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ABSTRACT Recombinant inbred (RI) mouse strains are
extremely useful for gene mapping, especially for establishing
preliminary map positions for new loci. However, the usual
statistical analysis applied to such experiments may lead to er-
roneous conclusions about linkage unless unusually stringent
criteria are adopted for rejecting the null hypothesis. We de-
scribe a Bayesian statistical approach for determining the
probability of linkage when no prior information is available
about the location of the gene to be mapped (the test locus). We
present a table that gives the probability of linkage, the most
likely position of the test locus with respect to a marker locus,
and the interval around the marker locus that has a 95%
chance of containing the test locus, for all possible experimen-
tal results suggesting linkage in sets of up to 40 RI strains.
These results show that for the probability of linkage to be
greater than 95%, the number of RI strains inheriting chro-
mosomes recombinant for the test and marker loci must be
smaller than previously assumed. The formulas derived for RI
strains can be applied, with only minor modifications, to the
analysis of Mendelian backcrosses. Differences between the
Bayesian approach advocated here and the more traditional
analysis of linkage are discussed in detail.

Recombinant inbred (RI) mouse strains are families of inbred
mouse strains derived by inbreeding the progeny of a cross
between two parental strains, designated A and B for conve-
nience. RI strains provide a powerful tool for gene mapping
(refs. 1, 2, and 3, pp. 131-141). If the parental strains carry
different alleles at a locus one wants to map, one may be able
to map the locus simply by determining, for each RI strain,
which parental allele, A or B, it inherits at that locus. A table
of these results is called a strain distribution pattern (SDP).
By comparing the SDP of the new locus to a table of SDPs
for other loci, one determines whether alleles at any other
loci are inherited in a similar fashion. The more closely two
loci are linked, the more likely it is that their SDPs will be
identical or nearly identical.

In using RI strains for linkage analysis, it is common to
find that the SDP for a new locus differs from the SDP for a
previously described locus in a small proportion of the RI
strains. One then wants to know the probability that the test
and marker loci are linked and, more generally, the probabil-
ity that the loci lie within m centimorgans of one another.
These probabilities are not determined in the usual statistical
approach (see ref. 3, pp. 131-141). The usual approach in-
volves calculating the probability of the experimental results
under various hypotheses, such as the null hypothesis that
the loci are not linked. The null hypothesis is commonly re-
jected when results are obtained that are less likely than
0.05. However, this approach does not take into account the
fact that randomly chosen loci are much more likely not to
be linked (i.e., to be on different chromosomes) than to be
linked (on the same chromosome). We show that, because of

the low prior probability of linkage, the null hypothesis
should only be rejected when results are obtained that are
less likely than 0.004, or else loci that are not linked will
frequently be deemed to be linked.

Bayesian statistical analysis (see ref. 4) provides a way of
taking into account prior information about the probability of
linkage in determining the probability of linkage after a set of
experimental results is obtained. This communication de-
scribes a Bayesian approach for analyzing linkage experi-
ments using RI strains. We derive formulas for the probabili-
ty of linkage between test and marker loci, the most likely
distance between them in centimorgans, and the probability
that they are separated by up to m centimorgans, given I
SDP differences in a set of N RI strains. These formulas
were evaluated by computer for all values of I indicating a
high probability of linkage with up to 40 RI strains. The re-
sults are easily generalizable to the analysis of Mendelian
backcrosses. The advantages and disadvantages of the
Bayesian approach are discussed.

METHODS
The numerical evaluation of various integrals and expres-
sions was performed using the computer modeling software
MLAB on a DECsystem 10 computer (Division of Computer
Research and Technology, National Institutes of Health). To
be sure that rounding errors were not leading to significant
inaccuracies, many of the calculations were checked with an
IBM personal computer using software that performs infinite
precision rational arithmetic (Microsoft muMATH symbolic
mathematics package, The Soft Warehouse, Honolulu, HI).

RESULTS
Calculation of the Probability that a Test Locus Is Located

Within m Centimorgans of a Marker Locus from Observations
on a Set of RI Strains. Suppose that in a set of RI strains the
SDPs for a marker locus and a test locus differ for I strains
out of N. If I/N is small, the loci are likely to be linked, but
this result could also arise by chance if the loci were not
linked. The probability that the loci are within m centimor-
gans of one another can be calculated by imagining that one
picks at random a very large number of loci and then deter-
mines, for all those loci whose SDPs have I or fewer differ-
ences from that of the marker locus, what proportion of
these loci are within m centimorgans of the marker locus.
We use the following notation: L, linked; L, not linked; m,

test locus is within m centimorgans of the marker locus; I, I
or fewer SDP differences in N RI strains; P(a), probability of
"a"; P(alb), probability of "a," given "b." Since loci are ei-
ther linked or not linked,

P(I) = P(IIL) P(L) + P(IjE;) P(L). [1]

According to Bayes' theorem (4), the probability that a test

Abbreviations: RI strains, recombinant inbred strains; SDP, strain
distribution pattern.
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locus is within m centimorgans of a marker locus, given I or
fewer SDP differences, is

P(mII) = P(1m) P(m)/P(I). [2]

Similarly, the probability of linkage, given I or fewer SDP
differences, is

P(LII) = P(J1L) P(L)/P(I)

1
1 + P(L) P(1L:)/P(L) P(JL) [3]

To evaluate the terms in formulas 1-3, we assume that be-
fore the experiment is done, nothing is known about the po-
sition of the test locus. In this case it is reasonable to assume
that the probability that the test locus lies in any region of
length d centimorgans equals diT, where T is the total length
of the genome in centimorgans. This gives

P(m) = 2m/T. [4]

(The factor 2 arises because the test locus can be to either
side of the marker locus; for simplicity, we limit ourselves to
situations in which the marker locus does not lie within m
centimorgans of the end of a chromosome.) Similarly, if e is
the length of the chromosome containing the marker locus,

P(L) = e/T. [5]

Since loci are either linked or not linked,

P(L) = 1 - P(L) = 1 - (eT). [6]
If the loci are not linked, the probability that the SDPs

mismatch for J strains and match for N - J strains is

(N) (2)J(2) s, where (7) is the binomial coefficient

N!/J!(N - J)!. Therefore,

P(L)' = I (J )(2) [7]

To calculate P(1m), we determine the probability of I or
fewer SDP differences, given that the test locus is x centi-
morgans from the marker locus, and then integrate over x
from 0 to m centimorgans on both sides of the marker locus.
Let the distance x centimorgans correspond to a frequency
of recombination, c, between the two loci in a single meiosis.
c can be related to x by an empirical mapping function that
takes into account the possibility of multiple recombination
events (ref. 3, p. 107). One such mapping function is the Ko-
sambi mapping function (ref. 3, p. 107):

c(x) = (e2x - e-2x)/(2e2x + 2e-2x). [8]

The recombination frequency, c(x), determines the expected
proportion, R, of SDP differences in a set of RI strains:

R(x) = 4c(x)/[1 + 6c(x)]. [9]

Formula 9 was originally derived by Haldane and Wadding-
ton (5) by directly calculating the probability of recombina-
tion after multiple rounds of brother-sister mating. For loci
separated by x centimorgans, the probability ofJ SDP differ-
ences in N RI strains is (fN)[R(x)]j[1 - R(x)]N-J; the proba-
bility of I or fewer SDP differences is, therefore, 1j1=( )

R(xy[1 - R(x)]N-J. Integrating over x from x = 0 to x = m on
both sides of the marker locus gives the probability of I or
fewer SDP differences, given that the test locus is within m
centimorgans of the marker locus. We need only provide a
normalization factor of 1/2m so that the probability of N or
fewer SDP differences equals 1. This gives

I

P(llm) = I ( )(1/m) [R(x)1[l - R(x)]N-Jdx. [10]

The sum and integral in Eq. 10 occur frequently in the fol-
lowing analysis, so it is convenient to define

Kj(m)=I (7) f [R(x)1j[l - R(x)]N-Jdx. [11]

For computational purposes it is helpful to convert the inte-
gral over x to an integral over R, using dx = dR/4(1 - R)(1 -
2R) from Eqs. 8 and 9. This gives

KKm) = (in) yJ(1 - y)N--J/(l 2y) dy. [12]
4 J=0i

The probability of I or fewer SDP differences given that
the loci are linked, P(JL), is derived in the same way as
P(lm) in Eq. 10, except that the integral is over the entire
chromosome bearing the marker locus. If the marker locus is
X centimorgans from the end of the chromosome, then

P(J1L) = (11e) [KI(X) + KJ(e - X)]. [13]

Computer evaluation ofP(JL) for different values of N, I, 4,
and X shows that its value is not sensitive to changes in X,
provided that X is not close to 0 or e. Thus, for marker loci
that are not close to the ends of chromosomes, some simpli-
fication is obtained without significant loss in accuracy by
choosing X = (/2.

Substituting these expressions for P(m), P(L), P(L),
P(lm), P(JL), and P(IIL) in Eqs. 2 and 3 leads to

P(mlI) =

and

K1(m)

KX(/2) + [(T - )/2N+1] I (7)

1 -1

P(LII) = 1 +
2N+ 'K100/2)

[14]

[15]

The Most Likely Position of the Test Locus with Respect to
the Marker Locus Given I SDP Differences. P(mII) is the
probability that the test locus lies anywhere from 0 to m cen-
timorgans from the marker locus, given I. This can be
thought of as an integral, over x from x = 0 to x = m, of the
infinitesimal probability that the test locus lies between x
and x + dx centimorgans from the marker locus. Therefore,
dP(mlI)/dm is proportional to the probability that the test
locus lies between m and m + dm centimorgans from the
marker locus, given I. By setting d2P(mII)/dm' = 0, one can
show that dP(mlI)/dm is maximal at R(m) = I/N; therefore,
the value of m, designated rz, for which R(m) = I/N, is the
most likely distance between the test and marker loci. This
result is the same as that obtained by another maximal-likeli-
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Table 1. Computed probabilities of linkage

m95 P(LII)
0.484

0.607

0.724

0.819

0.889

0.934

20.3 0.963

11.7 0.979

9.0 0.989

7.6 0.994
33.2 0.955

6.7 0.997
15.3 0.974

6.1 0.998
11.6 0.985

5.6 0.999
9.8 0.991

40.0 0.954

5.1 0.999
8.6 0.995

17.7 0.972

4.8 1.000
7.8 0.997

13.4 0.983

4.5 1.000
7.1 0.999

11.3 0.990
37.2 0.955

4.2 1.000
6.6 0.999

10.0 0.994
18.9 0.972

4.0 1.000
6.2 1.000
9.1 0.997
14.6 0.983

3.8 1.000
5.8 1.000
8.4 0.998

12.5 0.990
32.0 0.958

3.6 1.000
5.5 1.000
7.8 0.999

11.1 0.993
19.3 0.973

N I

27 0 0

1 1.0

2 2.1

3 3.3

4 4.8

28 0 0

1 0.9

2 2.0

3 3.2

4 4.6

5 6.1

29 0 0

1 0.9

2 1.9

3 3.1

4 4.4

5 5.8

30 0 0

1 0.9

2 1.9

3 2.9

4 4.2

5 5.6

31 0 0

1 0.8

2 1.8

3 2.8

4 4.0

5 5.3

6 6.9

32 0 0

1 0.8

2 1.7

3 2.7

4 3.9

5 5.1

6 6.6

33 0 0

1 0.8

2 1.7

3 2.6

4 3.7

5 4.9

6 6.3

7 7.8

34 0 0

1 0.8

2 1.6

3 2.5

4 3.6

5 4.7

6 6.0

7 7.5

N, number of RI strains analyzed; I, number of SDP differences detected; th, most likely distance between the loci; m95, distance in
centimorgans such that the interval extending m95 centimorgans to both sides of the marker locus has a 95% chance of including the test locus;
P(LII), probability that the loci are linked, given I or fewer SDP differences. m95 exists only if P(LII) > 0.95.

hood procedure (ref. 3, p. 137). Formulas 8 and 9 can be used ue of I for which the probability of linkage, given I or fewer

to calculate ti, given I and N (Table 1). SDP differences, is >95%. Substituting T = 1600, an esti-

Maximal Values of I for Which the Probability of Linkage Is mate for the size of the mouse genome in centimorgans (ref.
>95%. Formula 15 can be used to determine the largest val- 3, p. 99), and e = 115, the approximate size of the largest

N I

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0
1

17 0
1

18 0
1

19 0
1
2

20 0
1
2

21 0
1
2

22 0

1
2
3

23 0
1
2
3

24 0
1
2
3

25 0
1
2
3
4

26 0
1
2
3
4

0

0

0

0

0

0

0

0

0

1.7

0

1.6

0

1.5

0

1.4
3.1

0

1.3
2.9

0

1.2
2.8

0

1.2
2.6
4.2

0

1.2
2.5
4.0

0

1.1
2.4
3.9

0

1.1
2.3
3.7
5.3

0

1.0
2.2
3.5
5.0

m95

3.4
5.2
7.3
10.2
15.4

3.3
5.0
6.9
9.4
13.4
28.0

3.2
4.7
6.5
8.8

12.0
19.2

3.0
4.5
6.2
8.3

11.0
15.9

2.9
4.3
5.9
7.8

10.3
14.0
25.3

2.8
4.1
5.7
7.4
9.6

12.7
19.1

2.7
4.0
5.4
7.1
9.1

11.7
16.2
40.8

2.6
3.8
5.2
6.8
8.6

10.9
14.4
23.5

P(LII)

1.000
1.000
0.999
0.996
0.983

1.000
1.000
1.000
0.998
0.990
0.961

1.000
1.000
1.000
0.999
0.994
0.975

1.000
1.000
1.000
0.999
0.996
0.984

1.000
1.000
1.000
1.000
0.998
0.990
0.966

1.000
1.000
1.000
1.000
0.999
0.994
0.978

1.000
1.000
1.000
1.000
0.999
0.996
0.986
0.954

1.000
1.000
1.000
1.000
1.000
0.998
0.991
0.970

N I

35 0
1
2
3
4
5
6
7

36 0
1
2
3
4
5
6
7
8

37 0
1
2
3
4
5
6
7
8

38 0
1
2
3
4
5
6
7
8
9

39 0
1
2
3
4
5
6
7
8
9

40 0
1
2
3
4
5
6
7
8
9

0

0.7
1.6
2.5
3.5
4.6
5.8
7.2

0

0.7
1.5
2.4
3.3
4.4
5.6
6.9
8.4

0

0.7
1.5
2.3
3.2
4.2
5.4
6.6
8.1

0

0.7
1.4
2.2
3.1
4.1
5.2
6.4
7.8
9.3

0

0.7
1.4
2.2
3.0
4.0
5.0
6.2
7.5
8.9

0

0.6
1.4
2.1
2.9
3.9
4.9
6.0
7.2
8.6

m95

2.5
3.7
5.0
6.5
8.2

10.3
13.2
18.9

2.4
3.6
4.8
6.2
7.8
9.8

12.3
16.4
31.4

2.4
3.4
4.6
6.0
7.5
9.3

11.5
14.8
22.3

2.3
3.3
4.5
5.7
7.2
8.8

10.9
13.7
18.6
56.6

2.2
3.2
4.3
5.5
6.9
8.5

10.3
12.8
16.5
27.2

2.2
3.1
4.2
5.3
6.6
8.1

10.0
12.0
15.1
21.3

P(LII)
1.000
1.000
1.000
1.000
1.000
0.999
0.994
0.980

1.000
1.000
1.000
1.000
1.000
0.999
0.996
0.987
0.960

1.000
1.000
1.000
1.000
1.000
1.000
0.998
0.992
0.973

1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.995
0.982
0.950

1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.997
0.988
0.966

1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.998
0.992
0.977

Genetics: Silver and Buckler



1426 Genetics: Silver and Buckler

mouse chromosome (ref. 3, p. 99), we evaluated formula 15
by computer for various values of I and N (Table 1). As ex-
pected, the probability of linkage decreases as the propor-
tion of SDP differences increases. The largest number of
SDP differences for which the probability of linkage is >95%
can be read from Table 1 for different values of N. To save
space, for values of N > 12, we included in Table 1 only
values of I for which the probability of linkage is >95%. The
largest values of I from Table 1 that correspond to a proba-
bility of linkage >95% are smaller than the maximal numbers
of SDP differences calculated by other methods (ref. 3, pp.
131-141). For N < 13, the probability of linkage is <95%
even for I = 0. Thus, the use of fewer than 13 RI strains will
never indicate linkage with >95% certainty. Further, Table 1
shows that for all combinations of I and N for which the
probability of linkage is >95%, the most likely distance be-
tween test and marker loci, Inm, is <9.3 centimorgans. Thus,
only close linkage can be detected with confidence by use of
RI strains.

Calculation of the Interval Around the Marker Locus That
Has a 95% Chance of Containing the Test Locus. We used a
computer to solve Eq. 14 for the value of m, designated M95,
for which P(mII) = 0.95, using T = 1600 and e = 115 (Table
1). These values of m95 form a 95% confidence interval such
that, given I or fewer SDP differences, there is a 95% proba-
bility that the interval extending m95 centimorgans to both
sides of the marker locus contains the test locus.

Application to Analysis of Backcross Data. Formulas 1-3
and 5-7 apply equally well to a backcross, where I is the
number of recombinants in a set ofN backcross individuals.
The conditional probability of I or fewer recombinants, giv-
en that the test locus is within m centimorgans of the marker
locus, becomes (analogous to Eq. 10)

I

P(Ilm) = si (N)(1/m) [c(x)]I[1 - c(x)]N-JdX. [16]

c(x) appears in Eq. 16 instead of R(x) because c(x) is the
expected proportion of backcross individuals carrying chro-
mosomes recombinant for the two loci and is analogous to
R(x), the expected proportion ofRI strains carrying recombi-
nant chromosomes. Substitution of these expressions in Eq.
2 gives the desired formula for P(LII).
Upper Limit for the Probability of Linkage Given I or Fewer

Recombinants in a Backcross or I or Fewer SDP Differences in
a Set of RI Strains. It is useful to have an upper limit for the
probability of linkage that does not require a computer for
evaluation. Formula 3 can be simplified by substituting P(L)
= (IT and P(L) = 1 - e/T and noting that P(lL) s 1. This
gives

P(L I) s 1/[1 + (T - e)(lfe)P(JlL)]. [17]

The probability on the right hand side of Eq. 17, P(JL),
plays a critical role in the usual statistical analysis of back-
crosses and RI strains. P(llL) is the probability of the experi-
mental results given the null hypothesis. This probability
may be calculated approximately from a x2 analysis (see Ap-
pendix and ref. 6). Designating the result Px, we have the
result

P(LII) - 1/[1 + (T - e)(1/e)P]. [18]

Two examples illustrating the use of formula 18 are given in
the Appendix.

DISCUSSION
The major difference between the Bayesian approach used
here and the more traditional analysis of linkage (ref. 3, pp.

33-34) is that the Bayesian approach takes into account that,
when nothing is known to begin with about the position of
the test locus, the prior probability of linkage to any particu-
lar marker locus is small. In the mouse this probability, P(L),
varies from about 0.03 for marker loci on the smallest mouse
chromosome to about 0.07 for marker loci on the largest.
The low prior probability of linkage means that there is a
greater chance of misclassifying nonlinked loci as linked un-
less stricter criteria than usual are adopted for rejecting the
null hypothesis. To see this, note that Eq. 17 may be invert-
ed to give

P(IL) < {[1/P(LII)] - l}l/(T- e) [19]

If we require that P(LII), the probability of linkage given the
experimental results, be >95%, then P(J1T), the probability
of the observed results assuming the null hypothesis, must
be less than (/[19(T - .0], or about 0.001 for marker loci on
the smallest mouse chromosome to about 0.004 for those on
the largest. This contrasts with the cut-off value P(JL) <
0.05 commonly used to reject the null hypothesis.
When RI strains are used to screen for linkage, it may

make sense to consider as potentially linked those loci for
which there is only a moderate probability of linkage. This is
equivalent to choosing a fairly large cut-off for P(lL), such
as 0.05, as the criterion for rejecting the null hypothesis. In
this case, additional experiments would need to be done to
determine which of the possibly linked loci were, in fact,
linked. If no further experiments were planned, then it would
be appropriate to refrain from concluding that linkage exists,
unless the number of SDP differences were sufficiently
small that the probability of linkage were greater than, say,
95% (Table 1).
The Bayesian approach requires an assumption about the

prior likelihood of linkage. In the absence of any informa-
tion, it is reasonable to assume that the test locus has a uni-
form prior probability distribution over the genome. Al-
though uniform prior probability distributions are controver-
sial, their use has been staunchly defended by Bayesian
theorists (7). If the test locus were known to be on a certain
chromosome from analysis of somatic-cell hybrids, then the
formulas described above could be modified by setting P(L)
- 1 and P(T) = 0 for marker loci on this chromosome. On
the other hand, if more detailed information about position
on a particular chromosome were available (e.g., from in situ
hybridization or analysis of a backcross), then a Bayesian
approach would be more difficult to apply because of in-
creased computational complexity.
From a conceptual point of view, it is useful to contrast

the questions posed by the Bayesian approach and the more
traditional statistical analysis of linkage data (ref. 3, pp. 33-
34). The Bayesian approach answers the question "Given
the observed results, what is the probability that the two loci
are separated by up to m centimorgans?" The more tradi-
tional analysis answers the question "If the loci were sepa-
rated by m centimorgans, how unlikely would the observed
results be?" We believe that the answer to the former ques-
tion corresponds more closely to what the experimenter
wants to know.
Both the traditional analysis and the Bayesian approach

lead to 95% confidence intervals for predictions ofmap posi-
tion (Table 1 and ref. 8). The Bayesian confidence interval
answers the question "Given the observed results, what in-
terval around the marker locus has a 95% probability of con-
taining the test locus?" The more traditional confidence in-
terval answers the question "What is the greatest distance
between the test and marker loci for which the probability of
the observed results is still greater than 5%?" It is remark-
able that, for most values ofI and N, these confidence inter-
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vals are reasonably close, despite their very different mean-
ings.
The Bayesian approach is clearly not limited to the analy-

sis of data from RI strains. As indicated above, it can be
applied with very little modification to analysis of a back-
cross. The major limitations in comparison with more tradi-
tional analysis of linkage are greater computational difficulty
when exact results are required and the problem of determin-
ing prior probabilities. However, powerful computational re-
sources are now fairly widespread, and in some situations,
such as when nothing is known about the location of the lo-
cus to be mapped, the prior probability distribution is
straightforward. Since the Bayesian approach takes into ac-
count more information about the experimental situation, we
suggest that it be used more frequently in the statistical anal-
ysis of genetic experiments.

APPENDIX
The following examples illustrate the use of formula 18 and
the more conservative interpretation provided by the Bayes-
ian analysis.
Example 1: Suppose that in a set of 26 RI strains derived

from parental strains A and B, one observes the following
pattern of inheritance of parental alleles at test and marker
loci:

Marker locus
A
B
A
B

Test locus
A
B
B
A

No. of strains
10
11
2
3

If the loci were not linked, one would expect one-fourth of
the strains in each group. Calculating x2 (with Yates correc-
tion; see ref. 6) from these data,

X2 = E(l- 01 _ 2) /E = 7.7.

For 1 degree of freedom, this gives P 0.005. Thus, these
results would be very unlikely if the loci were not linked.
However, this does not imply a correspondingly high proba-
bility of linkage. Suppose the marker locus lay on a mouse
chromosome of length e = 100 centimorgans. Then from Eq.
18, P(LII) £ 1/[1 + (1600 - 100)(1/100)(0.005)] = 0.93.
Thus, even though the experimental results would be very
unlikely if the loci were not linked, the probability of linkage
is still <0.95. A more detailed calculation of P(LII) from Eq.

15 yields P(LII) = 0.91, indicating that the upper limit from
Eq. 18 is fairly close to the actual value.
Example 2: Suppose that the progeny of a backcross A X

(A x B) are found to have inherited alleles from the hetero-
zygous parent as follows:

Marker locus
A
B
A
B

Test locus
A
B
B
A

No. of individuals
32
30
18
20

If the loci were not linked, one would expect 25 animals
(one-fourth of the total) in each group. The usual statistical
analysis gives x2 = I(E - 0)2/E = 5.92, which corresponds
toP 0.02. These results would ordinarily be interpreted as
providing reasonable evidence for linkage. However, sup-
pose the marker locus lay on mouse chromosome 19, which
is about 42 centimorgans long (ref. 3, p. 99). Then from Eq.
18, P(LII) s 1/[1 + (1600 - 42)(1/42)(0.02)] = 0.57. Thus,
the Bayesian result indicates that the probability of linkage
is, in fact, only about 50%. A more detailed calculation from
Eqs. 2 and 16, using the Kosambi mapping function yields,
for N = 100 and I = 38, P(LII) = 0.56.
These examples demonstrate the need for caution before

concluding that two loci are linked, when the standard x2
analysis is used and P(J1L) is not <0.004.
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