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Abstract
Human height and body mass index are influenced by a large number of genes, each with small
effects, along with environment. To identify common genetic variants associated with these traits,
we performed genome-wide association studies in 11,536 individuals composed of Australian
twins, family members, and unrelated individuals at ~550,000 genotyped SNPs. We identified a
single genome-wide significant variant for height (P value = 1.06 × 10-9) located in HHIP, a well-
replicated height-associated gene. Suggestive levels of association were found for other known
genes associated with height (P values < 1 × 10-6): ADAMTSL3, EFEMP1, GPR126, and HMGA2;
and BMI (P values < 1 × 10-4): FTO and MC4R. Together, these variants explain less than 2% of
total phenotypic variation for height and 0.5% for BMI.

In recent years, the declining cost of high-throughput genotyping technology in conjunction
with the ongoing International HapMap project (Frazer et al., 2007) have led to an explosion
in the number of genome-wide association (GWA) studies of complex diseases and
quantitative traits. A GWA study is a non-biased and non-hypothesis driven method for
identifying correlations between genotype and phenotype. These studies have since
successfully identified previously unknown genes affecting many clinically significant traits
such as type 2 diabetes (Saxena et al., 2007), bone mineral density (Styrkarsdottir et al.,
2009), and age at menarche (Sulem et al., 2009), greatly enhancing our understanding of the
genetic mechanisms behind many complex diseases and traits. Their potential clinical
implications in the prediction and treatment of common diseases represent an exciting
period of human genetics research.

Human stature has been used as a model for quantitative traits for over 120 years. Galton
(Galton, 1886) first famously observed the close correlation between height of offspring and
those of his/her parents, while Fisher (Fisher, 1912) proposed that the pattern of inheritance
in height can be explained by a large number of Mendelian factors, each with a small effect
on overall heritability. It has been estimated that genetic factors account for around 80% of
the variation in human height (Macgregor et al., 2006; Visscher et al., 2007).

As height is driven by human growth and developmental processes in conjunction with
environmental factors such as diet and nutrition, research into the genetics of height may
yield insights into many diseases. Children who deviate from normal growth patterns are
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often admitted to pediatric endocrine programs and treated with growth hormones
(Hirschhorn et al., 2001; Lettre et al., 2007). In addition, tall stature has been associated with
an increased risk of prostate cancer (Giovannucci et al., 1997; Hebert et al., 1997) and breast
cancer (Gunnell et al., 2001; Lahmann et al., 2004), while short stature has been linked to
coronary heart conditions (Forsen et al., 2000) and type 2 diabetes (Lawlor et al., 2002).
Although the exact natures of these associations are unclear, it has been suggested that
common hormonally mediated effects play a role (Weedon & Frayling 2008).

Body mass index is the ratio of an individual’s weight (in kilograms) over the square of their
height (in metres) and has traditionally been used as an indicator of obesity. A BMI of over
30 kg/m2 is often used to define obesity in a clinical setting; however, BMI measurements
need to be taken in conjunction with other measurements such as waist circumference and
body fat percentage in order to obtain a more accurate judgement of obesity. Estimates of
the heritability of BMI have varied from 40-70% (Loos & Bouchard, 2008), and like human
height, its phenotype is a combination of both environment and many genetic factors, each
with small effects on total variation.

Understanding the genetic contribution to BMI may provide researchers a better
understanding of the biological pathways of weight gain. In addition, using associated genes
to predict future obesity-related diseases can lead to better methods of early intervention and
prevention. The increasing prevalence of obesity in society represents a significant public
health issue. Obesity has been described as an ‘epidemic’ with nearly 1 billion adults
overweight and over 300 million obese worldwide (Abelson & Kennedy, 2004). Obesity is a
significant risk factor for several diseases, including type 2 diabetes; osteoarthritis; various
cardiovascular diseases including coronary heart disease, stroke, and hypertension; and
various cancers including breast, colon, and uterine (Haslam & James, 2005).

We performed GWA studies of height and BMI in 11,536 individuals composed of twins
and their family members, as well as unrelated individuals, who were genotyped on a
combination of Illumina 317K, 370K, and 610K microarray chips. Joint analysis of
individuals who were genotyped on the different chips was made possible by imputing
ungenotyped SNPs. Previous GWA studies of Caucasian populations have identified over 50
distinct loci associated with height (Gudbjartsson et al., 2008; Johansson et al., 2009; Lettre
et al., 2008; Sanna et al., 2008; Soranzo et al., 2009; Weedon et al., 2008) and around a
dozen for BMI (Frayling et al., 2007; Loos et al., 2008; Thorleifsson et al., 2009; Willer et
al., 2009).

Methods
Phenotype data collection and cleaning

Self-reported and clinical measurements of height and weight were available for 38,418
individuals recruited from the Australian Twin Registry between 1980 and 2004. Subjects
included twins and their parents, siblings, spouses, children and other family members, and
were part of several studies of investigating the genetics of traits such as asthma and allergy
(Duffy et al., 1998), anxiety and depression (Wray et al., 2007), melanoma (Brown et al.,
2008), cognition (Wright & Martin, 2004), and cardiovascular diseases (Beekman et al.,
2003). As a result, multiple measurements of height and weight, both self reported and
clinically measured, were available for individuals who participated in multiple studies.
Several rules which were implemented to clean this data are described in detail elsewhere
(Cornes et al., 2005; Benyamin et al., 2008). In brief, clinical measurements were used for
individuals if available (N = 7946), and consistency checks were implemented for multiple
self-reported measurements.
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Due to the nature of human growth, where height continues to increase until an individual’s
late teens followed by a slight decrease in later adult years, the sample was separated into
two cohorts composed of adolescents (under 18 years of age, N = 4352) and adults (over 18
years of age, N = 34066) (Figure 1). Height was approximately normally distributed for both
groups, while a Box-Cox transformation (power parameter λ = -1.152) was applied to
normalise BMI. For each group, separate polynomial regression models were fitted for
height and BMI with age, age2, and sex along with their interaction terms as covariates. A
further 2007 individuals had height and weight clinically measured at combinations of ages
12, 14, and 16. These multiple measurements were treated as separate individuals in the
initial modeling, before averaging the residuals for each individual in the final analysis.
Consistent with other studies (Benyamin et al., 2008; Willer et al., 2009), outliers were
indicated by individuals whose residuals deviated by more than 4 standard deviations from
the mean and removed (6 adolescents and 110 adults).

Genotyping
Genotyping and data cleaning are described in detail elsewhere (Medland et al., 2009).
Briefly, genotyping was performed on 11,766 of the 38,418 individuals through five
separate genotyping projects on a combination of Illumina 317K, Illumina 370K, and
Illumina 610K microarray chips. Quality control measures used to clean genotype data
included removing SNPs based on low call rates (mean call rate < 0.7), high missingness (>
5% missing), deviations from Hardy-Weinberg equilibrium (p < 10-6), and low allele
frequencies (minor allele frequency < 0.01 or monomorphic). Individuals in families with a
large number of Mendelian errors, cryptic relationships, or incompatible genotype with
reported sex were also removed. In addition, population stratification checks were
performed using EIGENSTRAT (Price et al., 2006) with HapMap CEU (release 22, build
36) and GenomEUTwin populations as references, and individuals of non-European origin
were excluded (N = 230 across all genotyping projects). A summary of the five genotyping
projects are given in Table 1. Ungenotyped SNPs were imputed using the software MACH
in order to facilitate joint analysis of individuals.

Statistical analysis
Height and BMI (normalized) were each fitted to separate polynomial regression models
with age, age2, and sex along with their interaction terms as covariates. The residuals from
these models were standardized to z-scores and used as the trait for association analysis. A
family-based test for association was performed using the rapid-score test implemented in
MERLIN (Abecasis et al., 2002). Altogether, four separate GWA analyses were performed:
height in adolescents, height in adults, BMI in adolescents and BMI in adults. Adolescent
and adult results for each of the traits were combined using the meta-analysis software
METAL (http://www.sph.umich.edu/csg/abecasis/metal).

For comparison purposes, the power to detect the 26 height-associated SNPs identified in
Gudbjartsson et al. (2008) and 11 BMI-associated SNPs identified in Thorleifsson et al.
(2009) at genome-wide significance of p < 10-7 and nominal significance of p < 10-3 in our
sample was estimated. Gudbjartsson and Thorliefsson both performed GWA studies for
height and BMI with the same ~35,000 individuals. Power estimates were calculated in
QUANTO (Gauderman & Morrison, 2006), where power was initially estimated assuming a
sample of 11,536 independent individuals, before approximately correcting for the
relatedness between individuals (Visscher et al., 2008).
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Results
Genome-wide association

To identify SNPs that contribute to natural variation in height and BMI, GWA analyses on
11,536 individuals of European descent were performed. Quantile-quantile plots of the
distribution of test statistics for height in adolescents showed little deviation from the
expected distribution under no association, while there was a slight excess of low p-values in
the adult sample (Figure 2). However, much greater deviations from the expected
distribution were found from the combined set of results, consistent with the power increase
afforded by the increase in sample size. For BMI, there were no significant deviations from
expectation in the adolescents and only slight deviations in both the adults and combined
sets of results (Figure 3). There was only modest evidence of any overall systematic bias due
to possible population stratification in the results (all λs < 1.063).

For the combined height results, only one SNP reached the stringent Bonferroni corrected
genome-wide significance of p < 10-7 (≈0.05/550,000) although there was strong suggestive
evidence of additional associations at other loci (Figure 4a). The variant rs1812175 (p =
1.06×10-9) has been robustly implicated in previous GWA studies for height (Gudbjartsson,
et al., 2008; Lettre, et al., 2008; Weedon, et al., 2008) and maps to the HHIP gene
(hedgehog interacting protein). In our sample, the C allele of rs1812175 increases height by
~0.118 standard deviations and explains ~0.25% of total genetic variance. A further 7 SNPs
reached significance levels of p < 10-6, all of which mapped to previously identified genes
associated with height (ADAMTSL3, EFEMP1, GPR126, HMGA2) (Table 2). In addition,
most of the SNPs identified in previous studies showed suggestive levels of significance in
our results (Table 4). These include all SNPs replicated in two or more studies: ZBTB
(rs6763931, p = 2.88×10-5), LCORL (rs6817306, p = 7.63×10-6), Histone class I
(rs10946808, p = 2.48×10-5), CDK6 (rs2282978, p = 1.16×10-4), JAZF1 (rs849141, p =
2.05×10-3) and the UQCC-GDF region (rs4911494, p = 1.4×10-4). Their effect sizes range
from 0.007 to 0.11 standard deviations and on average explains ~0.1% of total genetic
variance each.

No SNPs reached genome-wide significance in the combined GWA results for BMI, nor
were any suggestively associated regions as well defined as those for height (Figure 4b,
Table 3). The most significantly associated SNP, rs2275215 (p = 3.76×10-7), is closest to
LAMA2 (lamin alpha 2). The variant rs10458787 was the only other SNP to reach p < 10-6,
and is located in an intergenic region on the short arm of chromosome 10. Suggestive
associations were found for the previously well replicated BMI-associated genes FTO
(rs3751812, p = 5.86×10-5), MC4R (rs12970134, p = 5.10×10-5) and TMEM18 (rs7561317,
p = 7×10-4) (Table 5). As expected, these associations all show modest effect sizes of
between 0.01 and 0.07 standard deviations and explain less than 1% of total genetic
variance.

Power estimates
The statistical power to detect significant associations is primarily a function of an allele’s
frequency and effect size, and the number of individuals in the study. The use of familial
rather than unrelated individuals also slightly reduces power (Visscher, et al., 2008). Our
study sample size of 11,536 is modest compared with previous GWA studies of height and
BMI.

Estimates of the power to detect associated SNPs identified in Gudbjartsson et al.
(Gudbjartsson et al., 2008; Thorleifsson et al., 2009) and Thorleifsson et al. (2009) at
genome-wide significance of p < 10-7 and nominal significance of p < 10-3 in our sample are
shown in Figure 5. There was less than 10% power to detect the majority of the height-
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associated SNPs in Gudbjartsson at genome-wide significance. There was only ~14% power
to detect rs1812175, the only variant that reached genome-wide significance in our study.
For BMI, there was less than 1% power to detect 8 of the 11 variants identified in
Thorleifsson at genome-wide significance. There was ~55% power to detect rs8050136, a
variant which maps to FTO and reached a significance level of p = 7.61×10-5 in this study.
These results show that the lack of significant associations after correcting for multiple
testing in the GWA analyses is primarily a reflection of the modest sample size of our study
combined with the small genetic effect sizes of associated variants. The fact that the
majority of known associations showed suggestive levels of significance demonstrates the
difficulty of separating these signals from random noise.

Discussion
Height and weight are both well defined, remain relatively consistent throughout life, and
are easy to measure. As a result, measurements are readily available to form large studies
that are not complicated by difficulties in phenotype definition, such as the time of onset and
inconsistencies in clinical reporting that can plague studies of disease. However, results
from previous GWAS on height and weight have demonstrated that these traits are
associated with a large number of genes each having a relative small effect. Thus very large
cohorts are required to achieve statistical significance in GWAS for these traits.

In this study, one genome-wide significant association was identified for height and none for
BMI. This is a reflection of a samples size that although would have been considered large
only a year or two ago, is now recognized as being modest for the investigation of the
genetics of height and BMI. The power to detect significant genetic associations in this
cohort was further reduced by the order of 1-15% through the use of family data (Visscher,
et al., 2008), although the use of family data also confers advantages in GWA studies,
namely more robust methods of genotype quality control and the ability to perform
transmission-disequilibrium association tests which are robust to stratification. Indeed, there
was less than 10% power to detect the majority of the height-associated SNPs identified in
Gudbjartsson (2008) and less than 1% for all but two of the BMI-associated SNPs identified
in Thorleifsson (2009) at genome-wide significance threshold of p < 10-7. It is also likely
that these power estimates were inflated given that they were based on the effect sizes
reported in their respective original studies, which themselves may have been overestimated
due to the ‘winner’s curse’ effect (Garner, 2007; Xiao & Boehnke, 2009).

While only one SNP passed the Bonferroni threshold of p < 10-7, a large number of other
SNPs identified in previous studies were nominally replicated. This demonstrates one of the
major issues facing GWA studies; the separation of true positive results from the random
noise obtained from the large amounts of multiple testing. Given the small fraction of total
genetic variation explained by the known genes, the obvious solution of increasing sample
size will likely hit an upper limit before the genetic architecture of these traits is completely
elucidated. However, some insights are already starting to emerge about the biological
processes involved in human stature growth. As expected, several of the genes implicated
for height are involved in skeletal development, especially the Hedgehog signalling pathway
and bone and cartilage formation growth factors and the formation of the extracellular
matrix. Other less obvious biological functions include genes involved with chromatin
structure and cell cycle regulation (Weedon & Frayling, 2008). For BMI, the majority of
associated genes appear to be involved in neuronal functions and development, especially
hypothalamic signalling, while others, such as FTO, appear to affect BMI through energy
intake rather than energy expenditure (Cecil et al., 2008; Haupt et al., 2009), suggesting that
to some extent, obesity is a result of neuronal functions related to control of hunger and
appetite.
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Genome-wide association studies represent a major step in understanding the genetics of
complex diseases and traits. Despite recent successes in identifying previously unknown
genes responsible for a wide variety of traits, current approaches can only explain a fraction
of total genetic variation and are of limited use for practical clinical applications in disease
prediction, treatment and prevention. It remains to be seen how much of the ‘missing
heritability’ we can ultimately explain using this approach.
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Figure 1.
Scatter plot of height against age in 38,418 individuals. Separate GWA analyses were
performed for those under and over 18 years of age (indicated by the vertical line).
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Figure 2.
Quantile-quantile plot of χ2 (1df) test statistics for 559,655 SNPs from the GWA analysis of
(a) height in adolescents, genomic inflation λ = 1.016; (b) adults, λ = 1.004; and (c)
combined, λ = 1.019. The 95% confidence interval of the expected χ2 statistics under the
null hypothesis of no association are indicated by the shaded regions.
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Figure 3.
Quantile-quantile plot of χ2 (1df) test statistics for 559,655 SNPs from the GWA analysis of
(a) BMI in adolescents, genomic inflation λ = 1.021; (b) adults, λ = 1.063; and (c)
combined, λ = 1.061. The 95% confidence interval of the expected χ2 statistics under the
null hypothesis of no association are indicated by the shaded regions.
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Figure 4.
Manhattan plot of 559,655 SNPs from the combined GWA analyses of (a) height and (b)
BMI. Horizontal lines represent p-values of p = 10-10, 10-8 and 10-6.
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Figure 5.
Statistical Power of this study to detect the (a) 26 height-associated SNPs identified in
Gudbjartsson et al. (2008) and (b) 11 BMI-associated SNPs indentified in Thorleifsson et al.
(2009) at genome wide significance (p < 10-7, circles) and nominal significance (p < 10-3,
triangles)
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