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Abstract: This paper presents a road distress detection system involving the phases needed 
to properly deal with fully automatic road distress assessment. A vehicle equipped with 
line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital 
images that will be further processed to identify road cracks. Pre-processing is firstly 
carried out to both smooth the texture and enhance the linear features. Non-crack features 
detection is then applied to mask areas of the images with joints, sealed cracks and white 
painting, that usually generate false positive cracking. A seed-based approach is proposed 
to deal with road crack detection, combining Multiple Directional Non-Minimum 
Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths 
with the lowest cost that meet the symmetry restrictions. The whole detection process 
involves the use of several parameters. A correct setting becomes essential to get optimal 
results without manual intervention. A fully automatic approach by means of a linear 
SVM-based classifier ensemble able to distinguish between up to 10 different types of 
pavement that appear in the Spanish roads is proposed. The optimal feature vector includes 
different texture-based features. The parameters are then tuned depending on the output 
provided by the classifier. Regarding non-crack features detection, results show that the 
introduction of such module reduces the impact of false positives due to non-crack features 
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up to a factor of 2. In addition, the observed performance of the crack detection system is 
significantly boosted by adapting the parameters to the type of pavement.  

Keywords: road distress detection; road surface classification; linear features; multi-class 
SVM; local binary pattern; gray-level co-occurrence matrix 

 

1. Introduction 

European countries spend large amounts of money on their road networks for reconstruction, 
renewal and major infrastructure repairs [1]. European road networks have kept growing in extension 
and the maintenance cost now accounts for a considerable part of Department of Transport budgets. In 
Spain 78% of last year’s road expenditure was assigned to road maintenance, of which 60% was used 
for road surface rehabilitation [2]. The road sector has started to consider a new approach to road 
maintenance by adopting a “preservation culture” [3] which consists in immediately protecting 
structures once they have been constructed or renewed. Hence, there are well-known economic and 
safety reasons and a compromise of the institutions through a preventive maintenance. However, the 
problem persists as there is a lack of the required precise information about the road conditions. In 
manual road inspection, raters go all over the road measuring its distress elements, but these surveys 
become too laborious and slow to allow an extensive assessment. These inspections are costly and 
risky for the personnel, due to traffic hazards. They also have problems associated with variability and 
repeatability resulting on inconsistencies in distress details. Therefore, manual road surveys do not 
allow one to carry out proper road maintenance. An automated distress detection system to quantify 
the quality of road surfaces and assist in prioritizing and planning the maintenance of the road network 
becomes essential. Thus, a preventive maintenance program including crack sealing operations will be 
feasible, achieving the goal of preserving the roads in good condition and extending their life. 

Governments and institutions have made a great effort to accomplish the objective of achieving a 
high quality road network along the last decades. They are now, more than ever, fully aware of the 
need for adequate road inspection and maintenance. Nonetheless, authorities are not properly carrying 
out these actions because of the fact that there is still a lack of suitable methods to assess the road 
conditions and perform management programs both effectively and efficiently. A poorly maintained 
road network exposes drivers to unacceptable health and safety risks. According to the “Sustainable 
Roads and Optimal Mobility” report elaborated by the European Union Road Federation [3] the 
percentages of reduction in fatal accidents due to better road infrastructure only in Belgium and 
Sweden, are, respectively, 50% and 59%. Another report produced by the U.S. Association of State 
Highway and Transportation Officials [4] points out that only half of major US roads are in good 
condition due to costs related with additional vehicle operations (approximately 280 € per year for the 
average driver) as well as repair, maintenance and constructions costs (1 € spent to keep a road in good 
shape saves 7 € on reconstruction). 

Periodic road inspections in order to have accurate and up-to-date information about the road 
surface condition are the most efficient way to maintain high road standards at the lowest price. 
Distress measurement is a crucial factor when evaluating road quality, being cracking the best 
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indicator of the need of preventive maintenance treatments. The type, length and severity of cracks are 
used to quantify the road condition and identify the source of deterioration. Cracking appears in the 
first stages of worsening, so its detection will allow one to perform a proper maintenance, saving huge 
amounts of money on a later restoration. In addition, road deterioration is quite gradual in most of the 
road surfaces as described in [5]. Road surfaces deteriorate only 40 percent in quality during the  
first 75 percent of their life. Then, if not treated, the slope becomes significantly steeper as a 
consequence of water penetration and continued loading, and another 40 percent decrease in quality is 
produced in the next 12 percent of life [5]. Roads with incipient deterioration can be identified through 
road management programs since preventive maintenance can be applied following a cost-effective 
strategy (reducing the cost by a factor of 5). 

2. Related Work 

Depending on the degree of human intervention required, distress detection methods can be 
categorized in purely manual, semi-automated, and automated. Manual surveys have been used for 
long time and despite the fact that automated methods are becoming more common, they are still the 
most frequent methodology [6]. Human inspections present several problems, including those related 
to the lack of consistency among operator criteria. A great economic effort has been made by 
authorities and road owners to overcome the difficulties found in the developing of automated systems. 
Many researchers have worked on this problem, developing first semi-automatic systems to reach later 
fully automated ones. Semiautomatic systems use different collection technologies to grab road images 
and postpone the distress identification to an off-line process running in workstations, improving the 
safety but using still manual distress detection, or at least an important level of intervention. The 
identification of various distress types, as well as their severity and extent from images requires 
observers who have been well trained in both pavement distress evaluation and in the use of the 
workstations. Therefore, it is necessary to add the cost of qualified staff to the cost of expensive 
collection devices, discouraging agencies from adopting these technologies [7].  

Different road surface distress data collection technologies are involved in the various automated 
commercial systems. They have been under development for the past 20 years. Initially available 
technologies of automated distress surveys were all based on analog video capturing and storage [8]. 
These systems presented low resolution and difficulty in working with computers, as the information 
had to be digitized to be processed, increasing the cost and complexity of the system. Along the last 
decade digital systems have appeared, becoming the preferred methods. Most of them employ video 
imaging techniques using either area scan or line scan cameras and there are just a few examples of 
laser-based systems. Area scan methods use a two dimensional array of pixels to cover some pavement 
area while line scan devices use a single line of sensor pixels to form the image by integrating successive 
scans. High-quality image collection required sufficient lighting to overcome shadows and sunlight.  

There are quite a lot of automatic crack detection systems available with very similar 
characteristics, using both area scan and line scan cameras. They usually work with an image 
resolution that allows the detection of cracks wider than 1 mm. The differences among them are 
mainly the width of the scanned area, ranging from 2 to 4 m, as well as the specific distress 
identification algorithm applied. Here, only the most relevant systems are mentioned. In 1999 the 
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Australian Commonwealth Scientific and Industrial Research Organization (CSIRO) was the first 
entity to develop an automated road crack detection system, RoadCrack [9], that was able to identify 
cracks wider than 1 mm at highway speed. This system has surveyed Australia for several years using 
line-based digital cameras mounted on a vehicle. The most widely employed system in the USA is 
Fugro Roadware’s Automatic Road Analyzer (ARAN) platform [10]. The ARAN system uses area 
scan cameras with two system configurations, 2 mm resolution with strobe lighting or 1 mm resolution 
with infrared lighting, to record road images that can be rated whether visually or through Roadware’s 
automated crack detection software (WiseCrax). Also widely employed in the USA, WayLink’s 
Digital Highway Data Vehicle (DHDV) [11] performs full-lane width distress surveys at speeds of  
up 100 km/h and uses WayLink’s Automated Distress Analyzer (ADA) software for real-time 
detection. In Europe, the PAVUE system [12] has operated in the Netherlands and Finland. Ramboll’s 
system can be equipped with either multiple video cameras or line scan cameras for collection of 
continuous images of the road surface which are automatically analyzed with the Automated Image 
Evaluation System (AIES). Finally, it is worth to mention the Highways Agency Road Research 
Information System (HARRIS) which is the result of 10 years research carried out by the UK’s 
Transport Research Laboratory [13] with the objective of demonstrating the application of  
state-of-the-art technology to the assessment of road conditions at traffic speed. This system has 
surveyed national and local roads using line scan cameras and 3.5 m survey width, providing several 
objective evaluations about its performance that will be discussed later on. 

As an example of laser-based system we note the GIE LaserVISION system [14]. This system uses 
four laser sensors and provides 3D measurements giving the system the potential for improved distress 
measurement. Nonetheless, it has too low resolution, 3 mm by 110 mm, so it is limited to measuring 
transverse cracking. The most promising innovative inspection methods are evaluated in [15]. A newly 
developed survey system, Mobile 3D Video Mapping (M3DVM), based on a set of 360° laser scanners 
positioned on a van is presented. This technique needs still further development as the operation costs 
are too high and the location error of points in the imagery is about 5 cm. Further development is also 
recommended for another approach, Car as Sensor, which uses a fleet of cars equipped of sensors to 
collect data about road conditions. Other two systems, unmanned aerial vehicles and spaceborne 
techniques, are considered inappropriate for road distress detection since they present low resolution 
images and low flexibility sensors.  

Comparing the different commercial systems is not always feasible. The understandable competitive 
spirit of the different manufacturers makes the information shared about their system weaknesses and 
the true performance minimal. Detection performance has a high dependency on the set of roads 
assessed. The road condition itself, the presence of non-crack elements and the different texture 
backgrounds faced in each case will be decisive. However, there is no public dataset with sequences of 
road images available so it is not possible to carry out a proper comparison. In addition, systems 
present different survey width making it harder to compare. In [16] it is noticed that the lack of 
standardized methods for evaluating the precision and repeatability of the systems constitutes a 
problem. Despite the harmonization efforts undertaken, different protocols for cracking evaluation are 
still used. Finally, the variety of levels of human intervention actually needed by the automatic systems 
also makes the comparison more complex. In general, commercial systems present problems 
identifying and quantifying cracking according to a protocol, especially those thinner than 3 mm, 
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reaching an acceptable performance only when considering network-level tests. An investigation 
undertaken by the TRL [17,18] to assess the performance of five commercially available crack 
identification systems, including Fugro, Waylink and TRL systems, concluded that all the evaluated 
systems had problems with common non-crack features present on the road surface, including joints, 
patches, road marking(s) and road edges, resulting in much more cracking being reported than was in 
the reference data. Moreover, the accuracy was inconsistent, varying the performance from location to 
location as a consequence of the different types of road surfaces surveyed. All the systems would have 
difficulties in reaching the TRL requirements for acceptance, only approaching these requirements 
when manual intervention is used as part of the identification process. In 2008 the American Transport 
Research Bureau presented the 2nd Strategic Highway Research Program results [19], which shows 
that manual interpretation systems are widely used and automated systems are still under development 
in various Departments of Transport and in private companies. They consider that manual intervention 
should be eliminated in order to reduce cost and pointed out some limitations of current automated 
systems. Fatigue cracking and sealed cracks are difficult to quantify and lighting conditions and 
shadows cause problems. According to this report the barriers to progress are the need for better 
lighting systems and a better interpretation software. 

This paper presents a road distress detection system that consists of an on-line images recording 
process and an off-line images processing stage. A vehicle equipped with line scan cameras, laser 
illumination and acquisition HW-SW is used to storage the digital images that will be further 
processed to identify road cracks. The processing module includes the phases needed to properly deal 
with fully automatic road distress assessment. The texture is smoothed and the linear features are 
enhanced by means of a pre-processing stage. Non-crack features such as joints, sealed cracks and 
white painting, that are usually mistakenly reported as crack features, are specifically detected and 
masked. A seed-based approach is then used to detect road cracks, combining Multiple Directional 
Non-Minimum Suppression (MDNMS) with a symmetry check. The whole detection process involves 
the use of several parameters that have to be adapted depending on the type of pavement to get optimal 
results without manual intervention. A linear SVM-based classifier ensemble trained to distinguish 
between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal 
feature vector includes a combination of different texture-based features. The system parameters are 
then tuned depending on the output provided by the classifier.  

The remainder of this paper is organized as follows. In Section 3 the overview of the whole road 
crack detection system is described in brief. Section 4 provides the description of the different system 
stages. Experimental results are presented in Section 5, and Section 6 concludes this paper and refers 
to future extensions of this research. 

3. Overview 

A conveniently equipped vehicle is used to storage the images that will be further analyzed to 
identify road cracks. The acquisition system consists of two line scan cameras with 2,000 × 1 pixels 
resolution, covering up to 4 m × 1 mm of the road. A laser-based illumination module provides 
homogeneously illuminated images. The cameras frame rate is 28 kHz which allows the vehicle to 
drive up to 90 km/h. In Figure 1, a rear view of the vehicle can be seen.  
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Figure 1. Rear of the vehicle used to acquire and store the road images. 

 
 
A global overview of the automatic distress detection system is shown in Figure 2, where the main 

components are described using a block diagram. The input of the system is 4,000 × 1,000 pixels 
images with 1 mm of resolution in both axis. These images are obtained by integrating 1,000 images of 
both line scan cameras.  

Figure 2. Global overview of the proposed adaptive road distress detection system that is 
divided into four main stages: road surface classification, pre-processing, non-crack 
features detection, and crack detection. The output of the classifier is used to adapt the 
system parameters. 
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The pre-processing step is devised to reduce the noise as to sharpen or enhance the linear features of 
the raw images that usually correspond to crack features. A basic approach usually consists in a  
pre-processing step together with the strictly speaking distress or road cracks detection module. 
Nevertheless, these kind of systems incorrectly report cracking on the boundaries corresponding to 
non-crack elements such as joints, patches and road markings. In order to avoid these false crack 
detections a specific non-crack features stage is needed, masking the regions of the images where  
non-crack features have been detected.  

The proposed adaptive road distress detection system also includes both, the non-crack features 
detection and the road surface classification steps. The non-crack features detection module identifies 
the aforementioned non-crack elements, reducing drastically the amount of false positives reported. In 
order to adapt the parameters of the road distress detection algorithm to the different types of pavement 
and road surfaces, a key stage has been here included: road surface classification. 

4. System Description 

4.1. Pre-Processing 

Pre-processing is one of the key steps of the whole distress detection system. The main idea is to 
ease the cracking detection process by both reducing noise and enhancing the dark linear features 
(possible cracks). Common pre-processing techniques are based on gray-scale morphological filters [20], 
image equalization [21], combinations of morphological tools and segmentation methods [22,23], and 
median filters [24]. Our approach is based on the assumption that the intensity of crack pixels is darker 
than the intensity of the pixels around the cracks. Thus, if we select a small region of interest (ROI) 
around a crack area, a peak will appear at the beginning of the histogram, as can be observed in  
Figure 2. The procedure can be summarized as follows. Using a sliding window technique, square 
ROIs with a pre-defined size (sizepre) are shifted over the image. A specific step (steppre) is used for 
shifting the window. The parameter steppre will determine the size of the pre-processing image since 
each ROI will be represented by only one pixel. In addition, regions may overlap depending on the 
step parameter. For each ROI the intensity histogram mi is obtained and the cumulative histogram ܯ ൌ ∑ ݉ୀ  is computed from bin i = 0 to i = 255. Once the cumulative number of observations Mi 
reaches a pre-defined threshold (thpre) we store the current bin value (pout = i). The threshold represents 
the percentage of pixels with a gray level value lower than pout. The local ROI is then replaced by one 
pixel (downsampling) with a gray level value equal to the current bin of the histogram (pout). Thus, 
local regions with crack pixels will be assigned with lower gray level values than regions without 
crack features. For example, as can be observed in Figure 3, the same thpre parameter will provide two 
different outputs: pout1 and pout2 that correspond to crack and non-crack sub-regions respectively, being 
pout1 < pout2. 
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Figure 3. Histograms corresponding to crack area (blue) and non-crack area (red). 

 

We remark that the pre-processing step is based on three main parameters: sizepre, steppre and thpre. 
These parameters will be adapted depending on the output (type of pavement) provided by the 
classification stage. In addition, it is important to note that the pre-processed image has a lower 
resolution than the original one, depending on the step value. On the one hand, further processing will 
be faster since the input image has a lower size and the noise is clearly smoothed. On the other hand, 
some details are lost due to the downsampling operation. An example of the pre-processed image is 
depicted in Figure 4. As can be seen, crack features are enhanced and the appearance of the non-crack 
areas is smoothed. 

Figure 4. Upper row: original image. Lower row: pre-processed image. 
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4.2. Non-Crack Feature Detection 

Most of the distress detection systems present a high sensitivity to all features (crack and non-crack 
features) resulting in very few false negatives. However, too much reported cracking is usually 
obtained, particularly when these systems have to deal with joints, patches, white painting, sealed 
cracks, etc., providing a high number of false positive crack reports [17]. The ability to record  
non-crack features on the road surface is a key aspect for measuring the road surface condition, and a 
way of identifying false positives during crack detection. In our case, we build a specific map 
including the following non-crack features: sealed cracks, joints and white painting. This map can be 
used to reduce the region of interest where cracks are detected, or to mask the cracking reports.  

A very common way of repairing non critical areas of the road is to seal the cracks. Sealed cracks 
usually appear as wide dark lines (patches) on the images and most of the systems report false 
positives on the edges of the patches. In order to detect the sealed cracks we use the pre-processed 
image, so that computational costs are drastically reduced without losing accuracy. A basic adaptive 
grey-level threshold step is firstly applied. Contours are then detected over both the dilated (outside 
contour) and the eroded (inner contour) image. First, short contours are filtered and not taken into 
account. Then, the average gray-level values of the pixels corresponding to both contours (inner and 
outside) is computed. Our detection function is based on the fact that the pixels corresponding to the 
inner contour of the sealed cracks would have lower grey-level intensities than the pixels 
corresponding to the outside contour. Note that this assumption does not apply to crack features since 
cracks are much more thinner than sealed cracks, so we cannot strictly talk about inner and outer 
contours for cracks. More specifically, after the erode operation the inner contour of cracks does not 
exit. An example of the sealed cracks detection algorithm is depicted in Figure 5. 

Figure 5. (a) Original image; (b) Pre-processed image; (c) Thresholded image; (d) Outside 
contour after dilate operator; (e) Inner contour after erode operation; and (f) Final result. 
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White painting is another common source of false detections that appears in road markings such as 
white lines, white arrows, text on the road, etc. Linear features appear due to paint cracks, that do not 
correspond to real cracking. The white painting detection process does not use the pre-processed image 
since white pixels are smoothed. Instead, a downsized version of the original image is used to reduce 
computational costs, and again, without losing accuracy. A basic gray level threshold (non-adaptive) is 
applied and contours are detected and filtered. The filtering process uses the following features: 
contour area, bounding box area, fitted bounding box area, contour orientation and the aspect ratio. 
The idea is to detect blobs with high rectangularity and wide area inside the bounding box. Some 
examples can be seen in Figure 6. 

Figure 6. White painting detection examples. Upper row: downsized original images; 
Lower row: white paining detection results. Note that paint cracks are not surface cracks.  

Concrete surfaces present longitudinal joints which are construction joints between adjacent lanes 
that have been paved separately, and transverse joints which can be either construction joins separating 
layers paved at different times or contraction joints placed at recurrent intervals. Longitudinal joints 
appear as vertical straight lines located close to one of lane edges preventing longitudinal cracking 
from spreading. Transverse joints appear as horizontal straight lines crossing the lane and controlling 
transverse cracking. Joins are dark linear features and they have a similar gray-level histogram 
distribution and shape than cracking features. Therefore, they are likely to be incorrectly considered as 
cracking by crack detectors and they must be detected and their surrounding pixels masked. In 
addition, joints are characteristics of concrete surfaces, so identifying them will help us in the road 
classification task by using a hierarchical approach. The joint detector uses a downsized image as 
input. High intensity pixels are saturated and the edges of dark elements are obtained by means of the 
Canny edge detector. Non-straight line segments are filtered out by applying horizontal and vertical 
restrictions on the contour’s shapes. This filtering step avoids the detection of false joints and reduces 
the computational load required for further steps. Two images are obtained, the first with horizontal 
segments, and the second with vertical ones. Then, straight lines are extracted by means of the Hough 
transform. A straight line in the image plane can be defined in polar coordinates with a distance to the 
origin (left-up corner) ρ, and the angle between the normal line and the abscissa axis θ: 

ρθθ =⋅+⋅ )sin()cos( ii yx  (1) 

The parameter space, p = (ρ, θ), must be quantized and expressed in a 2D accumulation matrix a, 
whose elements are initially set to zero. So, an element a(ρ, θ) is increased by 1 for every contour point 
(xiyi) in the image-domain. Different algorithms have been proposed in order to decrease the 
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computational time of the Hough transform. A multi-dimensional quadtree structure for accumulating 
is suggested in [25] (coarse-to-fine method). In [26] a method based on the fact that single parameter 
space point can be determined uniquely with a pair, triple or generally n-tuple of points from the 
original image (many-to-one mapping method) is proposed. In our case, a constrained accumulation 
matrix a is used as a method to decrease the computation time. The aim is to search for lines using two 
specific constraints. On the one hand, horizontal lines are detected in the image filtered with horizontal 
segments with the following restriction in the accumulation matrix: θ = 90° ± 5°. On the other hand, 
vertical lines are detected in the image filtered with vertical segments with the following restriction in 
the accumulation matrix: θ = 0° ± 5°. Accumulator threshold is fixed proportional to the width and the 
height of the image respectively. In addition, the region of the image where vertical joints can be 
detected is restricted to one third of the image. Finally, a binary image with both types of joints is 
obtained (see Figure 7). 

Figure 7. From upper row to lower row: downsized original image, Canny image, image 
with vertical segments, image with horizontal segments, Hough transform result. 

  

4.3. Road Surface Classification 

A road surface classification step is needed due to the high diversity of road surfaces that appear in 
real environments. It is extremely difficult to develop a monolithic road distress detection system able 
to provide reasonable results using the same parameter settings independently of the type of pavement. 
Accordingly, we have developed a road surface classification stage to classify road surfaces into 
different classes allowing to triggering of the road distress detection algorithm with a pre-defined set of 
parameters that are optimal for the specific type of pavement.  

The number of classes is chosen by visual inspection based on the type of materials used to build 
the roads as well as the degree of granulation and striation. An example of each one of the 10 classes 
considered is depicted in Figure 8. Seven classes are bituminous (asphalt) materials and three of them 
are concrete.  

The surface classification process is carried out using a multi-class SVM [27] based on the standard 
one-versus-one approach to reduce the single multi-class problem into multiple binary classification 
problems. The maximum-margin hyper-plane which best separates the 10 classes is computed by 
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solving an optimization problem. A linear kernel function has been chosen as it achieves the best 
accuracy when comparing with polynomial, radial basis and sigmoid kernel functions. In addition, the 
linear kernel function provides an on-line application function that involves a dot-product with the 
weight vector independent of the support vectors.  

Figure 8. Surface classes: seven classes are bituminous (asphalt) materials and three are concrete. 

 

A set of up to 20 square sub-regions of 256 × 256 pixels size are used to perform the classification 
by majority voting decision. Sub-regions must be placed in the central columns of the image and 
avoiding the use of pixels masked as non-crack features.  

Different feature extraction methods, settings and feature group combinations have been evaluated 
in order to choose the most suitable trade-off between classification performance and computational 
load. It is important to maintain a low computational cost so that the application usage remains feasible 
in real exploitation scenarios. Some feature extraction algorithms, such as Gabor Filters [28] and 
Wavelets [29], have been tested and discarded, as their inclusion does not provide a significant 
performance improvement. The main components of the feature vector are obtained using Gray-Level 
Co-occurrence Matrix (GLCM) [30], Maximally Stable Extremal Regions (MSER) [31] and Local 
Binary Patterns (LBP) [32]. In order to take advantage of the different gray-level histogram distributions 
of each type of surface, four statistics are also computed from the gray-level histogram: average, 
deviation, skewness and kurtosis. Finally, two components are obtained using the 1-D Fast Fourier 
Transform (FFT) over four equidistant rows and over four equidistant columns.  

The GLCM, introduced by Haralick [30], stores how often the different combinations of pixel  
gray-levels occur in the image, separated by a particular distance in a specific direction. The most 
common setting considers 1 pixel distance and four angles or pixel relationship directions (0°, 45°, 90° 
and 135°). In our approach, four angles are also considered but up to four pixel distances (1, 3, 5 and 9) 
are evaluated (GLCMM), resulting in 16 different matrices. An alternative using a pyramid image 
reduction approach has been also evaluated (GLCM-pyr). Haralick defined a set of 14 texture 
measurements based on this matrix, from which only four have been considered relevant to the surface 
classification problem: homogeneity, entropy, contrast and energy. The GLCM calculation requires an 
image quantification step in order to reduce both the computational load and the vector dimension. 
Different quantification levels have been tested concluding that no significant improvement is reached 
with more than 20 quantification levels.  
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The different types of pavements present different grades of granulation, varying in size and  
gray-level, as well as in their distribution. The granulation results on either rougher or smoother 
surfaces. Therefore, blobs detection may help to improve the classification performance. A solution 
based on MSER detection has been implemented. Although the MSER algorithm was originally 
proposed in [31] as an approach to solve the wide-baseline stereo problem, it has also been 
demonstrated to be a powerful blob detector, since it presents invariance to monotonic transformation 
of image intensities and allows multi-scale detection. An extremal region is a set of connected 
components that maintains the intensity levels of them below a threshold. Maximally extremal regions 
are extremal regions which satisfy a stability criterion. Minimal extremal regions are then detected by 
inverting the original image, so dark and bright blobs are both detected. Regions are filtered according 
to their shape, so only regions that satisfy circular shape restrictions are considered. Two blob size 
ranges are defined. Three statistics are computed for each one of the ranges and gray-levels: the 
number of blobs, the averaged size and total area. Figure 9 shows white and black blobs detection 
result examples. 

Figure 9. MSER detection results. Left: black blobs. Right: white blobs. 

  

Local Binary Pattern (LPB) is a gray-scale and rotation invariant texture operator introduced by 
Ojala [32]. LBP is built by thresholding pixels in a 3 × 3 window including its central pixel. If the 
pixel value is greater or equal than the central pixel, it is set to 1; otherwise it is set to 0. LBP codifies 
the central pixel as the sum of the pixel values weighted according to their position around the central 
pixel. Some extensions have been tested. For example, the variation of the distance of the samples 
(pixels around the central one) or the number of samples have not shown significant improvement in 
the performance. Histograms formed only by uniform patterns (that contain at most two bit-wise 
transitions both from 0 to 1 and vice versa), are usually computed (LBP-u). A common extension is to 
consider rotational invariant patterns together with the uniform ones (LBP-riu). Besides, LBP is also 
performed on the gradient image in both directions, horizontal and vertical (LBPG). 

4.4. Road Distress Detection 

Cracks appear in road images as linear features darker than their surrounding pixels. They are 
nearly continuous with a dominant orientation. Cracks can be thinner than aggregates but they are 
always longer than them [22]. Taking these general cracks characteristics into consideration, a large 
amount of different crack detection methods have been previously implemented. One obvious first 
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approach is to apply a gray-level threshold to obtain a binary image with crack and non-crack pixels. 
Most of these approaches are based on the Otsu’s thresholding method from gray-level histograms [33]. 
Different implementations and approaches based on [33] have been proposed [34-38]. These methods 
are usually improved using morphological operations [21,22,39-41]. Thresholding methods are very 
simple but they usually provide noisy results. Other approaches consider that crack information  
is mostly contained in the high frequencies components (transform-based). Most common  
transform-based approaches for crack detection applications are Wavelet Transform [20,24,42-45], 
Contourlet Transform [46,47] and Beamlet Transform [48,49]. More sophisticated approaches propose 
the use of classifier ensembles to deal with the road crack detection problem. The image is divided into 
several cells focusing on distinguishing between crack and non-crack cells. Most used approaches are  
Neural-Network-based [50-54], Support Vector Machine-based [55], and k-nearest-neighbors-based [56]. 
The main drawback of these methods is the supervised learning nature which requires a considerable 
amount of samples to have a good representation of the real environments.  

The method proposed in this paper can be classified in a different group of methods known as  
seed-based approaches [57-62]. These methods share two common steps. First, points likely to belong 
to a crack feature are extracted (seed points). Second, paths between seeds are obtained joining seeds 
by means of path growing techniques.  

A Multiple Directional Non-Minimum Suppression (MDNMS) combined with a symmetry check 
described in [57] for linear feature detection is used to obtain the seeds. Non-minimum suppression is a 
process for marking all pixels whose intensity is not minimal as zero within a certain local 
neighborhood. This local neighborhood is here defined as multiple directional linear windows at angles 
of 0°, 45°, 90° and 135° (see Figure 10(a)). As suggested in [57] additional directions can be used. 
However only four directions are used since we have not reported a significant improvement of  
using eight directions instead of four. The length of the linear window (LW) is an important parameter 
that has to be adapted to the size of the images to avoid multiple local minimums. As in [57] we use 
the union of the outputs of multiple directional non-minimum suppression for seeds detection. In 
addition, the cross feature gray-level intensity profile of the linear feature at a particular position is 
roughly considered symmetric around the minimum point (with intensity Imin). As depicted in  
Figure 10(b), several parameters are used to check whether a local minimum is along a linear feature in 
the image for a particular direction (linear window). These parameters are described by Equations (2) 
and (3): 
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min11 III avgdiff −= ; min22 III avgdiff −=  (3) 

Imin is the gray-level intensity of the local directional minimum. Iavg1 and Iavg2 are the average  
gray-level values of half linear windows on the two sides of the local minimum. Idiff1 and Idiff2 are the 
differences between the two average gray-level intensity values and the minimum value. For a linear 
feature in the image both of the Idiff1 and Idiff2 values should satisfy the following condition: 

SymDiffdiff thI ≥1 ; SymDiffdiff thI ≥2  (4) 
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where thSymDiff is a threshold parameter adaptive to the type of pavement. This value, as well as the 
length of the linear windows, will be adapted according to the output provided by the classifier. Note 
that if only one of the difference values is larger than the threshold, the location of the local minimum 
resembles more like a step edge rather than a linear feature.  

Figure 10. (a) The four linear windows at 0°, 45°, 90° and 135°; and (b) Symmetry  
profile of a cross section of a linear feature including the parameters involved in the 
symmetry check. 

 

(a) (b) 

In order to avoid triggering the seed detection process at all pixels locations, seeds detection is only 
applied in pre-computed regions of interest (ROI). A local sliding window (2Nx + 1, 2Ny + 1) is used at 
all pixel locations of the pre-processed image. The average gray-level value (Iavg) of the local window 
is compared with the gray-level value of the central pixel (Ic) (see Figure 11(a)). The following 
condition has to be met: 
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avgSC IKI ⋅≤  (6) 

If the condition described in Equation (6) is met, the pixel will be masked. Otherwise, the pixel will 
be discarded (as possible seed). Note that parameter KS will be adapted according to the type of 
pavement. An example of the masked pixels provided by this step can be seen in Figure 11(b).  

Once the MDNMS combined with the symmetry check is applied only in the masked pixels, we 
finally obtain the seeds. This process allows us to maintain relevant information for each one of the 
seeds: seeds orientation and seeds thickness. The orientation is directly obtained from MDNMS 
method. The thickness is roughly estimated using the cross feature gray-level intensity profile of the 
linear feature (Figure 10(b)). Figure 12 depicts an example of the output provided by the seeds 
detection method.  
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Figure 11. (a) Sliding window parameters; and (b) Upper: pre-processed image.  
Lower: mask with possible seed locations. 

  

(a) (b) 

Figure 12. Seeds detection results. The color indicates the orientation. The thickness of the 
circle used to draw the seeds is directly proportional to the seeds thickness. 

 

The second stage of seed-based methods is the linking process to connect the seeds (path growing). 
Several approaches have been previously proposed in the literature. In [59,60] seed points are 
connected by proximity. The authors of [62] proposed a percolation method based on the natural 
phenomenon of liquid permeation. In [58] a normalized distance cost polar map of circular regions is 
used and paths are obtained based on a backtracking process. This approach implies two 
transformations (from Cartesian to polar and vice-versa) that have a high computational cost, and only 
allows paths to grow proportionally to the radius of the circles used, which is not always adequate. Our 
path growing method is based on the backtracking idea proposed in [58] but adapted to directly work 
in Cartesian coordinates using square regions instead of circular ones. A minimum distance cost map is 
computed for all the seeds collecting the lowest cost from the center of the region to the rest of the 
pixels, as well as the backtracking information (previous pixel location in the path with the lowest 
cost). Based on the fact that crack features are dark linear features, the gray-level value is directly used 
when computing the distance cost map. The process starts initializing the 8-connected pixels of the 
seed (see Figure 13). Then, an iterative process is triggered. We firstly obtain the minimum distance 
cost of the pixels located on the x-y-axis. As can be observed on the left side of Figure 14, only a  
pre-defined number of neighbors are evaluated. These neighbor locations are previously defined 
depending on the quadrant. Finally, the minimum distance cost of the pixels located on the different 
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quadrants of the square region is calculated (see Figure 15). Note that the costs of the corner pixels are 
calculated at the end of the iteration. The pseudo code for obtaining this minimum distance cost map is 
given in Algorithm 1. The number of iterations of the process is directly related with the width of the 
square region around the seed (variable L in the pseudo code presented in Algorithm 1).  

Figure 13. Initialization step. Left: backtracking information. Right: distance costs of  
the 8-connected pixels around the seed. 

 

Figure 14. Iterative process: distance cost computation of pixels located on x-y-axis.  
Left: possible neighbor pixels locations. Right: distance costs and backtracking information.  

 

Figure 15. Iterative process: distance cost computation of pixels located on quadrants.  
Left: possible neighbor pixels locations. Right: distance costs and backtracking information.  
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Algorithm 1. Pseudo code of the distance cost procedure. 

 

In the above code, d(i,j) is the minimum distance cost for the (i,j) pixel and p(i,j) is the previous 
pixel location in the minimum distance cost route from pixel (i,j) to the center of the square region. 
This process involves the collection of the current best cost at a pixel and its backtracking information. 
Once the minimum distance cost map is obtained, we find other seeds in the map and perform the 
backtracking to find the paths between seeds. Backtracking is carried out by using the previous pixel 
locations stored in p(i,j) from the found seeds to the central pixel of the region.  

The proposed ad hoc solution outperforms the ordinary dynamic programming (DP) technique for 
solving the shortest path problem in terms of computational costs and it needs less storage 
requirements. Although DP is a well-established technique, the method is somewhat limited from a 
computational point of view due to its recursive nature. Both storage and computational requirements 
are critical factors in the context of road crack detection, specially in production schemes. 

The obtained paths are checked to make sure that the average intensities along, left of the path and 
right of the path, meet certain symmetry conditions [58]. Non-minimum suppression along the path is 
assured thanks to the minimum distance cost computation. However, cracks are characterized by an 
approximately symmetric intensity profile across the linear feature (opposed to edges that show a step 
profile). This translates the problem into approximately equal average gray-level intensity values on 
either sides of the path. We apply the same symmetry restrictions described by Equations (2–4) at all the 
pixels of the path between two seeds. The linear window used at each pixel is orthogonal to the 
orientation between both seeds (see Figure 16). IavgP is the average intensity of the pixels along the 
path. IavgL and IavgR are the average intensity values along the left and right of the path. For a linear 
feature the following conditions have to be met: 

1 Procedure Minimum Distance Cost: 
2 # Initializing 8-connected pixels: 
3 Foreach 8-connected pixels (i,j) do 
4  d(i±1, j±1) = c(i,j) + c(i±1, j±1) 
5 p(i±1, j±1) = (i,j) 
6 # Distance cost iterations (loop over rectangles perimeter) 
7 For h = 2 to L do 
8 # Left x-y axis  
9 d(i-h, j) = c(i-h,j) + min{c(i-h+1,j-1), c(i-h+1,j), c(i-h+1,j+1)} 
10 p(i-h, j) = argmin{c(i-h+1,j-1), c(i-h+1,j), c(i-h+1,j+1)} 
11 # Right x-y axis  
... ... 
17 # Upper-left quadrant 
18  Foreach (x,y) Є upper-left quadrant do 
19   d(x,y) = c(x,y) + min{c(x y+1), c(x+1,y+1), c(x+1,y)} 
20   p(x,y) = argmin{c(x,y+1), c(x+1,y+1), c(x+1,y)} 
21 # Upper-right quadrant 
… ... 
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PATHavgP thI ≤  (7) 

HSymDiffPATavgPavgL thII ≥− ; HSymDiffPATavgPavgR thII ≥−  (8) 

Both, thPATH and thSymDiffPATH are threshold parameters adaptive to the type of pavement. Paths that 
pass the quality check need to be masked out in order to avoid using them when finding paths between 
other seeds. This process is repeated until no more seeds are available.  

Figure 16. Path quality check. Linear windows are orthogonal to the orientation between 
the seeds (seeds are depicted in red and pixels of the path are depicted in green). 

 

4.5. Adaptive Road Distress Detection 

The proposed road distress detection method described above contains a total of 8 parameters that 
have to be fine-tuned in order to have an appropriate behavior. These parameters are described by the 
following vector Q = {sizepre, steppre, thpre, LW, thSymDiff, KS, thPATH, thSymDiffPATH}. The first three 
parameters correspond to the pre-processing stage. The rest of the parameters are related to the crack 
detection algorithm. A specific set of parameters can work perfectly with a specific type of pavement 
but provide very noisy results with other type of pavement surfaces. Accordingly, these parameters 
have to be adapted with respect to the output provided by the classifier stage. The issue of automatic 
system parameter optimization has so far not been covered in the context of road crack detection, to 
our knowledge. A large amount of literature exists on numerical methods dealing with minimization of 
non-linear objective functions. Such approaches are impractical for the given problem because the 
number of parameters involved is relatively high and a single evaluation of the objective function is 
computationally expensive. Instead we have carried out a manual, supervised procedure for parameter 
setting by evaluating the results of the system with a set of pre-selected images corresponding to  
the 10 classes of pavement. More specifically, a two-level grid-search approach is proposed in this 
work. First, the most sensitive parameters are optimized to assure that an adequate number of seeds are 
selected. These parameters are sizepre, thpre, KS, and thSymDiffPATH. Results are ordered by recall and only 
the sets located in the first positions are evaluated in the second step, where the remaining parameters 
are obtained. In this way, the output of the SVM-based classifier is directly used to select the 
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parameter vector Qi, i = 1, ..., 10 that will be finally passed to the road crack detection module. A more 
sophisticated and automated optimization approach is out of the scope of this paper and it is left for 
future work.  

5. Experimental Results 

In this section we firstly describe the classification results comparing the different group of features 
used in the optimization process. Then non-crack features detection results are presented, including 
how this stage affects to the performance of the road crack detection system. Finally, we present the 
adaptive road crack detection results. 

5.1. Classification Results 

A 10-fold cross validation algorithm over a data set of 9,000 images (900 images of each class)  
of 256 × 256 pixel size is used to assess the performance of the SVM-based pavement classifier for 
different feature extraction methods combined in different groups. In a first experiment we obtain the 
results of the different GLCM and LBP features working alone. Figure 17(a) depicts the cross 
validation accuracy among the different GLCM implementations used. Figure 17(b) shows the 
performance results of the different LBP configurations. Best results are obtained using GLCMM and 
LBPG-u features with dimensions of 64 and 177 respectively.  

Figure 17. Cross validation accuracy (%) of (a) GLCM and (b) LBP configurations. Note 
that labels include the vector dimension. 
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In a second step, we evaluate the accuracy of different groups of features combining MSER, 
Histogram and FFT derived statistics with the features obtained from the different GLCM and LBP 
implementations. As can be observed in Figure 18 the optimal feature vector configuration is 
composed of the following features: Histogram, MSER, FFT, GLCMM, LBPG-u. Note that this feature 
vector provides the best level of accuracy of 93.33% at the highest computational cost of 125 ms (the 
computational cost depicted in Figure 18 corresponds to the feature computation plus the linear-SVM 
evaluation). The confusion matrix for the selected optimal vector configuration is shown in Table 1.  
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Figure 18. Cross validation accuracy (%) of different feature groups. The legend includes 
information about the vector dimension, average accuracy and computational cost. 
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Histogram+FTT+MSER+GLCM (34)                     [86,83%; 59,5ms]
Histogram+FTT+MSER+GLCMM (82)                  [91,03%; 114.4ms]
Histogram+FTT+MSER+GLCM+LBP−u (93)          [92,8%; 72,3ms]
Histogram+FTT+MSER+GLCMM+LBP−u (141)      [93,12%; 103ms]
Histogram+FTT+MSER+GLCMM+LBPG−u (259)    [93,33%; 125ms]

 

Table 1. Confusion matrix for the optimal feature vector configuration. 

Classes 1 2 3 4 5 6 7 8 9 10 
1 98.27 0.00 1.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 91.84 2.04 1.53 0.00 4.59 0.00 0.00 0.00 0.00 
3 0.77 0.26 89.26 0.51 7.93 1.28 0.00 0.00 0.00 0.00 
4 0.00 1.04 1.04 86.88 0.83 0.21 0.00 0.00 0.00 0.00 
5 0.00 2.17 4.35 0.72 87.68 5.07 0.00 0.00 0.00 0.00 
6 0.00 3.07 1.79 0.00 1.02 93.95 0.26 0.26 0.00 0.26 
7 0.75 0.50 1.75 0.75 0.00 1.25 94.99 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 1.18 0.00 86.22 0.00 12.06 
9 0.00 0.00 0.00 0.00 0.00 0.78 0.78 0.00 96.88 1.56 
10 0.00 0.37 0.00 0.37 0.00 1.49 0.00 4.48 0.00 93.28 

Note that these are single-frame classification results. In practice, the classifier is triggered  
using 20 sub-regions of 256 × 256 equally distributed along images of 4,000 × 10,000 pixel size  
(4 × 10 m). The so-called majority voting scheme is used to assign the final result as the class which 
has the largest number of votes.  

5.2. Non-Crack Feature Detection Results 

As described above, non-crack features are prone to report false cracking. In order to quantify the 
magnitude of the effect of false cracking reported due to non-crack features a specific set  
of 1.102 images of 4,000 × 1,000 pixel size (4 × 1 m) with considerable cracking has been selected, 
including features such as sealed cracks, joints and white painting. Crack and non-crack features have 
been manually labeled to obtain the corresponding ground truth.  
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In a first experiment we compute the accuracy of our non-crack features detection stage by 
comparing the results with the ground truth. A detection by the non-crack features detection system is 
counted as correct (true positive) if the coverage  Γ ൌ ሺתሻሺሻ of a detected non-crack feature a and a 
non-crack feature label b is above 0.6. Table 2 summarizes the detection results for joints, white 
painting and sealed cracks (patches) independently.  

Table 2. Non-crack feature detection results. 

Non-crack 
features #samples # of true 

positives 
# of false 
positives 

Recall 
(%) 

Precision 
(%) 

Joints 278 234 25 84.17 90.34 
White painting 1,764 1,679 2 95.18 99.88 
Sealed cracks 173 166 9 95.95 94.85 

TOTAL 2,215 2,079 36 93.86 98.29 

False positives and negatives occur due to different road image conditions. Most of the false joints 
arise from dark and narrow longitudinal texture bands, which do not influence the reported cracking. 
However, most of the false patches result from wide cracks that will be masked and not considered by 
the crack detection module. Some examples of the false positives can be seen in Figure 19.  

Figure 19. Non-crack false positives. Left: dark and narrow longitudinal texture band 
detected as joint. Right: wide cracks detected as sealed cracks. 

  

Concerning false negatives, white painting is occasionally not detected due to paint deterioration. 
Most of the false negatives reported by the sealed cracks detector appear due to reflections and 
overexposure. Finally, joints are usually not detected because most of their pixels are not visible in the 
images (images alignment, line scan cameras integration. etc.). Figure 20 depicts some false  
negatives examples. 
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Figure 20. Non-crack false negatives. Left: not detected joint due to misalignment between 
images. Center: paint deterioration. Right: sealed crack not detected due to reflections.  

 

Figure 21. Computed percentage of each 5 m subsection of road affected by cracking, 
without removing non-crack features, removing manually labeled non-crack features and 
removing non-crack features detected by the system. 

0 5 10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

14

16

Chainage (5m)

C
ra

ck
 a

ff
ec

te
d

 s
q

u
ar

es
 p

er
 5

m
 (

%
)

Without removing non−crack features
Removing manually labeled non−crack features
Removing detected non−crack features

 

The adaptive road crack detection system is triggered and the results are masked removing cracking 
from both non-crack features labeled (ground truth) and detected (system results). In order to show the 
results in a manageable format, we use the same procedure proposed in [17] when comparing the 
performance of up to seven different commercial systems. A crack grid is obtained by placing 200 mm 
grid squares over the images. The grid squares containing cracking are filled in, and the number of 
crack grid squares over 50 m length are summed to obtain the areas of cracking identified by the 
system. In this case, we use 5 m subsections instead of 50 m subsections. Thus, the percentage of  
each 5 m subsections of the road is given by Equation (9): 
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where GD5m refers to the number of 200 mm × 200 mm grid squares containing cracks and GT5m is the 
total number of 200 mm × 200 mm grid squares in 5 m subsection. Some of these results are depicted 
in Figure 21 (for visualization purposes we only show the first 300 images). The Root Mean Square 
Error (RMSE) between the cracking reported with and without using non-crack feature detection with 
respect to the cracking after masking them with the labeled non-crack features is 0.0235 (2.35%)  
and 0.0112 (1.12%) respectively. In other words, the non-crack feature detection module reduces the 
impact of false positives due to non-cracking features by a factor of 2. 

5.3. Adaptive Road Distress Detection Results 

We have collected a total of 7,250 images (4 × 1 m) from 30 different Spanish roads, containing 
cracked regions with the 10 different types of pavements considered in this work (725 images of each 
class). A manual labeling process has been carefully carried out to obtain the ground truth with the 
location of the cracks in the images. On the one hand, we obtain the results of the crack detection 
system with a fixed set of parameters tuned to provide the best results possible. More precisely, the 
system was triggered 10 times, each one with the parameter settings that correspond to a specific 
surface class. RMSE is obtained for each case and we use the parameters of the class that provides 
lower RMSE. On the other hand, the adaptive road crack detection system is triggered setting the 
parameters according to the output provided by the SVM-based classifier. Note that the images 
contained in the data set used to train the classifier (Section 5.1) are totally different from the images 
used to assess the performance of the adaptive road crack detection system. The use of independent 
dataset avoids overfitting. Again, in order to show the results in a manageable format, we use the same 
procedure proposed in [17]. In this case we use 50 m subsections, so the percentage of each 50 m 
subsections of the road is computed as: 
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where GD50m refers to the number of 200 mm × 200 mm grid squares containing cracks and GT50m is the 
total number of 200 mm × 200 mm grid squares in 50 m subsection The results are presented in  
Figure 22. As can be observed, thanks to the use of the classifier to select a proper set of parameters 
depending on the type of pavement, there is very good agreement between the ground truth and the 
adaptive crack detection system assessments, including peaks and areas without cracking. On the 
contrary, if system parameters are not adapted, some peaks with reported cracking arise from false 
positive features. Some examples corresponding to both non-adaptive and adaptive crack detection 
systems are presented in Figure 23. It is remarkable the amount of false positives that appear due to 
bad parameter setting. The RMSE of the non-adaptive crack detection system is 0.0493 whereas the 
RMSE of the adaptive approach is 0.019 (reduced by a factor of 2.59). 
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Figure 22. Computed percentage of each 50 m subsection of road affected by cracking. 
Comparison between the ground truth, crack detection system and adaptive crack  
detection system.  
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Figure 23. From upper to lower row: original image, seeds results with adaptive parameters, 
cracking results with adaptive parameters (ground truth in red; cracking in blue), seeds 
results with fixed parameters, cracking results with fixed parameters. Left column: example 
with false positives reported; Right column: example with false negatives reported.  

 

6. Conclusions 

This paper presented a road crack detection system that provides fully automatic road distress 
assessment. A vehicle equipped with two line scan cameras, a laser illumination system and acquisition 
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HW-SW is used to storage the digital images that will be further processed by means of image 
processing techniques to identify road cracks in an off-line process. Pre-processing is firstly carried out 
to both enhance the linear features that may correspond with cracking and smooth the texture of the 
pavement to ease the detection process. An histogram analysis is performed to that effect, resulting in a 
low size image. Non-crack features detection is then applied to specifically separate areas of the 
images with joints, sealed cracks and white painting, that usually generate false positive cracking. A 
seed-based approach is proposed to deal with road crack detection Firstly, a Multiple Directional  
Non-Minimum Suppression (MDNMS) combined with a symmetry check is used to obtain the seeds. 
Then, a minimum distance cost map is computed in Cartesian coordinates for all the seeds collecting 
the lowest cost from the center of a square region of a pre-defined size to the rest of the pixels, 
including backtracking information (previous pixel location in the path with the lowest cost). Thus, 
seeds can be easily linked into paths that have to meet certain symmetry conditions. The whole detection 
process involves the use of several parameters, and their correct setting becomes a key component to 
get optimal results without manual intervention. A fully automatic approach is proposed by means of a 
linear SVM-based classifier ensemble able to distinguish between the 10 different types of pavement 
that appear in the Spanish roads. The optimal feature vector includes different texture-based features. 
The parameters are then tuned depending on the output provided by the classifier.  

On the one hand, regarding non-crack features detection, results show that the introduction of such 
module reduces the impact of false positives due to non-cracking features up to a factor of 2. On the 
other hand, the observed performance of the crack detection system is significantly boosted by 
adapting the parameters to the type of pavement.  

Future work concerns improvements in the classifier ensemble, such as hierarchical classification 
using joints to differentiate between concrete and non-concrete surfaces, boosting process with much 
more samples, new features, and multi-frame validation. An experimental comparison is expected to 
be done by implementing other crack detection approaches so as to compare the actual performance of 
our system. New performance indexes can be computed to differentiate from longitudinal, transversal 
and alligator cracking. As stated in [63] the definition of the indexes is critical to obtain useful results 
for the end user (road administrators). More sophisticated automatic system parameter optimization 
procedures will be explored. Finally a huge database with millions of images corresponding to 
thousand of kilometers will be used, with its corresponding ground truth, to validate the system as a 
feasible tool for exploitation purposes.  
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