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Abstract: Motion estimation is a low-level vision task that is especially relevant due to its 
wide range of applications in the real world. Many of the best motion estimation algorithms 
include some of the features that are found in mammalians, which would demand huge 
computational resources and therefore are not usually available in real-time. In this paper 
we present a novel bioinspired sensor based on the synergy between optical flow and 
orthogonal variant moments. The bioinspired sensor has been designed for Very Large 
Scale Integration (VLSI) using properties of the mammalian cortical motion pathway. This 
sensor combines low-level primitives (optical flow and image moments) in order to 
produce a mid-level vision abstraction layer. The results are described trough experiments 
showing the validity of the proposed system and an analysis of the computational resources 
and performance of the applied algorithms. 

Keywords: bio-inspired systems; machine vision; optical flow; orthogonal variant 
moments; VLSI 
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1. Introduction 

There are several definitions of the goal of visual perception [1,2] as the interpretation of the 
information arriving at the retina, while a general agreement about the different abstraction levels and 
the limits between them is lacking. 

Low-level vision obtains useful measurements such as colour, spatial frequency, binocular 
disparity, motion processing, etc., from several channels. Some of these channels, or space-temporal 
filters, can be identified with receptive fields that deliver information to the retina. Others, such as 
binocular disparity or motion processing, are combinations of the previously mentioned ones.  

Mid-level vision integrates primitives processed at a previous level. Information delivered at this 
stage corresponds to real-world inferences such as egomotion and independent moving objects (IMOs). 
They are called causal actions or object candidates in connection with any multimodal 
characterization. Examples of these are the combination of luminance measurements to infer lightness, 
shape from shading, perceptual grouping, figure organization, etc.  

Finally, High-level vision interprets the scene through specific tasks such as relational reasoning, 
knowledge building, object recognition, etc. [1]  

Regarding Low-level vision, optical flow considered as pixel motion estimation (velocity measure 
in terms of modulus and phase) of an image sequence, is an ill-posed problem due the inherent 
complexity of the signal processing tasks associated with it.  

Motion processing has many important applications nowadays including robot navigation [3], 
biomedicine assistance [4], and so on [5]. Almost all complex computer vision systems include a core 
to specifically process motion, which will be then integrated with other early level primitives as 
mentioned above. These primitives are passed as input parameters to higher level vision stages. The 
applications mentioned here needs real-time capability when they are part of an embedded system, 
where the processing resources are constrained. There are some approaches [6] that only work with 
enough accuracy over a velocity range or noise free environment. Others suffer from contrast 
dependence or are unable to estimate second order motion [7,8].  

On the other hand, moments in computer vision [9] are statistical measures which capture important 
information about an image, for instance, to describe its shape. Variant moments [10-13] are an 
alternative to the classic moment invariants. Variant moments are considered Low-Level processing 
because they process at the pixel level. 

In this work, we present a prototype based on a FPGA device suitable for industrial applications 
which involves reduced size, rapid prototyping, low cost and power consumption. Our bioinspired 
sensor integrates two Low-level vision primitives represented by gradient family optical flow 
estimation and variant orthogonal moments. The optical flow platform provides the modulus and phase 
velocity values of each captured pixel. Orthogonal variant moments improve the robustness of the final 
system featuring the pixels. Both early-vision cues provide information for the Mid-Level output 
which has been configured in this contribution in the framework of segmentation and tracking tasks.  

This paper is organized as follows, Section 2 provides a brief description of the different vision 
levels applied and the architecture of the whole integration. Section 3 describes the algorithms of the 
multimodal sensor. Section 4 presents the experimental results, the performance and the hardware 
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resources needed. Section 5 summarizes the main innovative points, the comparison with other 
approaches and the presents the conclusions of the work. 

2. Multimodal Platform  

In this section the different Vision Levels applied are described. The final aim can be summarized 
in two challenges: the efficient integration of different primitives belonging to Low-level vision and 
the Mid-level vision processing module which gathers and computes data from the previously 
integration performed.  

2.1. Pixel-Level Granularity: Low Level Vision 

The starting point of the Low-level module of the platform is an improved FPGA-based 
implementation [14,15], which is briefly explained in this subsection. The optical flow Multichannel 
Gradient Model (McGM), designed by Johnston [16-20], was chosen to implement the Low-level 
vision system in VLSI due its robustness and bio-inspiration. This model deals efficiently with many 
challenges, such as illumination, static patterns, contrast invariance, robustness against failures, 
justification of some optical illusions [16], detection of second order motion and camouflage 
processing [16,17], etc. Its physical architecture and design principles are based on the biological 
nervous systems of mammalians [1,20-22]. At the same time, it avoids operations such as matrix 
inversion or iterative methods that are not biologically justified [16-18]. The original description of the 
McGM model [16-20] has been modified to improve the viability of the implementation in hardware.  

Low-level vision processes the early visual information in a highly parallel and local way as the 
retina and primary visual cortex do [1,23]. The goal of this part is to estimate optical flow using a 
quotient of massively parallel bank of filters. These filters are obtained with a kernel function which 
depends on time and space. It conforms a bank filtering that progressively increases the order of the 
spatial (r) and temporal (t) differential operators involved in the kernel Equation (1): 

 (1)

where the parameters have been tuned to the follow values: σ = 1.5, α =10 and τ = 0.2. This expression 
is obtained following psychophysical and biological evidences from the mammalian and human visual 
systems [1]. It has been normalized and tuned assuming a human spatial frequency limit of  
60 cycles/deg and a critical flicker fusion limit of 60 Hz [16].  

After that, a tridimensional Taylor approximation of every pixel which depends on the derivative 
operators previously calculated from the kernel function is replaced by the intensity value. This 
expansion takes derivatives in time, t, and two spatial directions, x and y. These derivatives fit well 
with the receptive fields in the neural systems, there being multiple neurophysiological and 
psychophysical facts that support this processing scheme [1,16]. This system is biologically plausible 
and can be implemented by an artificial neural system in the visual cortex involving addition, 
multiplication and division of the linear spatial-temporal orientated filters [15]. The implemented 
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model is a sequence of stages, where summarily their main concepts and associated task are described 
in the next paragraph: 

Stage I accomplishes the temporal differentiation through fully stable and causal FIR filtering, 
convolving derivative operators of the kernel function (log-time domain Gaussian). It is important to 
notice that this implementation is different than that presented in previous works (IIR 
filtering) [14,15], achieving in this contribution longer delay although gaining in stability, modularity 
and scalability.  

Stage II implements the spatial differentiation building functions of each temporal derivative 
previously implemented. This structure representation is computed via convolution with a set of neural 
“basis” filters modeled as derivatives of Gaussians.  

Stage III steers each one of the space-time filters previously built at arbitrary orientations using a 
linear combination of other filters in a small “basis” set. Using the linear property of the convolution as 
main advantage, a filter Fθ with orientation θ from the previous basic filter bank is formed. Many 
gradient optical flow models [2,7,8,24] can be implemented by just combining the outputs reached at  
this point. 

Stage IV builds a Taylor expansion and its derivatives over x, y and t (denominated X,Y,T 
respectively) using the earlier calculated measures, delivering at the output a sextet which contains the 
products XX,XY,XT,YY,YT,TT. The Taylor approximation is truncated removing terms above first order 
in time and orthogonal direction accomplishing the fact of no more than three temporal filters and no 
greater spatial complexity in filters attending the biological proofs [25]. 

At this point, the whole information of the sequence of input frames is represented by a 3D structure 
where each pixel belonging to it can be reached in terms of a filter population tuned to different 
orientations and spatial frequencies.  

Stage V forms four different functions called direct צݏ,ෞ ෞ,ୄݏ   and inverse צݏ෭ ,  ෮ୄ speeds where eachݏ
pair of values is expressed using the plain and orthogonal components. These functions depend on the 
plethora of the different derivatives calculated before. The so-called aperture problem [24] inherent to 
optical flow is faced conditioning the raw values through a least square method applied to the different 
projections θ. These four functions are the velocity estimation primitives following the robustness and 
bioinspired nature of the model. The functions are combined, contributing either direct and inverse 
speed to the value accuracy due to the fact they are antagonistic and complementary enhancing 
strongly the robustness of the sensor. Additionally, there are several works supporting neurons which 
perform inverse speed measures [26,27], this fact also supplies an explanation of the sensitivity to 
static noise for motion blind patients [28]. 

Stage VI finally calculates two outputs: direction output from a measurement of phase that is 
combined across all speed related measures and the modulus output as a quotient of determinants, as 
shown in the following expressions: 

ଶݏݑ݈ݑ݀ܯ ൌ ێێۏ
ෝצݏۍ cos ߠ ෝצݏ sin ෮ୄݏߠ cos ߠ ෮ୄݏ sin ෝצݏߠ ෭צݏ ෝצݏ ෭צݏෞୄݏ෮ୄݏ ෮ୄݏෞୄݏ ۑۑے

ې
 (2)
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݁ݏ݄ܽܲ ൌ tanିଵሺ ሺצݏෝ  ෭צݏ ሻ sin ߠ  ሺݏෞୄ  ෮ୄሻݏ cos ෝצݏሺߠ  ෭צݏ ሻ cos ߠ െ ሺצݏෝ  ෭צݏ ሻ sin ߠ ሻ (3)

The complete optical flow Low-level vision model can be easily and gradually degraded to match 
previous models [18], even getting an ordinary optical flow Gradient model [7,8,29], as pointed out in 
a previous work [15]. 

2.2. Wave-Level Granularity: Low- and Mid-Level Vision 

One of the most well established approaches in computer-vision and image analysis is the use of 
moment invariants. Moment invariants, surveyed extensively by Prokop and Reeves [9] and more 
recently by Flusser [11], were first introduced to the pattern recognition community by Hu [12,13], 
who employed the results of the theory of algebraic invariants and derived a set of seven moment 
invariants (the well-known Hu invariant set), which is now a classical reference in any work that 
makes use of moments. Since the introduction of the Hu invariant set, numerous works have been 
devoted to various improvements, generalizations and their application in different areas, e.g., various 
types of moments such as Zernike moments, pseudo-Zernike moments, rotational moments, and 
complex moments have been used to recognize image patterns in a number of applications [30]. 

The problem of the influence of discretization and noise on moment accuracy as object descriptors 
has been previously addressed by proposing several new techniques to increase the accuracy and 
efficiency of moment descriptors, deduction of the focus information from the second or fourth order 
central moments of a sequence of images [31], as well as methods for the efficient computation of 
certain classes of moments (e.g., Zernike moments, discrete orthogonal moments) [32-35]. Moreover, 
other works [36] address the same problem of Hu from different perspectives, e.g., achieving 
invariance to intensity, rotation, and scaling of color images based on the concept of principal 
component analysis and a competitive learning algorithm.  

In short, moment invariants are measures of an image or signal that remain constant under some 
transformations, e.g., rotation, scaling, translation or illumination. Moments are applicable to different 
aspects of image processing, ranging from invariant pattern recognition and image encoding to pose 
estimation. Such moments can produce image descriptors invariant under rotation, scale, translation, 
orientation, etc. The general definition of moments of order p + q is as follows: 

 (4)

These moments produce a weighted description of f(x,y) over the entire image. The basis functions  
(xp yq) may have a range of useful properties that may be passed onto the moments. 

The method of variant moments [37] is a new technique for image analysis and computer vision that 
has many promising features for producing new kinds of very robust and simple computer vision 
algorithms. Variant moments possess a very simple definition; they are versatile and can be calculated 
very efficiently. They can also be used to characterize an image, object and scene for low, mid and 
high levels respectively. It seems very reasonable that one of its main areas of applications would be 
exploitation of the possible synergies with many other state of the art computer vision systems, e.g., 
optic flow-based techniques, as explained in this contribution.  

∞== ∫ ∫ ,...,3,2,1,0,;),( qpdxdyyxfyxM q
pq

p
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Orthogonality means the decomposition an object, e.g., a point or vector, into, say, two components 
(its rectangular components x, y) in such a way that these two components are, a priori, uncorrelated, 
that is, it is possible to analyze how the object varies in one of its components, say x, in an independent 
way from the rest of the components, say y.  

An Orthogonal Variant Moment m = O(f) is a measurement of a function f such that m varies if and 
only if the specific characteristic that is measured with this particular moment changes, that is, it is a 
measurement of an exclusive feature of a signal, image or wave form. Thus, an orthogonal variant 
moment set S is such that every element is uncorrelated with any other element of the set; in such a 
way that the value of some particular moment in an image sequence can vary while the remaining 
moments remain constant. 

Invariants are sensitive to any image change or perturbation for which they are not invariant, so any 
unexpected perturbation will affect the measurements, that is, methods based on this approach can 
suffer from a high degree of uncertainty. On the contrary, a variant moment is designed to be sensitive 
to a specific perturbation, i.e., to measure a transformation, not to be invariant to it and thus if the 
specific perturbation occurs it will be measured, hence any unexpected disturbance will not affect the 
objective of the measurement, that is, variant moments behave as specific detectors. 

Assuming the restriction of two dimensional images on the plane, some useful orthogonal variant 
moments are the volume and area under the curve, the surface area Sa computed by two orthogonal 
components (Lx) for the x-axis and (Ly) for the y-axis, an approximation of the phase of a wave which 
are called the position or station defined also in two orthogonal components Px and Py.  

Also, time derivatives of these orthogonal variant moments are used to obtain relevant measures 
about dynamic image sequences, for instance, measures of velocity and acceleration, V and A 
respectively, are obtained from the time derivatives of the position, ∂Px and ∂Py. .The time derivatives of 
the surface area (length), ∂Lx, ∂Ly, represent the speed with which the disturbance is attenuated or 
amplified by a factor k. As long as the ratio between ∂Lx and ∂Ly remains constant, this fact can be 
interpreted as a zoom in/out from a perpendicular observer to the xy-plane. 

The method introduced previously [37] operates by extracting, for each frame I of an image 
sequence or stream, a set M of moments, as shown in Equation (5): 

 (5)

Once obtained the M vector, these moments can be used directly in several computer vision 
algorithms, for instance, to produce image segmentation, movement detection, shape analysis and 
object and pattern recognition. 

2.3. Multimodal Sensor Architecture Integrated 

The high level description tool Handel-C was chosen to implement this core within the DK  
environment [38]. The board used is the well-known AlphaData RC1000 [39] which includes a Virtex 
2000E-BG560 chip and four SRAM banks of 2 Mbytes each. These external banks have been used for 
different implementations, accessing to them from both the FPGA and the PCI bus as shown in the 
Figure 1. Low-level optical flow vision is designed and built through an asynchronous pipeline where 
a message or token is passed to the next core each time one core finish the processing task. 

=)(IM [ ])();();();();( IPIPILILIA yxyx
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Nevertheless Low-level moment vision platform is implemented in a parallel way, being independent 
each one of the rest.  

Each orthogonal variant moment and the optical flow scheme contribute to the final Mid-Level 
Vision estimation. The multimodal sensor core integrates the information from different abstraction 
layers (six modules for optical flow, five modules for the orthogonal moments and one module for the 
Mid-Level vision tasks). The Mid-Level vision core is arranged in this work for segmentation and 
tracking estimation with also an efficient implementation of clustering algorithm, although additional 
functionality to this last module can be added using this general architecture.  

Figure 1. Scheme of the VLSI architecture of the Multi-Modal Sensor implemented in the FPGA. 

 

3. Algorithms of the Mid-Level Multimodal Sensor: Tracking & Segmentation Case Study  

In this section the algorithms for performing tracking and segmentation are presented. Algorithm 1 
(Segmentation function) shows a classical segmentation procedure that uses the well-known k-means 
clustering algorithm, although any other clustering algorithm could be used instead to group pixels into 
different classes. The k-means algorithm is implemented in hardware, thus modifying the structure 
proposed by [40], in order to reduce the computation time between the class centre and the pixels.  

Every pixel is classified using a set of features for itself and a neighbourhood surrounding it, such as its 
x,y-coordinates, a set of orthogonal variant moments calculated for the subimage formed by the pixel’s 
neighbourhood Wij and additionally two components provided by the optic-flow subsystem indicating the 
magnitude mij and the phase θij. Thus every pixel is represented by a vector of features Fij that will be 
classified into a cluster or class. The k-means algorithm has a quite critical parameter k which determines 
the number of different clusters to generate. One simple method to overcome this apparent limitation (due 
to the unknown possible number of moving objects in the scene) uses a large enough k and drops all 
insignificant or low quality clustering generated.  

The full motion detection and tracking system is then achieved by the procedure described in 
Algorithm 2. The method is as follows: given an image sequence S, the algorithm will perform, for each 
temporal image frame, the segmentation procedure described above, in order to group the pixels of the 
current frame into different clusters. Once each valid cluster has been generated, every pixel will have a 
label indicating its class, e.g., 1, 2, 3, … k. With this starting information, the algorithms can proceed to 
superimpose a surrounding box over the image frame for each detected object. At this step, each cluster 
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will represent a moving object and thus we can handle mid-level entities instead of low level entities 
(pixels).  

Algorithm 1. The proposed integrated segmentation algorithm incorporating the variant moments and the 
measures of optic flow, flow’s magnitude and phase of each pixel (mij, өij ). 

1: Function Segmentation(I) 

2: {An image I of N × M pixel intensities} 

3: for ݅ ൌ 1 to N do 

4: for ݆ ൌ 1 to M do 

5: Obtain a window: ܹ ൌ ܫ ቂ݅ െ ௪ଶ ڮ ݅  ௪ଶ , ݆ െ ଶ ڮ ݆  ଶቃ of ݓ ൈ ݄ neighbors of ܫሾ݅, ݆ሿ 
6: Obtain pixel features:  ܨ ՚  ,ሺ݅ሻݔ ሺ݆ሻ,ᇩᇭᇭᇪᇭᇭᇫ௫,௬ିௗ௧௦ݕ ൫ܣ ܹ൯, ௫൫ܮ ܹ൯, ௬൫ܮ ܹ൯, ௫ܲ൫ ܹ൯, ௬ܲ൫ ܹ൯ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ௩௧ି௧௦ , ݉,ߠᇩᇭᇪᇭᇫ௧ି௪ 

7: end for 
8: end for 
9: class-id = k-means(F,k,w) 

10: return class-id 
 

Algorithm 2. The tracking algorithm used in the experiments. 
Require: An image sequence S. 

1: for each time step t do 

௧ܫ :2 ՚ new image frame from S 
3: class-id = Segmentation(ܫ௧) 
4: for each object in class-id do 
5: Update the object’s surrounding box based on pixel positions of class-id 
6: end for 
7: end for 

4. Application to the Multimodal Bioinspired Sensor to Mid-Level Vision Tasks 

In this section, the whole system is characterized according to the computational resources needed 
and the throughput obtained. Also, for the sake of clarity some visual results and a comparison with 
similar approaches are presented.  

4.1. Computational Resources 

Regarding the hardware resources, the metric for measuring the logic and the memory used will be 
the slice and the Block Ram occupation index. The software tool used to synthesize the final sensor 
under reconfigurable hardware (FPGA devices) is the ISE 12 suite [41].  

The slower stage in the Low-level optical flow platform is Stage IV while Stage II needs the 
maximum number of Block RAMs due to the computations performed, as shown in Table 1. Stage V 
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also needs a considerable amount of slices due the intensive use of multipliers. Some resources have 
been preserved in this implementation to be able to integrate all the optical flow and orthogonal 
moments in a whole system.  

Table 1. Slices, memory requirements, number of cycles and performance for the 
implementation of Low-level vision. Optical flow scheme. 

The number of cycles used (NC), determines the slower stage which restricts an improved 
throughput of the final system, regarding which, the Xilinx timing analyzer tool [41] delivers the 
results in terms of frequency around 25%–35% lower than the real frequency tested in our 
experiments. Table 1 also shows the performance of the optical flow scheme based on chained stages, 
attending to the pixel/seconds processed, is concluded that it is possible to compute real-time 
estimation with a resolution of 320 × 240 pixels.  

Low-level orthogonal moments resources are presented in Table 2. Although the moments Lx and Ly 
represent the slowest part of the Orthogonal Moment scheme and they use more slices and Block Rams 
than Px and Py, in general, so these do not impose a resource limitation in the whole system.  

Table 2. Slices, memory requirements, number of cycles and performance for the 
implementation of Low-level vision. Orthogonal moment scheme. 

Low-level Vision Stage (Orthogonal Variant Moments) 
Area 
(MI) 

LX 

(MII) 
LY 

(MIII) 
PX 

(MIV) 
PY 

(MV) 
Slices 
(%) 

321 
(2%) 

1245 
(7%) 

1245 
(7%) 

658 
(4%) 

658 
(4%) 

Block RAM (%) 1% 4% 4% 3% 3% 
MC 7 11 11 5 5 
Throughput 
(Kpixels/s)/ 
Frequency limited by ISE tool (MHz) 

4546/ 
49 

Once each separate stage corresponding to an early-vision primitive is properly implemented, the 
integration and processing of the complete system is needed. Table 3 shows how the limits of the 
bioinspired global sensor are imposed by the Low-level vision platform, with the Mid-level vision 
acting as a supplement in terms of resources needed. In fact, the implemented platform has adapted the 
resources in comparison with previous works [14,15]; with this, the limit of the global system will be 
imposed by the slowest stage, awaiting the information from the asynchronous pipeline to be processed. 

Low-level Vision Stage 
(Optical flow) 

FIR Temporal 
Filtering 

I 

FIR Spatial 
Filtering 

II 

Steering 
III 

Product 
& Taylor 

IV 

Quotient 
V 

Primitives
VI 

Slices 
(%) 

190 
(1%) 

1307 
(7%) 

1206 
(6%) 

3139 
(19%) 

3646 
(20%) 

2354 
(12%) 

Block RAM (%) 1% 31% 2% 13% 16% 19% 
MC 13 17 19 23 21 19 
Throughput (Kpixels/s)/ 
Frequency limited by 
ISE tool (MHz) 

4,846/ 
63 

3,235/ 
55 

2,526/ 
48 

1,782/ 
41 

1,695/ 
39 

2,000/ 
38 
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Regarding that, it is important to remark that taking into account how the architecture has been designed 
the Mid-level task is one the last stages of the pipeline. The hardware requirements in term of slices, 
memory, number of cycles and performance for the implementation of the Multimodal Bioinspired 
Sensor can be seen in Table 3.  

Table 3. Slices, memory requirements, number of cycles and performance for the 
implementation of Low and Mid-Level vision. Multimodal Bioinspired Sensor.  

COMPLETE Mid-
level and Low level 
Vision 

Motion 
Estimation 

(Low-Level) 

Orthogonal Variant 
Moments (Low-Level)l 

Tracking & 
Segmentation Unit 

(Mid-Level) 

Multimodal 
Bioinspired Sensor. 

(Mid-level &  
Low-Level) 

Slices 
(%) 

4127 
(24%) 

11842 
(65%) 

1304 
(6%) 

17710 
(97%) 

Block RAM (%) 15% 80% 4% (99%) 
MC (limiting) 29 11 18 29 
Throughput 
(Kpixels/s)/ 
Frequency limited 
by ISE tool (MHz) 

4546/ 
49 

2000/ 
38 

2000/ 
38 

2000/ 
38 

Table 4 finally shows the throughput obtained for several input resolutions of the global system 
expressed in Kpps (kilo pixels per second) and fps (frames per second). The maximum performance of 
the global system reaches up 2,000 Kpixels/second.  

Table 4. Throughput in terms of Kpps and frames/second for the embedded sensor. 

COMPLETE Mid-level and 
Low-level Vision 

Orthogonal 
Variant Moments 

(Low-Level)l 

Motion Estimation
(Low-Level) 

Multimodal Bioinspired Sensor.
(Mid-level & Low-Level) 

resolution 120 × 96 395 frames/s 174 frames/s 174 frames/s 
resolution 320 × 240 59 frames/s 26 frames/s 26 frames/s 
resolution 640 × 480 28 frames/s 14 frames/s 14 frames/s 
Throughput 4546 Kpixels/s 2000 Kpixels/s 2000 Kpixels/s 

4.2. Visual Results 

Three different experiments related to the processing of real input sequences captured from a static 
camera are displayed. The Low-level vision output indicates the optical flow estimation of each pixel 
using modulus and phase. On the one hand, the modulus (how fast the pixel is processed) is 
represented with a gradient intensity code, where black colour means no motion and white colour 
represents values with high velocity, on the other hand, the phase (direction towards which the 
processed pixel is moving) is represented using a colour coding as shown in the colour boundary 
frame. According to this formalism, downward motion will be represented using the blue tonalities, 
upward will use yellow tonalities and so on. Every pixel has individual information of its modulus and 
phase and every object has information about its segmentation and tracking surrounding area.  
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4.2.1. Experiment I 

The first stimulus (Figure 2) represents two persons walking towards the left and showing a little 
residual motion in the central part of the frame sequence (a) with a resolution of 128 × 128 pixels. The 
motion is marked with yellow lines in order to indicate a qualitative approach. Phase Estimation indicates 
that the majority of the motion is moving towards the left (b). Modulus estimation gets a measure of the 
velocity of the pixels (c). Finally the tracking task follows the three different segmented objects (e). 

Figure 2. Results from Experiment I.  

 

4.2.2. Experiment II 

The second stimulus is a traffic sequence transition (Figure 3). There are different objects and 
speeds interacting (a) with a resolution of 128 × 128 pixels. Phase estimation delivers results moving 
towards down, right and up (b). Modulus estimation again provides velocity values (c). Segmentation 
(d) and Tracking (e) scheme processes five shapes.  

Figure 3. Results from Experiment II.  
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4.2.3. Experiment III 

The third stimulus represents a person spreading their arms and legs upwards and downwards (a) 
with a resolution of 256 × 164 pixels (Figure 4). Phase estimation provides blue, green and red color 
values indicating motion towards the left, up and down. (b). Modulus estimation shows the different 
velocity values (c). Segmentation (d) and Tracking (e) process six contours. 

Figure 4. Results from Experiment III.  

 

4.3. Comparison with Other Approaches 

Comparisons with other embedded complex vision models are presented in Table 5. The motion 
computation family and the method used are listed. The performance obtained and the computation 
densities are also shown. Every pixel value should be computed (100% density), nevertheless some of 
the methods below filter the inputs, reducing the processing space and thus the density. 

There are many embedded engines regarding low-level vision [42-46]. This design reaches 2 Mpps, 
being able to deliver 26 frames/second with a resolution of 320 × 240 pixels, and a complete 
computation density (100%), thus enough for automation applications such as a little robot. It is 
important to remark that this model links two different abstraction layers, providing a Mid-level vision 
output. 

Other approaches are based on motion estimation models (low-level) that are not biologically 
plausible; for example, the optical flow part of the presented model has been proved [16,17] to recover 
motion patterns based on texture-defined contours (second order motion) [47,48], which is very useful, 
e.g., for camouflage tasks and prediction the behaviour of many optical illusions. 
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Table 5. Comparison with other complex system vision approaches. 

Models Family Method 
Throughput  
(Mpixel/s) 

Density 

Present work  Gradient 
Enhanced McGM 
and Orthogonal 
variant moments 

2 100% 

Botella et al. [14,15] 
(2009, 2010) 

Gradient McGM 0.2 100% 

Wei et al. [42] (2008) Gradient Horn & Schunck 4 100% 

Diaz et al. [43] (2007) Gradient Lucas & Kanade 82 57.2% 

Tomasi et al. [44] (2010)  Energy Phase Based 49 not provided 
Sosa et al. [45] (2006) Gradient Horn & Schunck 1.8 not provided 

Mahalingam et al. [46] 
(2010) 

Gradient Lucas & Kanade 9.9 6.3% 

5. Conclusions and Further Work  

A complex bioinspired sensor, capable of computing multimodal low-level vision primitives to 
produce robust mid-level vision methods, is presented. The bioinspired sensor has been designed for 
Very Large Scale Integration (VLSI) using properties of the cortical motion pathway. This sensor 
combines low-level primitives (optical flow and image moments) in order to produce a mid-level 
vision abstraction layer. The whole system is scalable and modular, being it also possible to select the 
visual primitives involved (number of moments) as well as the bit-width of the filters and computation 
accuracy in the low-level vision (optical flow). This architecture can integrate different visual 
processing channels, so the proposed system makes possible the implementation of complex bioinspired 
algorithms on-chip.  

In this respect, the integration of these low-level primitives through the proposed sensor has been 
applied to the design of a very efficient and robust visual tracking system. This specific system is 
robust in applications with high luminance variations and noisy environments. It is also useful in the 
research on the human perceptual system.  

The integration of such different approaches represents a novel way of efficiently approaching 
complex computer vision systems. To the best of our knowledge, this is the first time that several  
low-level primitives are integrated with mid-level vision. 

The integration of other low-level vision primitives such as phase, colour, motion, and binocular 
disparity is the next step in our research. It will also include mid-level inferences in the processing 
hence additional research will consider the combination of variant and invariant moments in the 
framework of low-level (pixel level) and mid-level (object level) vision and its integration with the 
optical flow. This complex vision system is currently being built on modern FPGAs using VHDL.  

Furthermore, the computation of the multi-scale optical flow based on different moment 
measurements, instead of using the gradient based approaches of pixel intensity changes, and its 
hardware implementation, is a direct extension that is suggested by the presented model. 
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