frequency may be explained by the high baseline
or normative arterial perfusion of the thalamus and other deep
gray matter structures such as the putamen (Heiss et al., 2004)
compared to adjacent white matter (Varga et al., 2009).

The elevated thalamic T2 relaxation average values and in-
creased mean diffusivity measurements reflect reduced micro-
structural organization (Beaulieu, 2002) and may be related to
the pathological hallmarks of MS, which include edema, neu-
roaxonal loss, gliosis, and demyelination (Cifelli et al., 2002; Ver-
cellino et al., 2009).

In the absence of visible thalamic lesions triggered by any
injury mechanism, the loss of thalamic macrostructural volume
and microstructural integrity evidenced by increased diffusivity
and increased T2 relaxation time may then be related to its con-
nections to the cortex (Behrens et al., 2003) and other brain re-
gions through white matter pathways (Henry et al., 2009). In our
analyses, we covaried the effects of age and whole-brain lesion
volume, and yet thalamic volume loss predicted disability, hint-
ing at a neurodegenerative element that is not explained by in-
flammatory lesions (Cifelli et al., 2002; Lassmann, 2007; Chard
and Miller, 2009; Antulov et al., 2011).

The normal-appearing or lesion-free thalami volumetry in
MS patients seem to be smaller than controls at all ages (Fig. 2A),
hinting at early neurodegenerative pathology. Extending the MS
population to include younger MS patients would provide addi-
tional clues to the evolution of this challenging disease.

In conclusion, using a multimodal gMRI approach applied to
the thalami and accounting for lesion distribution, late develop-
ment, and natural aging, we were able to demonstrate that MS
pathology has a neurodegenerative component independent
from lesions. Our data on the thalamus should help in the future
design of clinical trials that incorporate patients with wide age
span that include children.
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