Skip to main content
. 2011 Mar 22;31(3):533–545. doi: 10.1007/s10827-011-0316-1

Table 1.

Algorithms performance in seconds on a single core of an AMD Opteron(tm) quad-core 8380 processor with 2.5 GHz CPU and 32 GB of RAM and a Nvidia Tesla C1060 GPU with 4 GB GDDR3 global memory

  Dataset I Dataset II Dataset III
Voxel volume 300 × 300 × 60 2047 × 1765 × 1000 2048 × 1768 × 6018
Cortical tissue size 7.5 × 7.5 × 3 μm3 102.4 × 88.2 × 50 μm3 51.2 × 44.2 × 180.6 μm3
Working data size 5.4 MB 3.6 GB 21.8 GB
  CPU (s) GPU (ms) CPU (s) GPU (s) CPU (s) GPU (s)
Complete reconstruction 9.082 ±0.188 2074 ±88.1 4139 ±30.7 292.9 ±4.57 22391 ±114.0 2070.3 ±28.8
Filtering 1.799 ±0.010 46.86 ±1.00 1364 ±14.7 22.19 ±1.87 9100 ±19.1 151.0 ±0.38
Segmentation 3.083 ±0.097 28.15 ±1.27 119.2 ±2.12 10.30 ±0.564 164.8 ±0.45 50.7 ±0.015
Padding–holefilling 1.499 ±0.049 1369 ±67.7 1634 ±4.10 107.3 ±0.510 6664.3 ±12.1 464.5 ±2.1
Connectivity 0.104 ±0.008 N/A 121.3 ±1.1 N/A 1217 ±24.0 N/A
Padding–smoothing* 0.797 ±0.014 61.7 ±1.1 529.5 ±7.59 23.41 ±0.514 3230 ±43.1 141.6 ±2.2
Surface reconstruction** 1.80 ±0.01 464 ±9 371.3 ±1.1 8.365 ±0.007 2015 ±15.4 44.87 ±0.094

*The morphological smoothing of the surface is an optional step of the working pipeline

**The GPU version of the Marching Cubes processed the whole volume in substacks of 16 images in order to increase granularity