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Abstract
We consider a Gaussian copula model for multivariate survival times. Estimation of the copula
association parameter is easily implemented with existing software using a two-stage estimation
procedure. Using the Gaussian copula, we are able to test whether the association parameter is
equal to zero. When the association term is positive, the model can be extended to incorporate
cluster-level frailty terms. Asymptotic properties are derived under the two-stage estimation
scheme. Simulation studies verify finite sample utility. We apply the method to a Children’s
Oncology Group multi-center study of acute lymphoblastic leukemia. The analysis estimates
marginal treatment effects and examines potential clustering within treatment institution.
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1 Introduction
In some correlated survival data settings, practitioners have two primary interests:
determining the effect of treatment and assessing potential dependence between subjects.
For example, in many multi-center clinical trials, data are clustered within treatment center.
Athough institutions participating in clinical trials follow trial-specific protocols, differences
can still exist in outcomes between institutions. The dependence among patients treated at
the same institution is an important component of a multi-center clinical trial analysis
(Fleiss, 1986; Gray, 1994; Jones, Teather, Wang, and Lewis, 1998; Senn, 1998; Anello,
O’Neill, and Dubey, 2005; Vierron and Giraudeau, 2007; Logan, Nelson, and Klein, 2008;
Zheng and Zelen, 2008).

Our motivating data arise from a large multi-center clinical trial for children with acute
lymphoblastic leukemia. The goal of the clinical trial was to test whether either an increase
in the strength or an increase in the duration of the standard chemotherapy regimen was
associated with improved survival. We are interested in evaluating whether there exists
correlation between survival outcomes within an institution while concurrently assessing the
efficacy of the new treatment regimens.

A variety of statistical models are available for correlated survival data. Marginal models
treat within-cluster correlations as a nuisance (Wei, Lin, and Weissfeld, 1989; Prentice and
Cai, 1992; Cai and Prentice, 1995; Cai, Wei, and Wilcox, 2000, among others). Parameters
from marginal models have population-average interpretations. Frailty models are used
when within-cluster inferences are desired because the parameters from these models have
interpretations conditional on the value of the frailty (Clayton, 1978; Oakes, 1989; Murphy,
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1994, 1995; Parner, 1998; Cai, Cheng, and Wei, 2002; Lam, Lee, and Leung, 2002; Glidden
and Vittinghoff, 2004; Zeng and Lin, 2007, among others). The positive stable frailty model
(Fine, Glidden, and Lee, 2003) allows for marginal proportional hazards interpretation of
parameters within a frailty model framework. Copula models (Shih and Louis, 1995;
Glidden, 2000; Li, Prentice, and Lin, 2008, among others) embed marginal survival
functions within a copula function parametrized by an association term.

For our application, we would like to: (1) test whether either of the two new chemotherapy
schedules is associated with improved marginal survival and (2) test whether there is a non-
zero correlation between survival outcomes within institutions while controlling for known
prognostic factors. Few existing models for multivariate survival data accommodate both
semiparametric marginal distributions and unrestricted pairwise dependence.

Consider, for example, Clayton (1978)’s model for a pair of survival times. The dependence
term for this model, θ, takes values in (0, ∞). When θ = 1 the model reduces to the
independence model, while θ > 1 induces positive association and θ < 1 induces negative
association. When θ ≥ 0.5, the distribution is absolutely continuous, but for θ ≤ 0.50, a
singular distribution is concentrated on a curve (Oakes, 1989). Hougaard (2000) noted that
frailty models cannot yield unrestricted marginal distributions with unrestricted pairwise
parameters. Hence, it will be of substantial interest to specify a semiparametric likelihood
model that allows for arbitrary modeling of the marginal survival functions and a flexible
and interpretable correlation structure.

The goal of this project is to develop a model for multivariate survival data that addresses
points (1) and (2) above. To this end we use a semiparametric normal transformation that
establishes a Gaussian copula for survival data. The marginal survival function follows a
proportional hazards model. The Gaussian copula includes a parameter that summarizes the
within-cluster correlation. The correlation parameter can take positive and negative values,
which allows for straightforward testing of whether the correlation parameter is equal to
zero.

We note that there have been two previous articles using the semiparametric normal
transformation model, but neither is applicable to our setting and the proposed model
extends the range of data to which the idea can be applied. In contrast to Li et al (2008), our
model can accommodate varying cluster sizes and allows for covariates. Li and Lin (2006)
assume a specific spatial correlation structure on the entire dataset. In contrast, our method
explicitly allows for correlated survival times within independent clusters.

The rest of the paper is structured as follows: in Section 2 we define notation and describe
the model; Section 3 summarizes inference procedures; Section 4 outlines an extension of
the model when the correlation term is postive; we provide a summary of asymptotic results
in Section 5; simulations are presented in Section 6; Section 7 contains an analysis of a
Children’s Oncology Group multi-center clinical trial; and we finish with a brief discussion
in Section 8. Regularity conditions and proofs of theorems are contained in the Appendix.

2 Model Specification
Let Tij and Cij denote potentially unobserved failure and censoring times for subject j in
cluster i, where j = 1, …, ni and i = 1, …, m. The observed data are Xij = min(Tij, Cij) and Δij
= I(Tij ≤ Cij). Let Zij(t) denote an external time-dependent covariate vector (Kalbfleisch and
Prentice, 2002, page 197) of length p and write its covariate path up to time t as Z ̄ij(t) =
{Zij(s) | 0 ≤ s ≤ t}. Assume that Tij, conditional on the covariate process Z ̄ij(Tij), is
independent of Cij. Also, assume that, conditional on each individual’s covariate path, the
hazard of Tij, denoted λ{t | Z ̄ij(t)}, follows a proportional hazards model:

Othus and Li Page 2

Stat Biosci. Author manuscript; available in PMC 2011 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

Here β is a vector of regression coefficients and λ(t) is an unspecified baseline hazard
function with cumulative hazard function Λ. Equation (1) is a marginal model for each Tij,
hence β has a population-average interpretation not a cluster-specific interpretation.

To model the clustering of the Tij, consider the semiparametric normal transformation:

(2)

where Φ is the standard normal distribution function and S is the survival function
associated with Equation (1). By the probability integral transform, 1 – S{Tij | Z ̄ij(Tij)} has a
Uniform(0, 1) distribution. It necessarily follows that T ̃ij ~ Normal(0, 1). The transformation
takes Tij with support on (0, ∞) and transforms it to a standard normal random variable, T ̃ij.

Denote the correlation of (T ̃i1, …, T ̃ini) with Σi. We consider an exchangeable correlation
structure for Σi, where the diagonal terms are equal to 1 and off-diagonal terms are equal to
σ. In this model σ can take positive and negative values. The value zero is an interior point
of the parameter space for σ so this model can be used to test whether potentially clustered
survival data have non-zero correlation. The Gaussian copula model of Li et al (2008) is a
special case of this model with no covariates and cluster size fixed at two.

The term σ can be considered a summary measure for the correlation between two subjects
within the same cluster after controlling for the covariates included in model (1). Known
prognostic factors can be included in the proportional hazards model, and the estimate of the
correlation will be based on Cox-Snell type residuals as defined with Equation (2). The term
σ can viewed as a generalization of Kenall’s τ and Spearman’s ρ to allow for covariates. For
bivariate data, a direct relationship between σ and Kendall’s τ and Spearman’s ρ is
straightforward to establish (Li et al, 2008). We can relate σ to the original time scale using
the cross-ratio, a local dependence measure (Kalbfleisch and Prentice, 2002). A derivation
of this result can be found in Li and Lin (2006, Section 3.1).

3 Inference
3.1 Likelihood Development

Let Yij be a potentially censored version of T ̃ij (Equation (2)). The semiparametric normal
transformation is monotone and thus preserves censoring patterns. To simplify the

presentation, define  and order the observations such that Δi1 = … = ΔiΔi = 1.

First consider 1 ≤ Δi ≤ ni − 1. Let  and .

Let Σi be the covariance matrix for the transformed failure times. Write Σi as a partitioned
matrix:
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where Σi11 has dimension Δi × Δi. The vector  follows a multivariate normal distribution

with mean 0 and covariance matrix Σi11. It follows that  is a censored observation

from a normal distribution with mean  and covariance matrix

.

Because the semiparametric normal transformation is monotonic, the likelihood for the
observed data, Xij, can be written in terms of the transformed terms, Yij. To do so, we use the
fact that P(Xij < x) = P(Yij < y), where y is the semiparametric normal transformation of x.
Write the likelihood based on the observed data as L(σ, β, Λ). The likelihood contribution
from cluster i is

(3)

where φΔi is the multivariate normal density corresponding to its argument, Φ̃ni−Δi is the
multivariate normal survival function corresponding to its argument, f is the density
corresponding to Equation (1), and φ is the standard normal density function. If σ = 0, L(σ,
β, Λ) reduces to the usual proportional hazards likelihood. A derivation of this likelihood is
provided in the Appendix.

When Δi = 0 (all subjects in cluster i are censored) define φΔi = 1 and

. When Δi = ni (all subjects in cluster i have been observed
to fail) define Φ̃ni−Δi = 1. With these conventions, Equation (3) holds also for Δi = 1 and Δi =
ni. L(σ, β, Λ) is the product of Equation (3) over i = 1, …, m.

To make the likelihood L(σ, β, Λ) more transparent, we consider an example likelihood
contribution from a cluster of size two where one subject is observed to be censored at time
CA1 and one subject is observed to fail at time TA2. The covariate process for each subject is
denoted Z ̄A1(CA1) and Z ̄A2(TA2). The normally transformed observed failure times are YA1 =
Φ−1[1– S{CA1 | Z ̄A1(CA1)}] and YA2 = Φ−1[1 − S{TA2 | Z ̄A2(TA2)}]. In this case

The first term of L(σ, β, Λ) can be written

(4)

while the second term can be written

(5)
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Equation (4) is the density of a standard normal random variable, while Equation (5)
corresponds to, conditional on YA2 = yA2, the probability that a Normal(σyA2, 1−σ2) random
variable is greater than yA1.

3.2 Estimation
We propose a two-stage method to estimate (σ, β, Λ). First we estimate β ̂ and Λ ̂ from the
marginal proportional hazards model. We then solve maxσ L(σ, β ̂, Λ ̂) for σ ̂. Formulas for the
standard errors of β ̂ and Λ ̂ that account for clustering can be found using a sandwich formula
(Spiekerman and Lin, 1998). The formula for β has been implemented in many statistical
programs. The analytic standard error of σ ̂ is complicated because it needs to account for the
variability from β ̂ and Λ ̂. In practice the standard error can be estimated using a resampling
scheme. To maintain the correlated structure of the failure times, the clusters should be the
unit of removal for the resampling calculations (Cai et al, 1997; Cai and Shen, 2000). We
choose to use the jackknife for resampling because theoretical validation of the method
exists (Lipsitz, Dear, and Zhao, 1994; Lipsitz and Parzen, 1996).

This estimation procedure is computationally straightforward. Marginal estimates of the
survival function are available in all standard computing programs, while the likelihood for
σ, L(σ, β ̂, Λ ̂), is proportional to a product of multivariate normal terms, quickly computable
using existing software (e.g., R package MVTNORM).

4 A Frailty Model Extension
4.1 A marginalized frailty model

When σ > 0, the model for T ̃ij can be extended to allow for a frailty term:

(6)

where bi is a cluster-level frailty and εij is an error term. We assume that cluster-level
frailties bi have a standard normal distribution and the error terms εij are independent and
identically distributed N(0, 1 – σ) random variables that are independent of bi. The cluster-
level frailties bi can be used to assess cluster-level differences. The β parameters in Equation
(1) have marginal interpretation, while σ and bi from Equation (6) characterize the cluster
effect.

Equation (6) merges elements of frailty models with the marginal model, and so will take a
moment to review the interpretation of the components of this model. Larger values of σ
imply that the frailty terms explain a larger portion of the variance in the T ̃ij compared to
smaller values for σ. Larger values of σ provide evidence for a stronger cluster effect
compared to smaller values for σ. In the context of a multi-center clinical trial, the cluster-
level frailties (bi) characterize the center effect. For a fixed set of covariates, smaller or more
negative values for bi are associated with shorter survival times (on the original
untransformed scale) compared to larger or more positive values for bi.

4.2 Prediction of the frailty terms
If σ ̂ > 0, prediction of bi and the associated standard error can be found using Laplace
approximations to the bi’s first two moments. Denote the observed data for the ith cluster,
(Xi1, …, Xini, Δi1, …, Δini, Z ̄i1(Xi1), …, Z ̄ini (Xini)), with Ψi. The conditional density of bi
given the observed data Ψi, denoted g(bi | Ψi; σ, β, Λ), can be written
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where Li is the likelihood for Ψi | σ, β, Λ. Define ki such that
. Using the Laplace approximations to the first two

moments of g(bi | Ψi; σ, β, Λ) (Booth and Hobert, 1998), the predicted estimate and variance
of bi are taken to be:

(7)

(8)

where double superscript dots denote second derivatives.

The prediction of the shared frailties is straightforward. The expression for ki(bi | σ ̂, β ̂, Λ ̂, Ψi)
involves ni normal terms and can be maximized using any standard optimization routine.
The estimate of the variance of bi has a closed form expression and can be found by
plugging in relevant estimated quantities.

5 Theoretical Results
The following theorems establish the theoretical properties of (σ ̂, β ̂, Λ ̂) where their true
values are denoted with (σ0, β0, Λ0).

Theorem 1
Under Conditions C.1 – C.6 in the Appendix, (σ ̂, β ̂, Λ ̂) converges in probability to (σ0, β0,
Λ0) as m → ∞.

Theorem 2

Under Conditions C.1 – C.7 in the Appendix Report, as m → ∞,  and
 converge to zero-mean normal distributions and  converges to a

zero-mean Gaussian process.

Proofs of Theorems 1 and 2 can be found in the Appendix. The proofs of both theorems for
σ ̂ adjust for the two-stage estimating procedure. These theorems verify that σ ̂ is consistent
and asymptotically normal when plug-in estimates of β and Λ are used in the likelihood
function.

6 Simulation Results
Simulations were conducted to evaluate the efficacy of the proposed method. The presented
simulations have marginal survival times from a proportional hazards model with a constant
baseline hazard function equal to 1 and with two covariates: one Bernoulli(0.5) covariate
with parameter equal to log(0.5) (denoted β1) and one Uniform(0,1) covariate with
parameter equal to 0.75 (denoted β2). Censoring times were taken from the
Exponential(median=3) distribution and produced about a 25% censoring rate. Correlated
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survival times were created by first generating random correlated multivariate normal
values. The normal values were transformed to the survival scale using Equation (2). Each
simulation is based on 250 replications.

In order to focus on the novel elements of the method, we present results for β1 and β2 in the
Appendix. As has been shown by other authors, our simulations verify that estimates of β1
and β2 have little bias and appropriate coverage probability.

For our results for σ, we summarize scenarios with 45, 60, and 90 clusters. Within each
replication, clusters varied in size between 2 and 7 units. Standard errors (SEs) for σ were
found using the jackknife. We chose to use the jackknife for resampling because theoretical
validation of the method exists for multivariate survival data (Lipsitz, Dear, and Zhao, 1994;
Lipsitz and Parzen, 1996). Bias, SEs, and coverage probabilities are summarized in Table 1.
Power results are summarized in Figure 1.

The estimates of σ have little bias across the simulations. The jackknife SE is close to the
Monte Carlo SE across the scenarios. In clusters of size 45, parameter estimates remain
unbiased, but the coverage probability drops below nominal levels. As expected, as sample
size and correlation increases, the power for testing whether σ ≠ 0 increases.

We also conducted simulations to assess the performance of our frailty estimation method
(Equations (7) and (8)). In these simulations, we took σ = 0.5 to ensure all estimates of σ
were positive so that frailties could be predicted. Data were generated using Equation (6), to
provide true values for the frailty terms. The parameters σ and β were estimated using our
proposed two-stage method and their estimates were used in Equations (7) and (8) to predict
frailty values and calculate standard errors. We summarize results for simulations with 90
clusters and a range of cluster sizes: cluster sizes varying between 3 and 10 with median size
5, cluster sizes varying between 7 and 20 with median size 10, cluster sizes varying between
10 and 33 with median size 15, and cluster sizes varying between 13 and 50 with median
size 20. Results are summarized in Table 2.

The method performs well even with small cluster sizes. The relative bias is small. As the
cluster sizes increase, the likelihood SEs approach 1, their true value.

7 Data Application: Children’s Oncology Group Study 1961
7.1 Is there evidence of correlation between the survival times of patients within the same
institution?

We applied our method to a Children’s Oncology Group (COG) study (protocol number
1961) (Seibel et al, 2008). We analyzed 460 children with enlarged livers from 104
institutions. The goal of the clinical trial was to test whether either an increase in the
strength or an increase in the duration of the standard chemotherapy regimen was associated
with improved survival for “higher risk” acute lymphoblastic leukemia patients. A 2×2
factorial design was used. The distribution of subjects with enlarged livers among the four
arms is presented in Table 3. The number of subjects in each of the 104 institutions is
summarized in the histogram in Figure 2. We analyzed the overall survival endpoint.

We present regression results in Table 4. Standard errors for the marginal survival covariates
were found using three methods: a sandwich formula, the jackknife, and a naïve estimate
ignoring potential clustering. Standard errors for σ were found using the jackknife. P-values
were found using the jackknife standard errors.

In a model with two covariates for treatment, there was some evidence that increased
duration of chemotherapy was associated with worse overall survival compared to the
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standard duration. There was also evidence that overall survival was improved for patients
with increased strength of chemotherapy compared to standard strength. The estimate for the
correlation of the transformed failure times was 0.173 with a standard error of 0.159.

We also considered a larger model including the two treatment covariates, their interaction,
and the prognostic factors of age and platelet count at registration. In this larger model, none
of the covariates appeared to be associated with overall survival. The correlation term of this
larger model was of similar magnitude as the treatment only model: the estimate was 0.207
with a standard error of 0.200.

7.2 Is there further information that can be gained by considering frailty terms?
The standard errors for the correlation term (σ ̂) were large in both models summarized in
Table 4, so we felt it would be useful to investigate whether there were any outliers
contributing to the large standard error. In both regression models presented, the estimate of
the correlation (σ ̂) was positive, so we were able to predict frailty terms for each institution.
The predicted frailty values were very similar between the two models, so we only present
the frailties from the larger model.

A qq-plot for frailty values standardized by their standard errors indicated several potential
outliers (Figure 3). The largest positive standardized frailties were from institutions with
only one patient, so we disregarded those institutions as potential outliers. The largest
negative frailties were from institutions with 10 and 22 patients, so we investigated these
institutions further.

A plot of the predicted frailty values by institution size is provided in Figure 4. The two
institutions identified as potential outliers in the qq-plot are marked in Figure 4, and the
institutions still appear to be outliers. Among the other institutions there appears to be a
positive trend, where institutions that contributed more patients had larger frailty values.
Both of the institutions that are potential outliers do not follow this trend.

Given these results, we were interested in whether these trends could be explained by the
type of patients at the two institutions. We used Fisher’s Exact test to compare known
prognostic factors between each of the potential outlying institutions and all other patients.
Given the limited sample sizes, we recognized that the power of the tests may be limited.
We compared the following baseline characteristics: spleen enlargement, race, nodes
(normal, moderately enlarged, significantly enlarged), mediastinal mass, white blood cell
count (less than 50, 50–199, 200 or more; all ×103/mm2), hemoglobin count (1 to 7.9, 8.0 to
10.9, 11.0 or more; all g/dL), platelet count (1 to 49, 50 to 149, 150 or more; all ×103/mm3),
and age (1–9, 10–15, 16 and older). Only one test had a p-value < 0.05, the comparison of
age with the institution with ten patients.

The larger regression model in Table 4 controls for age, and age was not significantly
associated with survival in the model. Given this result, there may be other factors beyond
the available patient data that explain why these institutions have unusual frailty values.

To evaluate the impact of these two institutions on the estimate of the correlation, we refit
our models excluding patients from the two institutions marked in Figures 3 and 4. A
summary of the original and refit correlation estimates (σ ̂) is provided in Table 5. The
correlation estimate was smaller in the subset compared to the full dataset, though the
change was more pronounced in the treatment only model.

The correlation estimates for the subset data are positive and so frailty terms were able to be
predicted for each of the institutions. A qq-plot of the frailties standardized by their standard
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errors and a plot of the frailty terms versus the institution size is provided in Figure 5. There
do not appear to be any outliers in the model fit with the subset of the data. The frailty
results look very similar to the results in Figures 3 and 4 excluding the two marked values.

In this subset of the data, there is not evidence that survival times are correlated within
institution. Our available data does not explain why two institutions may be outliers.

7.3 An alternative analysis using a gamma frailty model
We applied the gamma frailty model to the COG dataset. Results from an analysis with the
two treatment covariates and an analysis including a treatment interaction and controlling
for age and platelet count is provided in Table 6. The estimate for covariates is the log
hazard ratio.

In the gamma frailty model, the strength of the correlation is measured by the variance of the
gamma frailties. In both the treatment only and larger models, the estimate for the frailty
variance variance is not significant. As with our results, these two gamma frailty models do
not show evidence of clustering within institution.

The covariate parameter values from the proposed model are the same as would be found
using a marginal proportional hazards model treating the potential clustering as a nuisance.
Therefore the parameters from the proposed model have population interpretation as an
average effect across all the patients in the study.

In contrast, due to the functional specification of the gamma frailty hazard function,
covariate parameters values from a gamma frailty model are interpreted as conditional on
the value of the frailty and do not represent an average effect. When there is no correlation
within clusters, the proposed model and the gamma frailty model both reduce to the
proportional hazards model. Given the low evidence of clustering in this dataset, it is not
surprising that the covariate parameter estimates are close in Tables 4 and 6. Given that the
COG study was interested in population averaged hazard ratios, the parameters in Table 4
provide a more appropriate interpretation.

As with the proposed method, we looked plotted the log frailty values from the gamma
frailty model versus the institution size in Figure 6. We note that the with the proposed
method large, positive frailties are associated with improved survival, in contrast to the
gamma frailty model in which large frailties are associated with increased hazards. The two
institutions identified as potential outliers with the proposed method are marked with
crosses. In Figure 6 there does not appear to be a relationship between log frailty value and
institution size. The two marked institutions do not appear to have unusual frailty values
given the trends in the data.

8 Discussion
There is a need for flexible survival regression models that allow for marginal
interpretations of treatment or exposure, while concurrently evaluating potential clustering.
The method proposed here establishes a general likelihood framework for this type of
analysis. Marginal treatment or exposure effects are modeled with a proportional hazards
model, while the correlation between survival times is described by a Gaussian copula.
When the correlation between the transformed survival times is positive, the model can be
extended to incorporate frailties. We believe this model can provide an easy graphical
method to identify potentially “abnormal” clusters.
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When the model was applied to a Children’s Oncology Group dataset, we were able to
identify two potential outlying institutions. Baseline patient characteristics were unable to
explain the observed trends. More information on patients or on the institutions may be
needed to understand the underlying issues.

One area of future research is investigating the relative efficiency of using a non-parametric
maximum likelihood approach in contrast to the two-stage approach used in this paper. Also,
it might be useful to develop a more flexible frailty model that allows for covariates so that
factors influencing correlation can be examined within a regression framework.
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A Regularity Conditions and Notation
Assume the following regularity conditions where τ > 0 is a constant (for example, study
duration):

C.1 β is in a compact subset of ℝp
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C.2 Λ(τ) < ∞

C.3 σ ∈ ν, where ν is a compact subset of (−1, 1)

C.4 P(Cij ≥ t ∀t ∈ [0, τ] | Zij) > δc > 0 for j = 1, …, ni and i = 1, …, m

C.5 Write Zij(t) = {Zij1(t), …, Zijp(t)}.  almost surely for
some constant BZ and i = 1, …, m, j = 1, …, ni, k = 1, …, p

C.6 E[log{L(σ1; β, Λ)/L(σ2; β, Λ)}] exists for all σ1, σ2 ∈ (−1, 1)

C.7 Let Yij(t) = I(Xij ≥ t), K = maxi ni, a⊗0 = 1, a⊗1 = a, a⊗2 = a′a,

Assume  is positive definite

Condition C.3 allows us to avoid boundary issues. Condition C.5 assumes that all the
covariates are of bounded variation, which is necessary to ensure the Hadamard
differentiability of the likelihood and score function. Condition C.6 is useful to help prove
that the expected likelihood is maximized at σ0. Condition C.7 is a technical condition from
Spiekerman and Lin (1998) that is needed for the results for β ̂ and Λ ̂.

Before providing technical results, we will provide a brief description of how the likelihood
in Equation (3) can be derived. Let Sij (x) = S{x | Z ̄ij (Xij)}. We consider a cluster of size ni
with Δi subjects who are not censored. The contribution to the likelihood will be the density
function for Xi1, …, XiΔi and the survival function for XiΔi+1, …, Xini. We have specified a
copula structure, so we can write the survival function for (Xi1, …, Xini) as follows:

We can write the density of (Xi1, …, XiΔi), denoted fΔi (xi1, …, xiΔi) = f(xi1, …, xiΔi | Z ̄i1(xi1),
…, Z ̄ini (xini)), in terms of YΔi using the chain-rule:

For j = 1, …, Δi:
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The rest of Equation (3) can be found by combining these calculations with survival terms
for subjects who are censored.

To simplify the presentation of the proofs we define several terms. Define

where L(σ, β, Λ) = c*L*(σ, β, Λ) and c* does not depend on σ. Let

Expectations are with respect to the true distributions of all random variables involved. Let ||
· || denote the Euclidean norm and let || · ||∞ denote the supremum norm on [0, τ]. Let BV [0,
τ] denote the class of functions with bounded total variation on [0, τ]. Let single superscript
dots denote first derivatives and double superscript dots denote second derivatives.

B Proof and Associated Lemmas for Theorem 1
For ease of presentation we state several lemmas used in the proof of Theorem 1, but defer
their proof until Appendix D.

To account for the fact that plug-in estimates of β and Λ are used in the likelihood for σ, we
will need to take a Taylor series expansion of the likelihood of σ around β0 and Λ0. Since Λ0
is an unspecified function, this expansion will need to include a functional expansion term.
An expansion using Hadamard derivatives is appropriate for this situation. In order to use
the functional expansion, we first need to verify that the log-likelihood is Hadamard
differentiable with respect to Λ, which is done in Lemma 1.

Lemma 1
Under conditions C.1–C.5, the log-likelihood lm(σ) is Hadamard differentiable with respect
to Λ.

After we have an expansion of the log-likelihood we will need the first order terms to be
bounded by a random variable with finite expectation. We provide this verification in
Lemma 2.

Othus and Li Page 13

Stat Biosci. Author manuscript; available in PMC 2011 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lemma 2
Write the Hadamard derivative of lm(σ) with respect to Λ at ϒ ∈ BV [0, τ] as

 and let ζm(β, σ) = ∂lm(σ)/∂β. Under conditions C.1–C.5, ||ζm(Λ, σ) ||∞
and ||ζm(β, σ)|| are bounded. Expressions for ζm(β, σ)|| and ζm(Λ, σ) are provided in the proof.

In order to prove σ ̂ is consistent we will need to verify the uniform convergence of the log-
likelihood with plug-in estimates of β and Λ to the expected value of the log-likelihood
evaluated at the true values of β and Λ, denoted lm0(σ). We accomplish this, using the results
of Lemmas 1 and 2, in Lemma 3.

Lemma 3
Under conditions C.1–C.5, as m → ∞,

Finally, in order to verify that σ ̂ is consistent, we will need to show that the expected log-
likelihood is maximized at the truth, which is done in Lemma 4.

Lemma 4
Under conditions C.1–C.6, for any σ ≠ σ0,

Proof of Theorem 1
The results for β ̂ and Λ ̂ follow from arguments along the lines of Spiekerman and Lin
(1998). We use the results of Lemmas 3 and 4 to prove the result for σ ̂.

Since σ ̂ maximizes l̂m(σ), Lemma 3 implies that

Therefore E{lm0(σ0)} ≤ l̂m(σ ̂) + op(1). Subtract E{lm0(σ ̂)} from each side of the inequality to
write

(9)

where the last equality comes from Lemma 3.
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Take σ such that |σ−σ0| ≥ ε for any fixed ε > 0. By Lemma 4 there must exist some γε > 0
such that E{lm0(σ)} + γε < E{lm0(σ0}). It follows that P(|σ ̂−σ0| ≥ ε) ≤ P[E{lm0(σ)}+ γε<
E{lm0(σ0)}[. Equation (9) implies that P[E{lm0(σ ̂)} + γε < E{lm0(σ0)}] converges to 0 as m
→ ∞. Therefore P(|σ ̂−σ0| ≥ ε) converges to 0 as m → ∞.

C Proof and Associated Lemmas for Theorem 2
For ease of presentation we state several lemmas used in the proof of Theorem 2, but defer
their proof until Appendix D.

To account for the fact that plug-in estimates of β and Λ are used in the likelihood and score
function for σ, we will need to take a Taylor series expansion of the score function for σ
around β0 and Λ0. To do so we first need to verify that the score function is Hadamard
differentiable with respect to Λ, which is done in Lemma 5.

Lemma 5
Under conditions C.1–C.5, the score function Um(σ) is Hadamard differentiable with respect
to Λ.

After we have an expansion of the score function for σ, we will need the first order terms to
be bounded by a random variable with finite expectation. We provide this verification in
Lemma 6.

Lemma 6
Write the Hadamard derivative of Um(σ) with respect to Λ at ϒ ∈ BV [0, τ] as

 and let ξm(β, σ) = ∂Um(σ)/∂β. Under conditions C.1–C.5, ||ξm(σ, Λ)||∞
and ||ξm(σ, β)|| are bounded. Expressions for ξm(σ, β) and ξm(σ, Λ) are provided in the proof.

Proof of Theorem 2

The result that  converges to mean zero normal distribution and that 
converges to mean zero Guassian process follows from arguments along the lines of
Spiekerman and Lin (1998). This proof needs to verify that  converges to a
normal distribution with mean zero after accounting for the extra variance induced by the
two-stage estimation procedure. The variance of σ ̂ should be adjusted compared to a model
where β0 and Λ0 are used to take into account the estimation of β ̂ and Λ ̂.

First we will show that the score equation associated with l̂m evaluated at σ0 follows a
normal distribution. This result coupled with a first order expansion of the score equation
associated with l̂m around σ0 will finish the proof.

Using Lemma 5, a Taylor series expansion of Ûm(σ) around β0 and Λ0 gives

where Gm is a remainder term for the Taylor series. Since Λ ̂ and β ̂ are -consistent it can
be shown that Gm = op(m−1/2). Define the pointwise limit of ξm(σ, Λ)(t) as ξ(σ, Λ)(t) and let
ξ(σ, β) = E{ξm(σ, β)}. From Lemma 6, ||ξ(σ0, Λ)||∞ and ||ξ(σ, β)|| are bounded. It follows that

Othus and Li Page 15

Stat Biosci. Author manuscript; available in PMC 2011 December 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(10)

Using the results of Spiekerman and Lin (1998), we can write Equation (10) as a sum of

independent and identically distributed random variables, , where E(Ξ1) = 0 and
V(Ξ1 < ∞. The central limit theorem implies that  converges to a normally
distributed random variable with mean zero and variance equal to the variance of Ξ1.

Next, we take a first order Taylor series expansion of Ûm(σ ̂) around σ0:

where Ŵm(σ) = ∂Ûm(σ)/∂σ and σ* is between σ ̂ and σ0. It must be the case that Ûm(σ ̂) = 0
since σ ̂ was taken to be the maximum of L(σ, β ̂, Λ ̂). Theorem 1 showed that σ ̂ consistently
estimates σ0, so the the law of large numbers implies that Ŵm(σ*) converges in probability to
W(σ0) = limm→∞ Wm(σ0). Finally, using the central limit theorem and Slutsky’s theorem,

 converges to a normal distribution with mean zero and variance equal to
W(σ0)−2V(Ξ1)

D Proofs of Lemmas

Proof of Lemma 1
Define Yij(t) = I(Xij ≥ t). The log-likelihood can be written

where . By condition C.5 the term

is Hadamard differentiable. Using multiple iterations of the chain rule for Hadamard
derivatives (van der Vaart, 1998, Theorem 20.9), we conclude that lm(σ) is Hadamard
differentiable.

Proof of Lemma 2
First we find expressions for ζm(σ, Λ) and ζm(β, σ), starting with ζm(σ, Λ). To make the
argument more concrete express lm(σ) as a function of Λ by writing lm(σ, Λ) = lm(σ). Let Γ
BV[0, τ]. Denote
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By conditions C.1 and C.2, for j = 1, …, ni and i = 1, …, m, Hij > 0 and |X̃ij| < B* < ∞ for
some constant B*.

To find the expression for the derivative, take a Taylor series expansion of lm{σ, Λ + t(Γ −
Λ)} around t = 0 and evaluate the result at t = 1. The final expression is

where ζm(σ, Λ)(u) is equal to  and  is equal to

Therefore the Hadamard derivative for ϒ ∈ BV[0, τ] is . Direct
calculation verifies that ζm(σ, β) is equal to

We need to check whether each of the terms in  is bounded and also that the terms unique
to ζm(σ, β) and ζm(σ, Λ) are bounded. First,

for some constant B1 since for , |X̃ij| < B*. Therefore, for i =1, …, m,

.

Let wα(j) denote the vector of length α where the jth element is 1 and the rest of the vector is
0. Using the chain rule, for j = 1, …, Δi and i = 1, …, m,

The multivariate normal density  is bounded and for , |X̃ij| < B*. Hence, for j

= 1, …, Δi and i =1, …, m,  for some constant B2.

Next consider , which for i = 1, …, m is equal to
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where Mi = {t(Δi+1) > X̃i, (Δi+1), …, tni > X̃i,ni}, tni − Δi = (t(Δi+1), …, tni),

, and . Since |X̃ij| < B* for , it

must be the case that for i = 1, …, m.  for some constant B3.

Let  be equal to tni − Δi but with the component corresponding to the (j − Δi)th

component replaced by X̃ij. Let  be equal to tni − Δi but with the (j − Δi)th element
removed. Let Mi,−j denote Mi but with the ( ) inequality removed. Consider

, which, for j = Δi + 1, …, ni, i = 1 …, m, can be written

for some constant B4 < ∞ since |X̃ij| < B* for .

Using the definition of the derivative of an inverse function,

where φ is the density of the standard normal distribution and Φ−1 is the inverse of the
distribution function of the standard normal distribution. Since |X̃ij| < B*, 0 < B5 < Hij < B6 <
1 for some constants B5 and B6. Therefore, for j = 1, …, ni and i = 1, …, m, |∂Φ−1(Hij)/∂Hij|
< B7 < ∞ for some constant B7. By condition C.5, for j = 1, …, ni and i = 1, …, m, ||Yij

exp(β′Zij)||∞ < B8 < ∞ and  for some constants
B8 and B9. Hence ||ζm(σ, Λ)||∞ and ||ζm(β, σ)|| are bounded are bounded by (B1B2 +
B3B4)B7(B8 + B9) < ∞

Proof of Lemma 3
An expansion of l̂m(σ) around Λ0 and β0 can be written:

where R is a remainder term of order op{max(||Λ ̂ − Λ0||∞, ||β ̂ − β0||)} and ζm(β, σ) and ζm(σ,
Λ)(t) are defined in Lemma 2. Since Λ ̂ is uniformly consistent and β ̂ is consistent
(Spiekerman and Lin, 1998), R = op(1). The result follows from the law of large numbers,
the uniform consistency of Λ ̂, the consistency of β ̂, and the fact that ||ζm(β, σ)|| and ||ζm(σ,
Λ)||∞ are bounded (Lemma 2).
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Proof of Lemma 4
The log-likelihood, lm(σ), can be written as a sum of independent and identically distributed

random variables . Take σ ≠ σ0. The law of large numbers and Jensen’s
inequality imply that E{lm0(σ)} − E{lm0(σ0)} = limm→∞ lm0(σ) − lm0(σ0) which is strictly
less than log[E{L*(σ, β0, Λ0)/L*(σ0, β0, Λ0)}] = 0.

Proof of Lemma 5
Let N(t, d, μ, Σ†) be defined as (2π)−d/2 det(Σ†)−1/2 exp{−(t − μ)′(Σ†)−1(t − μ)/2} [tr{(Σ†)−1

W ̃d} − {−(t − μ)′(Σ†) −1 W ̃d(Σ†)−1(t − μ)/2}]/2, where W ̃d is the d dimensional square matrix
with zeros along the diagonal and ones off the diagonal. Let 0d denote a vector of length d of
zeros. The score function can be written

Using the results of Lemma 1 and multiple iterations of the chain rule for Hadamard
derivatives (van der Vaart, 1998, Theorem 20.9), we conclude that Um(σ) is Hadamard
differentiable.

Proof of Lemma 6
First we find expressions for ξm(σ, Λ) and ξm(σ, β), starting with ξm(σ, Λ). To make the
argument more concrete express Um(σ) as a function of Λ by writing Um(σ, Λ) = Um(σ). Let
Γ ∈ BV [0, τ].

To find the expression for the derivative, take a Taylor series expansion of Um{σ,Λ + τ(Γ –
Λ)} around t = 0 and evaluate the result at t = 1. The final expression is

, where ξm(σ, Λ)(u) is equal to

and

Therefore the Hadamard derivative for ϒ ∈ BV [0, τ] is . Direct
calculation verifies that ξm(σ, β) is equal to
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In Lemma 2 we showed that, for i = 1, …, m,  and

. Also, for j = 1, …, ni, i = 1, …, m, |∂Φ−1(Hij)/∂Hij| < B7 < ∞, ||Yij

exp(β′Zij)||∞ < B8 < ∞ and .

We tackle each of the remaining terms. First, using results from Lemma 2, for j = 1, …, Δi, i

= 1, …, m,  is equal to  for
some constant B11.

Since Σi11 has an exchangeable structure,  and det(Σi11)−1/2 are both bounded

by some constant B10 < ∞. Therefore for i = 1, …, m,  for
some constant B12.

Next, we consider  for j = 1, …, Δi and i = 1, …, m, which is
equal to

and, by the results of the previous paragraph and the results of Lemma 2, is bounded by
some constant B13 < ∞.

Using results from Lemma 2, for j = Δi + 1, …, ni and i = 1, …, m,

 is equal to

for some constant B14.

Using similar arguments as above one can directly show that for i = 1, …, m,

for some constant B15.

Also, for j = Δi + 1, …, ni and i = 1, …, m,
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for some constant B16.

Hence ||ξm(σ, Λ)||∞ and ||ξm(β, σ)|| are bounded by
(B11B12+B1B13+B14B15+B3B16)B7(B8+B9) < ∞.

E Extended simulation results
In the interest of space, the simulation results in the main body of the manuscript focus on
the novel results for σ. We summarize the performance of β in Table 7. The true values for
β1 and β2 are log(0.5) and 0.75, respectively. In all scenarios investigated, both the robust
sandwich standard error and the jackknife standard error perform well. The jackknife
standard error (SE) appears to match the Monte Carlo SE more closely compared to the
robust SE, but the coverage probabilities are very similar and indicate appropriate coverage.
Power for a Wald-type test with the jackknife SE is high across all the scenarios.
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Fig. 1.
Power curves as a function of σ and number of cluster.
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Fig. 2.
A histogram of the number of patients in each institution.
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Fig. 3.
A qq-plot of frailties from proposed model standardized by their standard errors. Two
potential outlier frailties are marked with crosses.
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Fig. 4.
A plot of institution size by frailty value from proposed model. The two frailties marked
with crosses in Figure 3 are marked with crosses in this Figure.
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Fig. 5.
A qq-plot of standardized frailties from proposed model (left) and a plot of institution size
by frailty value from proposed model (right) for the subset data.
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Fig. 6.
A plot of institution size by the log frailty value from gamma frailty model. Institutions
identified as outliers in proposed methods are marked with crosses.
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Table 1

Simulation results for the correlation terms

Estimate Jackknife SE Monte Carlo SE Coverage Probability

45 clusters

σ = 0 −0.001 0.091 0.091 0.904

σ = 0.05 0.058 0.104 0.099 0.924

σ = 0.10 0.108 0.110 0.100 0.932

σ = 0.15 0.160 0.112 0.118 0.888

60 clusters

σ = 0 0.000 0.076 0.078 0.942

σ = 0.05 0.049 0.086 0.082 0.928

σ = 0.10 0.104 0.094 0.083 0.944

σ = 0.15 0.154 0.096 0.091 0.964

90 clusters

σ = 0 0.002 0.060 0.059 0.952

σ = 0.05 0.049 0.067 0.067 0.900

σ = 0.10 0.108 0.072 0.068 0.960

σ = 0.15 0.151 0.075 0.077 0.944

σ = 0.50 0.523 0.045 0.044 0.924

σ = −0.10 −0.109 0.067 0.068 0.930
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Table 2

Summary of frailty simulations. Relative bias=bias/predicted value

Median relative bias SE

Median cluster size = 5 0.06 1.07

Median cluster size = 10 −0.05 1.02

Median cluster size = 15 −0.05 1.01

Median cluster size = 20 −0.06 1.01
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Table 3

Distribution of patients with enlarged livers across treatment arms

Strength Duration Number of Patients

Standard Standard 119

Standard Double 104

Increased Standard 117

Increased Double 120
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Table 5

Correlation estimates from proposed model for the full data and for data excluding two potential outliers.

Treatment Only Model Larger Model

All Data Subset All Data Subset

Correlation 0.17 0.03 0.21 0.12

SE 0.16 0.13 0.20 0.16

P-value 0.28 0.81 0.30 0.44
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Table 6

Data analysis results using gamma frailty model

Parameter Estimate SE P-value

Treament Only Model

Frailty variance 0.440 0.374 0.12

Increased Strength −0.455 0.251 0.071

Increased Duration 0.498 0.252 0.048

Larger Model

Frailty variance 0.443 0.361 0.11

Increased Strength −0.324 0.383 0.40

Increased Duration 0.594 0.337 0.08

Interaction −0.256 0.512 0.62

Age

1–9 (ref)

10–15 0.418 0.264 0.11

16+ 0.558 0.457 0.24

Platelets (×103/mm2)

1–49 (ref)

50–150 0.361 0.266 0.17

150+ −0.087 0.541 0.11
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