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Abstract Neuron morphology is frequently used to
classify cell-types in the mammalian cortex. Apart from
the shape of the soma and the axonal projections, mor-
phological classification is largely defined by the den-
drites of a neuron and their subcellular compartments,
referred to as dendritic spines. The dimensions of a
neuron’s dendritic compartment, including its spines, is
also a major determinant of the passive and active elec-
trical excitability of dendrites. Furthermore, the dimen-
sions of dendritic branches and spines change during
postnatal development and, possibly, following some
types of neuronal activity patterns, changes depending
on the activity of a neuron. Due to their small size,
accurate quantitation of spine number and structure is
difficult to achieve (Larkman, J Comp Neurol 306:332,
1991). Here we follow an analysis approach using high-
resolution EM techniques. Serial block-face scanning
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electron microscopy (SBFSEM) enables automated
imaging of large specimen volumes at high resolution.
The large data sets generated by this technique make
manual reconstruction of neuronal structure laborious.
Here we present NeuroStruct, a reconstruction envi-
ronment developed for fast and automated analysis of
large SBFSEM data sets containing individual stained
neurons using optimized algorithms for CPU and GPU
hardware. NeuroStruct is based on 3D operators and
integrates image information from image stacks of in-
dividual neurons filled with biocytin and stained with
osmium tetroxide. The focus of the presented work is
the reconstruction of dendritic branches with detailed
representation of spines. NeuroStruct delivers both a
3D surface model of the reconstructed structures and
a 1D geometrical model corresponding to the skeleton
of the reconstructed structures. Both representations
are a prerequisite for analysis of morphological charac-
teristics and simulation signalling within a neuron that
capture the influence of spines.

Keywords SBFSEM . Segmentation - Reconstruction
of neurons - Image processing - GPGPU computing

1 Introduction

Morphology dictates the passive, and partly, the active,
electrical properties of dendritic branches and thereby
the entire dendritic compartment of a neuron. Fine
structural details of dendrites must be determined to
accurately model electrical behavior. Spines are promi-
nent subcellular specializations of dendrites. They form
the postsynaptic elements of excitatory synapses be-
tween neurons. To understand the contribution of
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different dendritic branches and spines to the electrical
properties of a neuron it is essential to know their di-
mensions, their location, their density and their shapes
in different compartments such as the basal dendrites,
oblique dendrites and the tufts of pyramidal cells in e.g.
the mammalian cortex. In order to obtain estimates of
dendritic geometry and in particular of spine parame-
ters one needs to accurately reconstruct, at a large scale,
dendrites and spines at the EM level of morphologically
or molecularly identified cell-types (Gong et al. 2003).

Serial Block-Face Scanning Electron Microscopy,
SBFSEM (Denk and Horstmann 2004) enables fully
automatic imaging of large specimen volumes at high
resolution and small deformation of images. Due to the
high voxel resolution of the SBFSEM imaging tech-
nique, imaging of large biological tissues will result in
large amounts of image data. For example, the image
data used in the work presented here have a voxel res-
olution of 25 nm x 25 nm x 50 nm or 25 nm x 25 nm x
30 nm. Images provided by SBFSEM are 8-bit gray-
level value images. At this resolution a 5 GB image
stack corresponds to a biological tissue volume of just
1.6 - 10~* mm?. Typically, neuronal processes, includ-
ing dendrites and spines, are manually reconstructed
from EM data. The large size of SBFSEM datasets
however, makes manual reconstruction laborious and
time-consuming.

Several approaches have been presented for the au-
tomatic reconstruction of neural structures for SBF-
SEM. Jurrus et al. developed methods for axon tracking
in SBFSEM volume data. In their method, users first
specify axon contours in the initial image of a stack that
are then tracked sequentially through the remaining
stack using Kalman Snakes (Jurrus et al. 2006). This
method focuses on axon tracking in SBFSEM volume
data and has not been applied to the reconstruction of
dynamic structures like spiny dendrites. Further work
on the reconstruction of neural structures is presented
by Macke et al. (2008) focusing on contour-propagation
algorithms for semi-automated processing. Other pro-
posals were made for the reconstruction of neural
structure in electron microscopy data. Vazquez et al.
proposed a segmentation method based on the com-
putation of minimal weighted distance paths between
user defined points of the neuron boundary for 2D
slices (Vazquez et al. 1998). Sitzler et al. reported the
3D reconstruction of a giant synaptic structure from
electron microscopy data in Sitzler et al. (2002). How-
ever, these approaches have proved ineffective for large
datasets. Methods developed for the reconstruction of
neuronal structures obtained using light microscopy
(Urban et al. 2006; Al-Kofahi et al. 2002; Dima et al.
2002; Broser et al. 2004; Santamaria and Kakadiaris
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2007) are not directly applicable to EM data, since
both image quality and image characteristics differ
substantially.

We describe a software system named NeuroStruct!
Neurostruct (2010) establishing an efficient and fully-
automated workflow for the reconstruction of neural
structures from large-scale SBFSEM image data stacks
where neurons were filled with biocytin in vivo or in
vitro (i.e. in tissue slices) and then visualized by os-
mium. Efficient reconstruction is enabled by applying
highly parallelizable algorithms for CPUs with multiple
cores, computing clusters, and GPUs. NeuroStruct’s
algorithms enable the reconstruction of individual den-
dritic branches and dendrites of hundreds of pm in
length at high resolution.

The paper is organized as follows: Section 2 pre-
sents the developed reconstruction methods includ-
ing filtering, segmentation, padding, surface extraction,
and skeletonization. Section 3 presents results achieved
with the presented methods for three different datasets.
Validation and discussion of the workflow are pre-
sented in Sections 4 and 5, respectively. Finally, in
Section 6 conclusions are presented.

2 Methods

Three datasets are analyzed. Each dataset contained a
neuron filled in vivo or in vitro with biocytin via a patch
pipette. In the fixed tissue the neuron was visualized by
osmium (Newman et al. 1983; Luebke and Feldmeyer
2007; Silver et al. 2003, and Supplementary Material).
An SBFSEM image of a tangential section of the rat
barrel cortex is shown in Fig. 1(a). Dendritic structures
represented by dark regions are shown in the subfigures
(a) and (c) in Fig. 1. With a resolution of 2,047 x 1,765
pixels, this image corresponds to a biological tissue cov-
ering a surface of 51.2 x 44.1 um?. The large SBFSEM
dataset size in the range of several hundred gigabytes
generated for whole cell tissue volumes, necessitates
fast reconstruction algorithms.

In addition, three major difficulties were encoun-
tered in these datasets (i) a considerable decrease in
contrast within connected regions is apparent especially
in thin object areas as illustrated in Fig. 1(a), (b) and
Fig. 2(d) even when staining is performed carefully; (ii)
the extent of extracellular gaps between unconnected
electron-dense structures can go below voxel size as
illustrated in subfigure (c) of Fig. 1 where an electron-

I'We have setup a website, where the software is made available
for a broader scientific community in the future.
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Fig. 1 SBFSEM images of rat barrel cortex. Image of dendritic
structures with spines (a), (b) zoomed view of the dendrite in (a),
(¢) image of a dendrite (red arrows) and a blood vessel touching
it (blue arrow)

dense blood vessel touches a dendrite; (iii) the thick-
ness of subdendritic structures such as that of specific
spine types can be smaller than the extent of image
stack voxels as for the spine shown in Fig. 7.

Subfigure (a) in Fig. 1 illustrates the first situation.
The gray values along the drawn lines of subfigure (a)
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Fig. 2 SBFSEM image properties. (a) image background signal
along the red line in Fig. 1; (b) histogram of subfigure (a) in
Fig. 1 where pixels marked by the red circle or with lower
intensities correspond to the highlighted neural structures; (c)
signal along the blue line with peaks of dark values indicating
neural structures; (d) signal along the green line, arrow marks a
spine neck with decreasing contrast

are shown in Fig. 2 plots (a), (c), and (d), respectively.
Arrows mark corresponding locations. The histogram
Fig. 2(b) shows the gray value distribution of subfigure
(a) and illustrates the signal-to-noise ratio of fore-
ground information (red circle) and background with
noise as gaussian curve. The second situation is shown
in subfigure (c) of Fig. 1. Red and blue arrows point
to anatomically distinct structures, whose gap is below
voxel resolution. Thus, the robust and exhaustive detec-
tion of a continuous “membrane” with its complicated
shape represents a challenge for image processing.

The main steps in NeuroStruct’s workflow are pre-
sented in Fig. 3. Before the sequence of algorithms
is started the initial SBFSEM image data is inverted
such that the neuronal foreground information is bright
on a dark background. To highlight the neural struc-
tures in the SBFSEM images, the image stacks are
first filtered. Next the SBFSEM image volumes are
segmented. The segmentation output is a binary im-
age volume, where the neural structures, namely the
neuron membranes, are the white foreground. Several
iterations of filtering and segmentation are possible un-
til the desired segmentation result is achieved. During
a padding step the segmented structures are prepared
for visualization. The visualization is based on surface
extraction from the binary volume. The last step in our
workflow is the extraction of a skeleton from the 3D
neuronal structures mainly to enable the use of neural
structure morphologies for simulation.

The reconstruction steps are developed using the
Visualization Toolkit VTK (Schroeder et al. 2006) and
the CUDA? toolkit (Nvidia 2008) for GPU-specific im-
plementations as programming models. To accelerate
the extraction pipeline, the basic workflow steps, i.e.,
filtering, segmentation, padding and surface extraction
are already parallelized for GPU execution, in this
paper for an Nvidia Tesla C1060 Graphics Processing
Unit.

As a detailed presentation of the parallelization of
the algorithms on GPU is beyond the scope of this
paper, here we will discuss methodological aspects for
reconstruction for large data volumes.

2.1 Definitions

Throughout this paper a 2D (digital) image is repre-
sented by a discrete function f, which assigns a gray-
level value to a distinct pair of coordinates (x, y), f:
(x,y) > G; x,y,GeN. f(x,y) is therefore the gray-
level value of pixel at position (x, y). In a 3D image,

2NVIDIA CUDA Software Development Kit enables general
purpose computing on graphics processing units (GPGPU).
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Fig. 3 NeuroStruct’s workflow for the extraction of neural structures from SBFSEM image data

the f(x,y, z) corresponds to the gray-level value of
the volume element or voxel at position (x, y, z). The
highest gray-level value is denoted as G,y = max{G}.

Objects of interest are represented by the image
subset F (foreground): F = {v € I?| f(v) = 255}. F is
the complement of F, F = {v € I’| f(v) = 0} represents
the background.

For each voxel v at position (x, y, z) the neighbor-
hood types Ng(v), Nag(v) and Nig(v) are used (Fig. 4).
Based on Nys(v) two points/voxels in F are connected
if there exists a 26-path (v;,---,v;) in F. A 6-(26-)
connected component is a set of points in F, which are
connected under 6-(26-) connectivity. In this work we
apply 26-connectivity for F and 6-connectivity for F.

2.2 Filtering

The filtering of the SBFSEM data itself consists of
two steps: First the image data is inverted, a Top-Hat
operation (Gonzalez and Woods 2002; Serra 1982) is
then applied to the inverted SBFSEM images. Images
in the image volume are processed sequentially and
independently from their adjacent images.

The highlighted neuron corresponds in the image
scale to peaks of brightness. To detect these peaks of
brightness we apply the Top-Hat operation which is
based on the morphological Opening and is defined as
(Gonzalez and Woods 2002; Serra 1982):

h=f—(fob) 1)

(a) Ng (b) Nog (¢) Nig

Fig. 4 Neighborhood types as described in Jdhne (2005) and Lee
et al. (1994)
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where f is the input image, b is the structuring element
function and (f o b) is the morphological Opening of
the image f by the structuring element b. The morpho-
logical Opening itself is the morphological erosion of f
by b, followed by the dilation of the erosion result by b:

fob=(feb)ob ()

Filtering with Top-Hat Operation is done using a rec-
tangular structuring element b of size 41 x 41 pixels.
For the actual SBFSEM image data with a voxel reso-
lution of 25 nm in x- and y- axes and 50 nm in the z-axis
the size of b corresponds to a biological tissue size of 1
pum x 1 um into which most dendritic spines fit.

In Fig. 5 the filtering result is shown. On an inverted
image, Fig. 5(b), the Top-Hat operator as described by
Eq. (1) is applied, Fig. 5(c). As shown in Fig. 5(c) and
(d) Top-Hat subtracts image background and highlights
the bright image elements which represent the neural
structures of interest.

Top-Hat is a separable operation, thus the runtime
increases linearly with the size of the structuring el-
ement b. Considering the data locality and the high
density of arithmetic operations, Top-Hat is a highly
parallelizable operation and especially suitable for ex-
ecution on Single Instruction Multiple Data (SIMD)
architectures. We implemented a parallelization of
Top-Hat on an Nvidia Tesla C1060 GPU. This paral-
lelization reduces the Top-Hat runtime for 3.6 MB of
data (corresponding to an image size of 2047 x 1765
pixels) from 0.9 s on CPU to only 19 ms on GPU. More
details on the performance of this operation can be
found in Section 3.

2.3 Segmentation

During segmentation the neural structures, namely
neuron volumes, are separated from the image back-
ground. The segmentation step results in a binary im-
age volume. Several image segmentation methods have
been proposed in the literature, e.g. thresholding, egde-
finding, region growing (seeded or unseeded), water-
shed or Level Set (Adams and Bischof 1994; Gonzalez
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Fig. 5 Filtering steps in the reconstruction workflow. A 300 x
300 pixel extract of an image of rat barrel cortex (a), inverted
image (b), image after Top-Hat filtering with a rectangular struc-
turing element b of size 41 x 41 pixel (¢). Subtraction of image
background through Top-Hat (d)

and Woods 2002; Jahne 2005; Lin et al. 2001; Serra
1988; Soille 2003). Thresholding segmentation tech-
niques are often used due to their simplicity. In the
SBFSEM image data of rat barrel cortex, the neuron is
locally highlighted Fig. 5(a). The neural structures are
local minima of the image function (respectively, local
maxima of the image function for inverted images). A
segmentation algorithm, using local properties of the
image function and is well parallelizable, is suitable for
this purpose.

For the segmentation of the Top-Hat transformed
SBFSEM image data we developed a 3D local morpho-
logical thresholding operator as presented in Eq. (3).
To enable automatic segmentation, the 3D operator
uses histogram characteristics of the SBFSEM images,
therefore no user interaction during the segmentation
process is required:

255 lf[f(X, vy, Z) > Thmax]\/
[(Thmin < f(x1 y,2) < Thimax)

A (P(x, ) Z) = 1)]
0 else

fbinary(xv Y, 7) =

3)

The threshold parameters Thpi, and Thp,x subdi-
vide the image gray-value range into three subranges.
All voxels v with gray value f(v) > Thpy,y are classified
as foreground voxels: v € F. All voxels with f(v) <
Thmin are assigned to the background: v € F. For
the remaining voxels the local property function p(v)
is evaluated:

|Al
Where M is the average gray-level value of the a x
b x c neighborhood centered in (x, y, z):

x+4y+8 2+

22 ) fxy2)

a c
x—§y-Lz-3

M =

axb xc

and A represents the number of neighbors in N;g with
gray-level values greater than the average gray-level
value M of the a x b x ¢ neighborhood.

A = {voxelv € Nigx,y,2) | f(v) > (M + €)}
—— ———

18-neighborhood

The evaluation of the mean gray-level, value M, of
the neighborhood a x b x ¢ for the segmentation oper-
ator is motivated by the idea that the mean gray-level
value of image regions that belong to neural structures
is higher than that of the background. For a reliable seg-
mentation the closest neighbors in the 18 neighborhood
of (x,y,2), Nig, are also evaluated. Thpy, and Thyax
are obtained from the histogram characteristics of the
first i images of the image stack.

The result of the segmentation operator are high-
lighted structures such as neuron surfaces. Figure 6(a)
presents the segmentation result for the image of
Fig. 5(c).

(b)

Fig. 6 Segmentation result for a=b =15, c=3,86 =15, y =
0.25 and € = 15 (a). M is calculated in the 15 x 15 x 3 neigh-
borhood. Padding result after hole filling and smoothing of seg-
mented data (b)
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Table 1 Algorithms performance in seconds on a single core of an AMD Opteron(tm) quad-core 8380 processor with 2.5 GHz CPU
and 32 GB of RAM and a Nvidia Tesla C1060 GPU with 4 GB GDDR3 global memory

Dataset |

Dataset I1

Dataset 111

300 x 300 x 60
7.5 x 7.5 x 3 um?3

Voxel volume
Cortical tissue size

2047 x 1765 x 1000
102.4 x 88.2 x 50 um?>

2048 x 1768 x 6018
51.2 x 44.2 x 180.6 um?>

Working data size 5.4MB 3.6 GB 21.8 GB
CPU (s) GPU (ms) CPU (s) GPU (s) CPU (s) GPU (s)

Complete reconstruction 9.082 +0.188 2074 +88.1 4139 +30.7 292.9 +£4.57 22391 £114.0 2070.3 £28.8
Filtering 1.799 £0.010 46.86 +1.00 1364 +14.7 22.19 +£1.87 9100 +19.1 151.0 £0.38
Segmentation 3.083 £0.097 28.15 +£1.27 119.2 £2.12 10.30 £0.564 164.8 +£0.45 50.7 £0.015
Padding-holefilling 1.499 +0.049 1369 £67.7 1634 £4.10 107.3 £0.510 6664.3 £12.1 464.5 £2.1
Connectivity 0.104 £0.008 N/A 121.3 £1.1 N/A 1217 £24.0 N/A
Padding-smoothing* 0.797 £0.014 61.7 £1.1 529.5 £7.59 23.41 £0.514 3230 £43.1 141.6 £2.2
Surface reconstruction** 1.80 £0.01 464 +9 371.3 £1.1 8.365 £0.007 2015 £15.4 44.87 £0.094

*The morphological smoothing of the surface is an optional step of the working pipeline
**The GPU version of the Marching Cubes processed the whole volume in substacks of 16 images in order to increase granularity

The presented 3D segmentation operator, fyinary (¥,
v, z), allows a rapid computation to determine, whether
a pixel belongs to the foreground. It is applied to
each voxel independently, therefore it is suitable for
parallelization to enable a very fast segmentation of
large image volumes. We implemented a parallelization
of the segmentation operator on a GPU that performs
segmentation of a data volume of several Gigabytes
within seconds. Performance details are presented in
Table 1, Section 3.

2.4 Padding and connectivity analysis

As only the neuron surface is segmented, holes in-
side the neural structures have to be filled. Holes are
defined as those background components which are not
connected to the image border (Soille 2003). Therefore,
the complement of the background components which
touch the image border results in an image with filled
holes. The detailed algorithm that we apply to the seg-
mented binary volume data for hole filling in 2D? is pre-
sented in Soille (2003). By nature, this algorithm is
highly sequential, since the decision to remove holes is
defined with respect to the border of the image.

To separate the neural structure from other seg-
mented structures, a connected component analysis in
digital topology is applied to extract the largest compo-
nents existing in the dataset. In addition to extraction
using voxel weights, a selection of structures may also
be defined using a voxel radius around a primary struc-
ture. There is currently no GPU implementation avail-

3In three-dimensional space this algorithm may fail for a degen-
erated case. We have a solution to fix this, but the fix has not been
implemented so far.
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able, but this step can be parallelized using a shared or
distributed memory programming model.

The image data can be smoothed in an optional
padding step. Smoothing the binary image with dilation
and erosion preserves the reliability of connectivity as
shown for the (padded) images Fig. 6(a) and (b).

2.5 Surface extraction

Following the padding step, the surface of segmented
neural structures is generated. This is a very important
step in the workflow as it not only enables visual access
to the biological data but also generates a 3D input
for simulations.

The most popular surface extraction technique is the
Marching Cubes (MC) algorithm designed by Lorensen
and Cline (1987). It generates a triangle mesh represen-
tation of an isosurface defined by a three-dimensional
scalar field.

Marching Cubes subdivides the voxel volume into
cubes of eight neighbor voxels. Marching through each
cube, for each vertex it is determined whether it is
within the isosurface or outside it. How a cube is
tiled by the isosurface is approximated by triangles.
Connecting all triangles from cubes on the isosurface
boundary will result in a surface representation. A sur-
face of a calyx-shaped spine from a L4 spiny dendrite
generated using Marching Cubes is shown in Fig. 7(b).

The main drawback of the Marching Cubes algo-
rithm, as presented by Lorensen and Cline (1987), are
that ambiguities can appear on faces or inside a cube.
Such ambiguities can lead to “holes” in the generated
triangle mesh, as shown for the configurations pre-
sented in Fig. 7(a). A topologically correct isosurface
generation cannot be guaranteed. The generation of
topologically correct isosurfaces is of importance for
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(a) Ambiguities on faces of neighboring cubes
will lead to a hole in the isosurface (Chernyaev 1995).

(c) Isosurface generation on a
spine using Marching Cubes 33.

(b) Isosurface generation on a
spine using Marching Cubes.

(d) After smoothing hole in sur-  (e) Smoothed surface from 7(c).

face of 7(b) appears larger.

Fig.7 Surface reconstruction for a dendritic spine with Marching
Cubes and Marching Cubes 33

the reconstruction of neuronal membranes. Despite
the high voxel resolution of SBFSEM, we often have
to deal with structures of less than 1 voxel thick-
ness. Such structures can be seen only in one image.

Fig. 8 A L4 spiny dendrite from a 300 x 300 x 60 SBFSEM im-
age volume of rat barrel cortex: projection of experimental data
(a) and its corresponding reconstructed 3D smoothed surface

Figure 7(d) shows such a spine. After applying the MC,
a hole results in the surface because of a face ambigu-
ity. As the isosurface is smoothed, such artefacts will
be intensified.

A proposed extension to the original Marching
Cubes that generates topologically correct isosur-
faces is the Marching Cubes 33 (Chernyaev 1995).
It resolves ambiguities both on faces and inside the
cell (Chernyaev 1995; Lewiner et al. 2003). We imple-
mented the Marching Cubes algorithm for our applica-
tion using the Look-Up-Table introduced by Lewiner
et al. (2003) and applied it to the same data set
as in Fig. 7(b). The result is a topologically correct
isosurface reconstruction shown in Fig. 7(c) and (e)
after smoothing.

In a last step to separate the neural structure from
other segmented structures, a connected component
analysis can be applied in object space. The generated
triangle mesh is smoothed using a low pass filter. Both
algorithms are available in VTK.

Figure 8(a) presents a projection of a dendrite with
spines generated from a 300 x 300 x 60 voxel volume
of a L4 spiny neuron from rat barrel cortex.

This image stack correspond to a cortical tissue size
of 7.5 x 7.5 x 3 um?. The complete reconstruction of
this volume from inversion to surface generation takes
on a single core of a AMD Opteron(tm) quad-core
8380 processor with 2.5 GHz 1.8 s, whilst the GPU
reconstruction needs only 464 ms.

2.6 Skeletonization

The last step in the reconstruction workflow is the
extraction of neuronal morphology for simulation. This

(©)

model (b). The one-dimensional skeleton approximation of the
dendritic surface is shown in (c)
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step is optional and is computed if a 1D skeleton model
is needed for simulation.

Proposed methods for computing the skeleton of
a 3D volume can be divided into three categories:
(1) topological thinning, (2) distance transformation
methods and (3) a Voronoi-based algorithm (Cornea
et al. 2007; Sherbrooke et al. 1995; Jones et al. 2006;
Gonzalez and Woods 2002; Soille 2003; Lee et al. 1994).
3D topological thinning methods are common because
the skeleton is generated by iteratively removing simple
points from the boundary of the 3D object (Lee et al.
1994; Manzanera et al. 1999; Soille 2003). Simple points
are boundary points (voxels) that can be removed with-
out changing the object topology.

We implemented a fast 3D thinning algorithm (Lee
et al. 1994) to skeletonize our smoothed binary image
volume. Starting from the 3D object boundary, at every
iteration, a boundary voxel is removed if it meets a
set of topological constraints that aim at preserving
object topology: the number of connected components,
object holes and cavities. These topological conditions
are presented in the following Egs. (4), (5) and (6):

8Xlocal(N26(U)) =0 (4)
§O(Nxy(v)) =0 (5)
Vv € R : connectivity re-check (6)

As presented in Eq. (4), border voxels v, that are
Euler invariant in N,q, are removed. The number of
connected components, holes and cavities in F does not
change. But as Euler invariance alone does not ensure
topology retainment (e.g. the removement of a voxel v
does not only create a hole in the 3D object but also an
additional object) we further require that the number
of objects in Ny is invariant, see Eq. (5).

To avoid the removal of all object voxels when re-
moving simple border voxels, the thinning iteration is
subdivided into 6 subiterations according to six types
of border points: N(orth), S(outh), W(est), E(ast), U(p),
B(ottom)(Lee et al. 1994). For each subiteration simple
border voxels are not directly removed, rather are just
labeled. After labeling all simple border points R =
{v e F | v labeled}, a connectivity re-check in N,¢ for
all v € R is computed (Eq. (6)).

We applied the skeletonization method to the data
volume with the reconstructed surface from Fig. 8(b).
The skeletonization result is presented in Fig. 8(c). For
simulation purposes the skeleton can also be stored
into a file containing all topological and geometrical
information.
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3 Results

NeuroStruct’s reconstruction pipeline enables a fast
and automatic extraction of neural structures from
SBFSEM image stacks, assuming an appropriate pa-
rameterization of all necessary steps. One important
issue regarding the reconstruction of large neural cir-
cuits from SBSFEM image data is the performance of
reconstruction methods.

Table 1 presents the performance of our algorithms
on three data sets. Dataset I, presented in Section 2.5,
has a voxel volume of 300 x 300 x 60 (7.5 x 7.5 x 3
um?). This reconstruction was generated on an AMD
Opteron(tm) processor with 2.5 GHz in 9.082 s. For
larger volumes, such as Dataset II and III (gigabytes),
reconstruction time exceeded one hour. Computing the
same data sets on a Nvidia C1060 GPU reduces the
time for reconstruction to less than two seconds for
Dataset I, and to few minutes for the others. This shows
that significant acceleration can be achieved with GPU
based algorithms.

The first two workflow steps, filtering and segmen-
tation, are very well suited for parallel execution on
a GPU. The padding step does not scale so well due
to the sequential nature of the holefilling algorithm.
The segmentation step takes 3.083 s on a CPU (60 im-
ages) or 51.4 ms per image. The segmentation process
can be accelerated on a GPU to 0.47 ms per image.
The parallelization of the algorithms is particularly
profitable when reconstructing large image stacks. The
reconstruction of neural structures from Dataset II,
a 3.6 GB image volume corresponding to a cortical
tissue size of 102.4 x 88.2 x 50 um?®, takes 1 h 8§ m
and 59 s on the same machine. The parameter values
for the segmentation step were the following: Thpyi, =
95; Thmax = 180; y = 0.15; § = 0; € = 3. These values
resulted in the rough surface reconstruction shown in
example in Fig. 9(a). For a fully detailed reconstruc-
tion, as shown in Fig. 9(b) and (c), segmentation pa-
rameters are iteratively fine-tuned taking advantage of
the fast reconstruction cycle. With these values, the
segmentation step on the CPU needs 119 s, which is
about 0.12 s per image (image resolution of 2047 x 1765
pixels). A GPU based segmentation results in a 12-
fold improvement in speed. Speed up factors of 190-
fold have been achieved with optimized segmentation
parameters. Reconstruction can be reduced to a few
minutes if the basic workflow steps are executed on
a GPU. Reconstruction results from Dataset II are
presented in Fig. 9 and a zoom on a spiny dendrite
section is shown in Fig. 9(¢).

Dataset III corresponds to 21.8 GB of data with a
cortical volume of 51.2 um x 442 pm x 180.6 um.
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Fig. 9 Surface reconstruction of a spiny L4 cell from Dataset
II: (a) soma with dendrites. (b) details of the dendritic branch
complex and spines in direct comparison with (d) a projection of

In Table 1, we show the performance results from
reconstruction of this stack. Although filtering and seg-
mentation of this large data set could be performed
on a fast CPU, the GPU parallelization enables an
extraction of neural structures within 34 m and 30 s. If
necessary, filtering and segmentation iterations could
be performed in 201.7 s. Figure 10 presents images
from the reconstruction of this data volume. The center
pictures show the reconstructed surface on a labeled
dendrite from a excerpt of the stack. A 10 voxel enve-
lope around the principal dendrite was used during the
connectivity step to generate this extraction. The left
and right snapshot show zoomed dendrite areas with
spines attached to them.

(b)

(d)

the experimental data. (¢) zoom of a spiny dendrite section. The
area shown corresponds to the region that is marked green in (b).
White length bars are 10 um in (a), 1 um otherwise

4 Preliminary validation

The complexity inherent in the structure of a dendrite,
including variant spine shapes, is amenable to recon-
struction inaccuracies. We compared our automated
image results to a reconstruction derived manually to
validate completeness and accuracy.

Individual images of both approaches are presented
in Fig. 11(a) and (d) and show a good agreement
in count and shape of detected structures (spines).
As shown in the image, Fig. 11(d), automatically seg-
mented areas have rougher surfaces. This has a twofold
origin: (1) during manual reconstruction the object is
circumvented by a limited number of points without
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Fig. 10 Surface reconstruction of a apical dendrite with spines the center picture. Length bars indicate 1 pum. Center picture
from a L5 cell represented by Dataset II1. Left and right pictures shows an overview of the dendrite surface that corresponds to
show two snapshots of areas with attached spines selected from an extract of Dataset II1. Length bar indicates 10 um

¥

(d) (e)

Fig. 11 Comparison of several aspects regarding reconstruction image corresponding to (a) and (b). (e) unsmoothed manual re-
accuracy and completeness: (a) manually traced image and (b) construction of Dataset I. (f) reconstruction extract from Dataset
original image data after inversion. (¢) zoomed MIP plot of II that corresponds to (c¢)

Dataset II with original EM resolution. (d) automatically traced
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selecting each voxel on its own, (2) the automatic
scheme does not benefit from objective consideration
of the surrounding voxel neighborhood. Manual recon-
struction of Dataset I is shown in Fig. 11(e) This manual
reconstruction compares to the workflow generated
version in Fig. 8(b). Both reconstructions include 11
spines. Spine shapes showed little variation between
reconstructions. A critical issue in both manual and
automated reconstruction of this dataset has been the
detection of a single voxel during segmentation. The
presence or absence of this voxel has direct influence
on the length of a single spine, the one that extends
diagonally in Fig. 8(b).

Additionally, we validated the spine skyline along
the dendrite using a maximum intensity projection
(MIP) shown in Fig. 11(c) for an extract of Dataset
II. Spines of the represented dendrite, visible in the
MIP plot, have proper correspondence to spines in the
reconstruction shown in Fig. 11(f). Small artifacts can
be seen on the subspine level. The rough spine surface
shown in Fig. 9(c) is due to the voxel-based digital
staircase approximation not to the fixation procedure.
Optimization of surface smoothing will be required to
remove these artifacts.

We consider the present validation as preliminary.
A more profound validation must incorporate several
datasets, larger regions of analysis, and a larger number
of manual reconstructions for comparison.

5 Discussion

To obtain a complete morphology of a neuron’s
dendritic branches, including its spines, at a sub-
micrometer resolution, reconstruction of individually
biocytin labeled neurons at the EM level is useful.
With NeuroStruct’s approach, the geometry of den-
dritic branches, the total number of spines, and their
density in different compartments of the cell can be
determined for functionally, morphologically, and ge-
netically identified cell types. Furthermore, each indi-
vidual spine can be precisely described by its shape
and volume as well as neck length and diameter. Ac-
curate quantification of these parameters is essential
for modeling the passive and active electrical proper-
ties of dendritic branches and of the entire dendritic
compartment. This task requires a rapid method of
image reconstruction therefore, this is the focus of the
current study.

Utilizing the fast methods described here, the
difficulties (i)—(iii), listed at the beginning of the Meth-
ods Section, were addressed. In summary, the situations
(i) and (iii) have been solved to a degree that will

not only enable our workflow to provide qualitative
structural information on a large scale, but will also
allow for a detailed quantitative spine-related analy-
sis of large dendritic compartments. For unconnected
electron-dense structures, whose gap is not resolved in
the image stack data, situation (ii), at present, manual
separation is required.

The reconstruction of a complete dendritic com-
partment will likely incorporate several large-scale
datasets. Given the expected size of these data sets
(hundreds of gigabytes) the presented GPU paralleliza-
tion is a prerequisite to allow for a fast reconstruc-
tion cycle. Further difficulties have to be overcome,
e.g. alignment of neuronal structures from different
substacks.

Further development of NeuroStruct’s workflow will
be required to deal with multiple image stacks. Our
approach is limited by artifacts generated by segmen-
tation such as high contrast structures from unlabelled
neighboring elements. For example, when blood vessels
directly touch dendritic structures as shown in Fig. 1,
subfigure (c) these structures cannot be separated by
the 3D segmentation operator. An extension to the
reconstruction workflow to “correct” such segmenta-
tion errors will be based on the graph representation
of the generated neural skeleton e.g. by eliminating
branches after identifying them as non-dendritic. Both
automatic and supervised removal can be considered
for that purpose.

Computer simulations of electrical signals occuring
in dendrites require high resolution skeletal representa-
tions as well as volume information. Such information
can be retrieved more accurate by EM reconstructions
because of the limited resolution of light microscopy.
Since neighboring SBFSEM image stacks might be
distorted towards each other the alignment will be a
further crucial point for the reconstruction of larger
tissue volumes. Surface reconstruction that meets the
requirements for simulation purposes, such as triangle
shape and aspect ratios, and further allows volume
meshing of an entire dendritic compartment requires
optimization of this process.

Obviously, the presented workflow is currently lim-
ited to the reconstruction of the dendritic compartment
of an individually labeled neuron. Straightforward ex-
tension of the method will enable to simultaneous re-
constructions of several stained cells. We aim first at
clarifying the variation of spine shapes, including the
cell-specific distribution densities of spines along a den-
drite on a large scale. These distributions are required
for morphologically detailed simulation of realistic cir-
cuits. In the future, large-scale reconstructions of spines
in genetically identified cells will most likely reduce
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the variability of spine types due to the dependency of
spine shapes on particular cell types.

6 Conclusion

This work presents NeuroStruct a fully automated re-
construction system for individually stained neurons
from SBFSEM image data. NeuroStruct’s algorithmic
workflow consists of a filtering step, segmentation,
padding, surface extraction and skeleton generation. It
allows fast and fully automated processing of image
volumes without any user interaction, provided that
the individual steps are parameterized properly. The
developed 3D segmentation operator allows efficient
processing of image data and enables reproducible seg-
mentation results utilizing the large computing power
of modern CPU and GPU hardware. Reconstructions
of neurons from different image stacks show promising
results and thus prove the variability and robustness
of the proposed scheme. The output of NeuroStruct
provides both a triangulated 3D surface representation
of the neural structure and a 1D skeleton, which can
be used for both structural analysis and simulation pur-
poses. However, it also became obvious that an increase
in resolution will depend on major improvements in
EM staining techniques.
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