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Abstract
The diverse functional roles that proteases play in basic biological processes make them essential
for virtually all organisms. Not surprisingly, proteolysis is also a critical process required for many
aspects of pathogenesis. In particular, obligate intracellular parasites must precisely coordinate
proteolytic events during their highly regulated life cycle inside multiple host cell environments.
Advances in chemical, proteomic and genetic tools that can be applied to parasite biology have led
to an increased understanding of the complex events centrally regulated by proteases. In this
review, we outline recent advances in our knowledge of specific proteolytic enzymes in two
medically relevant apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii.
Efforts over the last decade have begun to provide a map of key proteotolyic events that are
essential for both parasite survival and propagation inside host cells. These advances in our
molecular understanding of proteolytic events involved in parasite pathogenesis provide a
foundation for the validation of new networks and enzyme targets that could be exploited for
therapeutic purposes.
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1. Introduction
The primary function of all proteases is to catalyze the simple process of peptide bond
hydrolysis. While this process is the same for all proteases, each family utilizes a different
general mechanism to accomplish this goal. Although proteases were originally thought to
act as downstream mediators of protein turn-over, we now know that distinct proteolytic
processing events can also regulate or initiate key biological processes such as cell death [1],
cell cycle progression [2] and cell migration [3]. Given that proteases regulate such basic
biological processes, it is not surprising that apicomplexan parasites, with their complex life
cycles, also depend on proteolytically regulated processes. Decades of research in parasite
biology have begun to define the roles of proteases in all stages of the parasite life cycle. In
this review, we will provide a general overview of the current knowledge of proteases found
in the apicomplexan parasites Plasmodium spp. and Toxoplasma spp, with special focus on
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three important cellular events: host-cell invasion, general catabolism and host cell rupture
(also known as egress). While the roles of proteases in various aspects of parasite biology
have been reviewed in the past [4–7] we will focus on recent discoveries that have
contributed to our understanding of critical proteolytic events in these two important human
pathogens.

The apicomplexan parasites: Plasmodium and Toxoplasma
The Apicomplexa comprise a phylum of highly diverse eukaryotic protozoa that exists as
parasites in animals. Apicomplexans are morphologically characterized by the presence of
an eponymous apical complex of organelles consisting of micronemes, rhoptries and dense
granules, as well as other less-well characterized secretory organelles such as exonemes.
These organelles contain proteins that are secreted around the time of egress and invasion to
facilitate parasite motility, host cell adhesion and subsequent remodeling of host cells (see
[8] for detailed review). These parasites also have common, yet parasite-specific features
such as a chloroplast-like organelle termed the apicoplast that has a role in fatty acid and
isoprenoid synthesis [9]. Plasmodium spp., the causative agent of malaria, affects 500
million worldwide and therefore attracts a considerable amount of medical and research
attention [10]. Classically at least five species of Plasmodium infect humans: Plasmodium
vivax, P. ovale, P. malariae, P. knowlesi and P. falciparum. Each species has a highly
regulated life cycle inside the intermediate human host as well as inside the definitive insect
vector. In addition all Plasmodium spp. within the intermediate host primarily infect red
blood cells. Toxoplasma gondii is related to Plasmodium spp. however a notable difference
is that T. gondii infects virtually any nucleated host cell. Up to one third of the entire
population of the world is infected by T. gondii [11] and although primary infection by T.
gondii is typically subclinical, it can cause serious illness in immuno-compromised patients
and lead to fetal death if acquired during pregnancy [12].

Both Plasmodium and Toxoplasma progress through a complicated series of sexual and
asexual life cycles where non-replicative extracellular forms of the parasites known as zoites
first invade host cells, grow and replicate within these cells, and finally rupture to establish
further infections (Figure 1). [13, 14] This variety of molecular events requires the
expression of many specialized proteins to coordinate these diverse biochemical activities.
Recent efforts have revealed proteases as crucial players in all stages of the parasite life
cycle. The roles of various proteases in Plasmodium and Toxoplasma will be reviewed here,
but the importance of proteases is not limited to the apicomplexans, and their roles in the
progression of other parasitic diseases have been previously reviewed [15].

2. Role of proteases in host-cell invasion
As obligate intracellular parasites, it is vital for the extra-cellular forms of Plasmodium and
Toxoplasma to rapidly invade host cells. This process of invasion occurs within a very short
time frame because the extracellular forms cannot survive for long periods of time outside
host cells. Invasion proceeds following an initial contact by the polar zoite, which reorients
such that its apical end contacts the host cell membrane [16, 17]. A tight junction that results
from the interaction of multiple receptor proteins forms between the apposed parasite and
host membranes, and this junction moves from the apical to the posterior end of the zoite.
The active trafficking of the receptor proteins on the parasite surface drags the host cell
membrane over the parasite, creating an invagination within the host cell [5, 6]. As invasion
proceeds, the zoite must shed the surface proteins initially required for attachment and
penetration. Invasion is complete when the parasite is fully engulfed within the
parasitophorous vacuole, which seals to create a protective environment where it can
subsequently grow and replicate (see Figure 2, Step 1).
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Many apical surface proteins have been confirmed to be required for successful attachment
[7, 18, 19]. In Plasmodium, proteins such as merozoite surface proteins (MSPs), apical
membrane antigen 1 (AMA1), rhoptry neck proteins (RONs) and serine repeat antigen
(SERA) proteins are thought to play important roles in parasite invasion. In addition, many
of these proteins are proteolytically processed either during trafficking to, or arrival at, the
parasite surface. However, until recently the identities of the majority of proteases that
regulate the maturation and subsequent shedding of the surface proteins during invasion
were largely unknown.

2.1 Subtilases
The subtilisin-like serine proteases are a class of enzymes present in both P. falciparum and
T. gondii. The P. falciparum genome project identified three subtilases but only two,
PfSUB1 and PfSUB2, are known to have functional roles in the blood-stages of the parasite
life cycle [20]. PfSUB1 has roles in both egress (see section 4.2) and invasion. This protease
has a high degree of substrate specificity [21] and its expression peaks in schizont stage
[22]. It was initially postulated that PfSUB1might be involved in the shedding of
micronemal proteins from the surface of the parasite during invasion. However selective
inhibitors of PfSUB1 do not interfere with shedding of surface proteins MSP-1 and AMA-1
[6], but can efficiently block invasion [23]. The effects of PfSUB1 inhibitors were suggested
to be the result of a block in processing of surface proteins required for productive invasion.
PfSUB1 was subsequently shown to effectively process MSP1/6/7 and that the maturation of
these surface proteins was required for successful invasion [24]. A detailed bioinformatic
and proteomic analysis has identified additional proteins processed by PfSUB1 that are
putatively involved in egress and invasion [25].

While PfSUB1 is involved in maturation of MSP1 before merozoite rupture, PfSUB2
functions as a sheddase during merozoite invasion. PfSUB2 localizes to the micronemes,
and is secreted and translocated to the posterior end of parasite surface during invasion [26].
During this translocation, PfSUB2 proteolytically cleaves the ectodomain of MSP1 and
AMA1. This processing may disengage adhesion complexes to release the parasite into the
parasitophorous vacuole. Evidence also suggests that PfSUB2 is responsible for the
proteolytic processing of Plasmodium thrombospondin related apical merozoite protein
(PTRAMP), another adhesive protein on the merozoite surface [27]. Similar to MSP1 and
AMA1, PTRAMP is shed from the merozoite during erythrocyte invasion.

Given the relatedness of T. gondii and P. falciparum, it is not surprising that subtilisin-like
proteases also have important functions in host cell invasion by Toxoplasma [28, 29]. Using
a gene disruption strategy to knock out the sub1 gene in tachyzoites, Lagal and co-workers
[30] showed that loss of GPI-anchored protease TgSUB1 results in defective surface
processing of micronemal proteins MIC2, MIC4 and M2AP. Since secretion of mature
forms of these proteins is important for attachment to the host cell, tachyzoites lacking
TgSUB1 have a reduced ability to invade. Furthermore, deletion of the sub1 gene results in
parasites with a defect in gliding motility, a key process required for invasion of the host.
The highly related T. gondii subtilase, TgSUB2, also has been linked to invasion. TgSUB2
is a transmembrane protein that localizes to the rhoptry organelle in tachyzoites [31].
Attempts to disrupt the Tgsub2 gene suggest that it is essential in the T.gondii life cycle.
Interestingly, the peptide sequence where autocleavage occurs within the TgSUB2 protein
matches that of cleavage sites of other rhoptry protein (e.g. ROP1). This, combined with its
known rhoptry localization, is suggestive of a role for TgSUB2 in proteolytic maturation of
rhoptry proteins.
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2.2 Rhomboid proteases
The Rhomboid family of serine proteases was first discovered in Drosophila [32], and it
soon became apparent that these intra-membrane proteases are conserved in both
prokaryotic and eukaryotic organisms [33, 34]. The rhomboid proteases have a mechanism
of proteolysis that is unique from the soluble serine proteases. Specifically, the protease
active site is buried in the plane of the membrane, and proteolysis occurs in, or adjacent to,
the transmembrane domain of the substrate [35].

In Toxoplasma, proteomic analysis of invasion-specific cleavage events first hinted at a role
for rhomboid proteases in surface protein shedding [36]. Six rhomboid-like genes were
identified and five rhomboid proteases, TgROM1–5, were subsequently cloned and
characterized [37, 38]. These rhomboid proteases have non-overlapping substrate
specificities and localize to different regions of the cell. Of these, TgROM2, TgROM4 and
TgROM5 function as sheddases of micronemal adhesin proteins during the process of
invasion. Recent work has uncovered a crucial role for TgROM4 in invasion as a result of
processing of surface adhesins MIC2, MIC3 and AMA1 [39]. This cleavage of AMA1 from
the T. gondii surface during invasion, in turn, triggers a switch of the parasite from an
invasive to replicative state [40]. TgROM5, which like TgROM4, is localized to the cell
surface of the tachyzoite, cleaves the adhesion protein MIC2 upon its trafficking to the
posterior end of the parasite membrane during invasion. The rhomboid proteases in T.gondii
thus collectively serve as sheddases that remove adhesion proteins to allow successful host
cell invasion. However, it is perhaps worthwhile to note that rhomboid proteases may have
functions beyond those required for invasion. For example, TgROM1 has been shown to
contribute to intracellular growth of the parasite [41].

Not long after the characterization of TgROMs, rhomboid proteases were identified in P.
falciparum and shown to also function in shedding of adhesion proteins during invasion.
PfROM1 and PfROM4 are able to cleave a variety of substrates that possess a
transmembrane domain, and they are likely to be involved in all invasive stages of P.
falciparum [42–44]. PfROM1 has similar substrate preference as the Drosophila Spitz-
cleaving rhomboid proteases, while PfROM4 is distinct in that it does not cleave Spitz-type
substrate motifs and instead cleaves erythrocyte binding-like (EBL) adhesins [42].
Collectively, these results establish a role for rhomboid proteases in apicomplexan invasion.
Further studies will be required to characterize the specific targets of each rhomboid
protease in the life cycle of the parasites.

2.3 The cysteine proteases
Although cysteine protease inhibitors have convincingly been shown to block parasite
invasion, only a few candidate proteases have been identified. In P. falciparum, the
identification of selective inhibitors of falcipain-1, through screening of epoxide inhibitor
libraries, provided a tool that implicated this protease in erythrocyte invasion [45]. Unlike
the other falcipains that are involved in hemoglobin degradation, falcipain-1 localizes to
distinct, granule like structures in newly formed merozoites. However, subsequent gene
disruption of falcipain-1 suggests that its role in invasion may be somewhat redundant [46,
47]. The fact that broad-spectrum cysteine protease inhibitors block invasion suggests that
yet undiscovered cysteine proteases may function together to ensure successful invasion.

In T. gondii, a cathepsin B homologue TgCPB (also known as toxopain-1 or TgCP1), may
play a role in tachyzoite invasion by processing rhoptry proteins [48]. Immunoelectron
microscopy using cathepsin B antibodies provides some evidence that TgCPB might be
localized to the rhoptries. The use of small molecule inhibitors of cathepsin B have also
been shown to disrupt rhoptry protein maturation resulting in abnormal rhoptry development
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and defects in tachyzoite invasion [49]. However, the specificity of the compounds used in
these studies has not been confirmed suggesting that effects could be mediated by other
targets. In particular, T. gondii expresses a highly homologous cathepsin L, TgCPL, which
has recently been shown to localize to a specialized secretory organelle termed the vacuolar
compartment (VAC) where it is believed to play a role in maturation of secretory proteins
targeted to the micronemes [50]. In particular, T. gondii deficient for TgCPL showed slower
maturation of TgM2AP and TgMIC3 proproteins. As TgM2AP and TgMIC3 are required
for efficient host cell invasion, it is not surprising that the TgCPL-deficient strain has
reduced ability to invade host cells. Although only a limited number of cysteine proteases
have been confirmed to have a role in invasion, recent tools such as the complete genome
sequence of P. falciparum and T. gondii, in combination with the use of chemical inhibitors,
will hopefully aid in the discovery and characterization of additional important cysteine
proteases.

2.4 The metalloprotease Toxolysin 4
The metalloprotease toxolysin 4 contains a signature motif present in insulin-degrading
enzymes [51]. This protease localizes to the micronemes, and its secretion coincides with
discharge of micronemal contents. Thus, it is possible that toxolysin 4 can function in
invasion. However, further studies will be required to assign specific roles to this protease.

3. Proteases in general catabolism
Once invasion has occurred, parasites actively metabolize host cell proteins to generate
products required for growth and replication. In Plasmodium, this process has been
extensively studied due to its potential as a target pathway for malaria drug-therapy (See
Figure 2, Step 2) [52].

3.1 Hemoglobin Degradation in Plasmodium
During the intraerythrocytic stage of the Plasmodium life cycle, the parasite imports host
cell hemoglobin and then progressively degrades it to generate key nutrients as the parasite
grows. Degradation of hemoglobin provides free amino acids, frees up space for further
growth, and also has a possible role in regulating the osmotic status of the cell [53]. This
process occurs mainly in the trophozoite stage, during which time hemoglobin is
endocytosed into a parasite organelle known as the food vacuole. Once inside this acidic
compartment, a cascade of aspartyl and cysteine proteases degrade the hemoglobin to the
final amino acid products [54].

The extended family of plasmepsin aspartyl proteases in P. falciparum has been the focus of
intensive research mainly due to the parasite-specific nature of these enzymes [55].
Therefore, plasmepsins were initially thought to be ideal targets for development of anti-
parasitic drugs. The plasmepsins are a family of aspartyl proteases made up of 4 main
members: plasmepsins I, II, IV and histo-aspartic protease [56, 57]. Plasmepsin I and II are
thought to initiate hemoglobin degradation, while histo-aspartic protease and plasmepsin IV
function in the degradation of peptides generated by the action of upstream members of the
family [58–61]. However, the fact that genetic disruption of individual plasmepsins did not
result in any difference in P. falciparum morphology suggests that functional redundancy
between the family members may make these proteases non-optimal as therapeutic targets
[62]. Nevertheless, plasmepsins are important proteases in hemoglobin degradation,
especially since a triple or quadruple plasmepsins gene knock-out confers a growth defect in
P. falciparum [63].

Other proteases such as the metalloprotease falcilysin [64–66], and the cysteine proteases
falcipains 2, 2’ and 3 [67–70] and dipeptidyl aminopeptidase 1 (DPAP1), are also involved
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in degradation of hemoglobin after it has been cleaved into peptide fragments [71].
Falcipains are thought to function downstream of plasmepsin I and II, and evidence suggests
that these proteases are involved in activation of the food vacuole plasmepsins [72]. Gene
disruptions as well as studies using small molecule inhibitors of falcipain-2, have confirmed
a role for this protease in hemoglobin degradation [73–75]. Furthermore, falcipains may be
able to replace the functions of plasmepsins [62] making them promising targets for
antimalarials [76].

The cysteine dipeptidyl aminopeptidase 1 (DPAP1) is an exopeptidase in the food vacuole
[71]. DPAP1 is a homologue of mammalian cathepsin C that also removes dipeptides from
protein substrates. DPAP1 functions in an acidic environment (the food vacuole) and has
similar substrate specificity as cathepsin C [77]. Studies using specific inhibitors of DPAP1
have shown that inhibition of this protease leads to an accumulation of parasites at the
trophozoite stage and a subsequent decrease in parasitemia [78]. These inhibitors were also
tested in a mouse model of malaria and found to reduce parasitemia. Furthermore, by linking
DPAP1 inhibitors to a synthetic analog of another effective antimalarial drug, it was
possible to enhance killing of parasites in culture [79]. These observations, combined with
the essential nature of DPAP1 expression in blood stage parasites [71], suggest that it plays
a critical role in parasite survival and is therefore a potentially valuable drug target.

The final stages of hemoglobin degradation are carried out by aminopeptidases that generate
single amino acids from cleaved peptides [80]. An additional family of neutral amino-
peptidases PfA-M1 and PfM17LAP [81–83] has recently been suggested to degrade peptide
substrates that are exported to the cytosol from the food vacuole to generate free amino acids
[84–86]. These proteases may also represent promising new targets for the development of
anti-malarial drugs, which may be facilitated by the recent structural characterization of
members of this family [87].

3.2 Proteases involved in general peptide processing
Proteases that perform essential roles such as protein homeostasis, protein transport and host
cell remodeling are also potentially valuable as targets for theraputic intervention. As these
processes are required throughout the parasite life cycle, drugs that block the action of these
proteases have the potential to be effective at multiple points during an infection.

The proteasome is a large multi-subunit complex that catalyzes the proteolysis of proteins
that have been targeted for degradation by ubiquitination. This protease complex is
conserved across the eukaryota and is also found in some prokaryotes [88]. The proteasome
is involved in regulatory functions such as protein turnover and degradation of misfolded
proteins. In mammalian cells, it also regulates cell cycle progression and inflammation
pathways [89]. Furthermore, a small molecule proteasome inhibitor has been approved by
the FDA for the treatment of multiple myeloma, suggesting that targeting the proteasome
could be an effective way to treat other diseases [90].

Initial studies using the natural product lactacystin, which inhibits P. falciparum proteasome
at nanomolar concentrations, confirmed that a block in proteasome activity leads to parasite
death [91]. However, these initial studies also pointed out the overall toxicity that resulted
from inhibition of the host proteasome. More recent studies with several different classes of
proteasome inhibitors suggest that the proteasome may be a viable target in Plasmodium
spp. [92–94]. Furthermore, at least two proteasome inhibitors – epoxomicin and thiostrepton
– also reduce growth of the sexually differentiated Plasmodium gametocyte, suggesting that
inhibition of the proteasome could be an effective way to block parasite transmission [95,
96]. Unfortunately, relatively little is known about the biochemical or structural properties
of the proteasome from Toxoplasma or Plasmodium and this has hindered the development
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of parasite-specific inhibitors. Selective inhibitors will almost certainly be required to
effectively validate the proteasome as a drug target for malaria and other parasitic diseases.

An additional protease that has been suggested to function in T. gondii in general catabolism
is cathepsin C (TgCPC). Three isoforms of this protease have been identified, and TgCP1 is
implicated in growth and replication of the parasite [97]. Cathepsin C is an exopeptidase that
cleaves dipeptides from the N-terminus of proteins. Treatment with a cathepsin C inhibitor
led a reduction in parasitemia and reduced protein degradation in the parasitophorous
vacuole (PV). However, additional studies to identify the substrates of cathepsin C will be
required to define its role in general peptide degradation in T. gondii.

The recent placement of plasmepsin V in the Plasmodium protein export pathway also opens
up new strategies for antimalarial chemotherapy. Unlike plasmepsin I–IV, plasmepsin V is
not localized to the food vacuole, but is instead restricted to the endoplasmic reticulum (ER)
membrane [98]. Recent work demonstrated the role of this aspartyl protease in cleaving the
Plasmodium Export Element (PEXEL) sequence motif, required for the export of PEXEL
containing parasite proteins into the erythrocyte cytosol [99, 100]. This export of proteins
allows the parasite to remodel the host cell for functions such as adhesion to endothelial
cells. Such remodeling could be a mechanism to evade host defenses and therefore
inhibition of plasmepsin V could be a strategy for clearing parasites [101, 102].

4. Proteases have central roles in parasite egress
As obligate intracellular parasites, Plasmodium and Toxoplasma spend the majority of their
lives within the confines of their host-cell environment. Once replication is complete and
several mitotic cycles have taken place, specialized zoite cells are released from the host cell
through a lytic process known as egress (See Figure 2, Step 3). Our current understanding of
egress is that it is a rapid and tightly regulated process. However, the exact mechanisms that
regulate egress remain unclear. In Plasmodium, there are two popular models; the first
model proposes that egress occurs by initial degradation of the parasitophorous vacuole
membrane (PVM), and then the erythrocyte membrane. The second model proposes the
reverse, where the erythrocyte membrane is degraded prior to the release of the merozoites
from the PVM [103]. Both models have experimental support, and thus it is difficult to
provide a definite mechanism. However, recent advances with video microscopy supports a
model whereby the PVM ruptures, followed by the rapid and explosive rupturing of the
erythrocyte membrane that is thought to facilitate the dissemination of the daughter zoites
from the parent host-cell [104, 105].

Despite our lack of understanding of the precise mechanistic processes underlying egress,
proteases appear to play pivotal roles. For example, treatment of P. falciparum infected cells
with serine and cysteine protease inhibitors produces a block in egress leading to
accumulation of late stage schizonts [106]. However, it is important to note that these
experiments used broad-spectrum inhibitors that block proteases implicated in both egress
and invasion. Subsequent experiments have identified inhibitors that can specifically block
egress, and these have served as useful chemical tools in further exploration of the proteases
involved in egress [23, 107]. The following section reviews the role of several proteases that
function in Plasmodium egress. Although studies on host-cell rupture in Toxoplasma have
uncovered roles for potassium and calcium signaling [108] and the pore-forming perforin
proteins [109], virtually nothing is known about proteases that may regulate egress in this
organism.
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4.1 Serine-repeat antigen (SERA) family
The serine-repeat antigen (SERA) family is group of highly expressed Plasmodium proteins
that are characterized by a central papain-like protease domain. Within the family, only
SERA 6–8 have the canonical ‘active site’ cysteine residue found in classical papain family
proteases, while SERA 1–5 and 9 have a serine in place of this residue [6]. Intriguingly, this
family of proteins is not found in related apicomplexan parasites such as Toxoplasma.
SERA5 is the most abundant of the SERA family [110] and is found in the parasitophorus
vacuole where it is processed around the time of egress. Antibodies against the truncated
form of SERA5 and a cyclic peptide directed against the predicted enzyme domain of the
protein interferes with its function and cause a reduction in parasite growth, suggesting that
SERA5 is vital for Plasmodium egress and/or invasion [110–112]. SERA5 is one of the two
SERA genes that cannot be disrupted, further highlighting its importance in the parasite life
cycle [113]. As SERA5 possesses a papain-like fold with serine as the active site residue
[114], it could potentially function in egress and invasion by proteolytically processing
substrates. The recombinant catalytic domain of SERA5 indeed possesses some weak
chymotrypsin-like activity and this activity is sensitive to protease inhibitors [115].
However, it is still presently unclear if endogenous SERA5 has proteolytic activity.
Crystallographic evidence suggests that the active site in SERA5 is not conducive to
substrate binding [114]. As such, although SERA5 may be an important player in egress,
any catalytic function remains a mystery. The only SERA protein with a direct link to
parasite egress is SERA8. In Plasmodium berghei, disruption of the SERA8 orthologue,
ECP1, resulted in a complete block of sporozoite egress from oocytes [116]. Therefore, the
SERA proteins may mediate egress in both the sexual and asexual stages of Plasmodium.

4.2 PfSUB1
During maturation, SERA5 is proteolytically cleaved from the full-length form of
approximately 126 kDa, through two intermediates before accumulating as a 50 kDa form
which is released into culture supernantant during rupture [117]. Investigation of the
proteases responsible for the maturation of SERA5 linked the serine protease PfSUB1 and
the cysteine protease DPAP3 to this maturation process [23, 107]. In addition to the role of
PfSUB1 in priming merozoites during invasion, it has a role in parasite egress. PfSUB1
localizes to a merozoite organelle called the exoneme, and is released into the
parasitophorous vacuolar space before egress. Further studies demonstrated that PfSUB1 is
responsible for cleaving SERA 4, 5 and 6 during egress. Inhibition of PfSUB1 using a
specific inhibitor (MRT 12113) led to significant reduction in egress and invasion. The role
of PfSUB1 in processing SERA5 was also confirmed by a chemical screen that identified a
chloroisocoumarin (JCP104) that serves as both an inhibitor and probe of PfSUB1 activity
[107]. JCP104 specifically blocks schizont rupture further demonstrating that PfSUB1 is a
regulator of P. falciparum egress.

4.3 DPAP3
In addition to identifying a small molecule inhibitor of PfSUB1, the small molecule screen
by Arastu-Kapur and co-workers identified a cysteine protease inhibitor that specifically
blocked host cell rupture [107]. The identified dipeptide vinyl sulfone hit was converted to
an active site probe and used to identify the dipeptidyl aminopetidases (DPAPs) as targets of
this compound. Further development efforts identified inhibitors that could specifically
target the food vacuole specific protease DPAP1 as well as the related family member
DPAP3, a protease with unknown functions. These compounds showed that inhibition of
DPAP1 resulted in toxicity to the parasite without affecting host cell rupture, while
inhibition of DPAP3 specifically blocked parasite release from the host cell. Inhibition of
DPAP3 also led to reduction in levels of the mature form of PfSUB1 without causing
accumulation of the precursor protein, suggesting that DPAP3 may be required for
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maturation of PfSUB1. DPAP3 may therefore regulate host cell egress by controlling
maturation of secretory proteins required for this process [107].

4.4 Host cell calpain
In addition to parasite derived proteases, a host protease has also recently been implicated in
the regulation of parasite egress in both P. falciparum and T. gondii. Specifically, depletion
of host cell calpain leads to a complete block in parasite egress [118]. In this study, human
calpain-1 activity in erythrocytes was reduced by both chemical inhibition and
immunodepletion. The resulting calpain-1 deficient erythrocytes were infected with P.
falciparum and a defect in schizont rupture was observed. To confirm the role of calpain in
this process, purified calpain was added back to the calpain-depleted host cells and egress
was restored. The role of calpain in release of T. gondii tachyzoites was also investigated
using siRNA knockdown in U2OS human host cells. Knockdown of both calpain 1 and
calpain 2 was achieved by targeting of the regulatory subunit of both calpains. Similar to
Plasmodium, calpain knockdown in host-cells blocked T. gondii egress. Therefore, it is
likely that host-cell calpain facilitates parasite egress through some type of host cell
remodeling, the details of which are yet to be determined.

5. Proteases as targets for anti-malarials
Proteases are attractive targets for drug development because the presence of a well-defined
active site facilitates interactions with small molecules, and thus many classes of small
molecule proteases inhibitors have been developed [119]. Our understanding of the biology
of specific proteases in the intra-erythrocytic stages during malaria infection has advanced
greatly in the past decade and this information will likely facilitate the design of specific
protease inhibitors as anti-parasitic agents (Table 1). Furthermore, the rapid emergence of
drug resistance in Plasmodium spp. suggests an urgent need for new anti-malarial
compounds. Current approved drugs focus mainly on targeting processes in the apicoplast or
food vacuole, which are responsible for parasite growth and metabolism [52]. Proteases
involved in hemoglobin metabolism are the most commonly targeted proteases in anti-
malarial drugs currently under development, yet it may not be the most optimal pathway due
to highly redundant mechanisms and the ability of the parasite to actively export compounds
out of the food vacuole. While much effort has been directed towards developing lead
compounds to target falcipains and plasmepsins, it is important to note that redundancies
exist between these two families of proteases [62, 63] and hence effective therapy would
most likely require targeting of both. Recent work has highlighted the potential of DPAP1 as
a target for drug development efforts [78]. The inability to disrupt the DPAP1 gene
highlights its vital role in parasite catabolism. Furthermore a hybrid of a DPAP1 inhibitor
and an artemisinin analogue was able to effectively reduce parasite growth at low nano-
molar concentrations with low cell toxicity [79]. Such a hybrid drug is less likely to induce
resistance since each fragment of the compound uses distinct mechanisms for parasite
killing.

Other proteases involved in Plasmodium egress and invasion are gaining attention as
potential targets for therapy [103]. Arguably, egress and invasion are attractive processes for
inhibitor development because Plasmodium spp. are obligate intracellular parasites that are
particularly vulnerable outside their host cells [7]. Our lack of understanding of specific
players in these processes is probably the reason for slow development of compounds that
target egress and invasion. While there have been a recent series of published inhibitors that
target DPAP3 and PfSUB1 [23, 107], these compounds are generally not optimal drugs and
significant additional efforts will be required to convert these lead compounds into more
suitable therapeutic agents.
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6. Tools to facilitate dissection of apicomplexan parasite proteases
The post-genomic era offers exciting prospects to begin to further define apicomplexan
biology. Genome sequences [120–122] and transcriptome profiling [123, 124] of P.
falciparum and T. gondii enable genetic validation of protease activities and increase the rate
of discovery of novel proteases with important functions. While T. gondii is a relatively
genetically tractable organism [125], P. falciparum remains challenging to study using
classical genetic methods. Low transfection efficiency [126, 127], coupled with the lack of
RNAi machinery [128, 129] make standard genetic tools untenable. Fortunately, recent
advances in chemical genetics [107, 130] and systems biology are helping to advance the
study of basic parasite biology.

One particularly exciting area of development is the use of small molecules to conditionally
regulate protein stability. This technique makes use of ligands that can stabilize a protein
domain known as the destabilizing domain (DD), which is otherwise degraded in the
absence of a stabilizing small molecule [131]. Recent success in P. falciparum has allowed
the conditional knockdown of falcipain-2 [132], parasite calpain [133], calcium dependent-
protein kinase 5 [134] and a proteasome cap regulatory subunit Rpn6 [135]. In P.
falciparum, the DD system has therefore proven to be more generally applicable than the
previously reported tetracycline-inducible transactivator system [136]. Moreover, the DD
system allows the rapid temporal control of protein levels and thus enables the study of
protein function at precise stages of the parasite life cycle.

The use of activity-based probes (ABPs) as a forward chemical genetic tool [137] also
represents an exciting method to study parasite protease biology [78, 107, 130]. Using
inhibitor scaffolds tagged with a reporter, the activity of proteases can be monitored in intact
parasites. This technique can also be applied effectively to identify selective substrates that
can then be used for high throughput screens of protease targets [138]. In addition, various
groups have harnessed mass spectrometry (MS) as a tool to assess global proteomic changes
in P. falciparum [25, 139]. These approaches allow for a more global mapping of proteolytic
events, and could lead to the identification of essential pathways that are controlled by
proteases. The regulators of these pathways can then be prioritized as targets for small
molecule therapies.

Conclusion
In this review, we have described the roles of various proteases throughout the life cycles of
Plasmodium and Toxoplasma. Although we have highlighted many proteases that have been
the focus of significant study over the past decade, we also chose to draw attention to
proteases where further investigation is required to better understand their function in the
parasite. With the help of novel genetic and chemical tools, coupled with systems-based
analysis, the functions of poorly understood and novel proteases can hopefully be defined in
the near future. As proteases represent very attractive targets in drug development, further
studies will facilitate discovery of novel drugs against malaria and toxoplasmosis that will
hopefully overcome emerging resistance to current drug therapies.

Highlights

Discussion of Proteases as important mediators of pathogenesis in parasites

Outline of proteases in Plasmodium falciparum and Toxoplasma gondii, and their
roles in invasion, growth, replication and egress from host cells.

Outline of advances in chemical genetics and systems biology that have advanced
our understanding of the roles of proteases in parasite biology.
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Discussion of how new information on proteases in parasite pathogens could lead to
new anti-parasitic drug targets.
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Figure 1.
Asexual life cycle of Plasmodium (A) and Toxoplasma B). During invasion, polar zoite cells
randomly establish contact to host cells, followed by reorientation of apical end to host cell
membrane. A tight junction forms between the parasite and host membrane, and this
junction moves from the apical to the posterior end of the parasite. This results in formation
of an invagination which eventually forms the parasitophorous vacuole. This is accompanied
by shedding of surface proteins. Once invasion is complete, parasites rapidly grow in size in
the intracellular environment, and replicate their genome to prepare for cellular division.
When cell division is complete, parasites exit host cells in a process known as egress to
invade other cells. In Toxoplasma, chronic infection can occur via transformation of the
active tachyzoites to the inactive form of parasites known as bradyzoites which form tissue
cysts in hosts.
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Figure 2.
Schematic depicting the role of proteases in different stages of the parasite life cycle in A)
Plasmodium falciparum and B) Toxoplasma gondii. Different classes of proteases are
represented in the corresponding color. Proteases are involved in proteolytic maturation of
apical organelle proteins prior to invasion (not shown in figure). During invasion (1), the
proteins from the apical organelles can facilitate adhesion to the host cell, and these proteins
are subsequently shed in a protease-dependent manner. Proteases are also involved in
general metabolism (2) to allow growth and replication. After several rounds of cell
division, host cells rupture to release parasite zoite cells (3) which then re-invade other host
cells and repeat the life cycle.
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