Table 2. Binary Effector Contructs for Manipulation of Neural Activity.
Examples of effectors used predominantly with the GAL4 binary system for the manipulation of neural activity.
Name | Protein | Mechanism | references |
---|---|---|---|
Neuronal Cell Elimination | |||
UAS-DTA | WT version of diptheria toxin A | Cell death by protein synthesis inhibition | |
UAS-DTI | Attenuated version of diptheria toxin A | Han et al., 2000 | |
UAS-FRT-stop-FRT-DTA | Inducible version of diptheria toxin A | Lin et al., 1995 | |
UAS-RCA | Moffat et al. 1992 | ||
UAS-RCAcs | Cold sensitive version of ricin toxin | Allen et al., 2002 | |
UAS-FRT-stop-FRT-RCA | Inducible version of ricin toxin | Hidalgo and Brand, 1997 | |
UAS-grim | Pro-apoptotic gene grim | Triggers endogenous cell death pathway | Wing et al., 1998 |
UAS-hid | Pro-apoptotic gene hid | Zhou et al., 1997 | |
UAS-reaper | Pro-apoptotic gene reaper | Zhou et al., 1997 | |
UAS-reaperC | Strongest version of reaper | Wing et al., 1998 | |
UAS-hid; TubP-GAL80ts | Inducible version of hid | McGuire et al., 2003 | |
Inhibition of Neuronal Activity | |||
UAS-TNT or UAS-TeTxLc | Inducible version of tetanus toxin | Blocks chemical synaptic transmission by cleaving nSyb | Sweeney et al., 1995 |
UAS-FRT-stop-FRT-TNT | Inducible version of tetanus toxin | Keller et al., 2002 | |
UAS/QUAS-Shibirets1 | Dominant negative form of dynamin GTPase | Blocks synpatic transmission at ~30°C by interfering with vesicle recycling | Kitamoto, 2001; Potter et al., 2010 |
UAS/QUAS-FRT-stop-FRT-Shibirets1 | Inducible version of Shibirets1 | Stockinger et al., 2005; Potter et al., 2010 | |
UAS-paraRNAi | RNAi against Para | Reduces expression of sodium channel required for action potentials | Zhong et al., 2010 |
UAS-Kir2.1-EGFP | Inward-rectifying K+ channel; PIP2 dependent | Prevent membrane depolarization | Baines et al., 2001; Paradis et al., 2001 |
UAS-FRT-CD2-FRT-Kir2.1-EGFP | Inducible version of Kir2.1 | Yang et al., 2009 | |
UAS-dOrk-deltaC | Outward-rectifying K+ channel | Nitabach et al., 2002 | |
UAS-EKO | Un-inactivatable Shaker K+ channel | White et al., 2001 | |
UAS-NpHR | Halorhodopsin | 580 nm light activated chloride pump | Unpublished |
UAS-dnATPase (D369N) | Dominant-negative Na+/K+ ATPase | Blocks membrane repolarization pump | Sun 2001, Pulver et al., 2010 |
Excitation of Neuronal Activity | |||
UAS-NaChBac | Bacterial sodium channel | Increases sodium conductance | Nitabach et al., 2006; Sheeba et al., 2008 |
UAS-TrpVR1 | Vanilloid receptor activated by capsacin | Increases cation conductance | Marella et al., 2006 |
UAS-dTrpA1 | Cation channel activated by warm temperatures | Permits cation conductance in response to temperature increase | Rosenzweig 2005; Rosenzweig et al., 2008 |
UAS-FRT-stop-FRT-trpA1myc | Inducible version of dTrpA1 | von Philipsborn 2011 | |
UAS-TrpM8 | Cold-activated cation channel | Increases cation conductance in response to cold | Peabody et al. 2009 |
UAS-EAG-DN | Dominant-negative K+ channel | Decreases potassium currents required to repolarize neurons or lowers resting membrane potential | Broughton et al.,, 2004 |
UAS-Shaker-DN | Mosca et al., 2005 | ||
UAS-Shaw-DN | Hodge et al., 2005 | ||
UAS-P2X2 | ATP-gated channel | Increases cation conductance in response to light uncaging of cAMP | Lima and Miesenbock, 2005 |
UAS-ChR2 | Channelrhodopsin | 470 nm light activated cation channel | Schroll et al., 2006; Hwang et al., 2007 |